Chemical Industry and Engineering Progress ›› 2022, Vol. 41 ›› Issue (4): 1970-1981.DOI: 10.16085/j.issn.1000-6613.2021-0930
• Materials science and technology • Previous Articles Next Articles
ZHOU Yalan1(), YAN Wen1, LUO Lu1, FAN Mizi1, DU Guanben2, ZHAO Weigang1()
Received:
2021-04-30
Revised:
2021-06-28
Online:
2022-04-25
Published:
2022-04-23
Contact:
ZHAO Weigang
周亚兰1(), 闫雯1, 罗路1, 范毜仔1, 杜官本2, 赵伟刚1()
通讯作者:
赵伟刚
作者简介:
周亚兰(1996—),女,硕士研究生,研究方向为生物质纳米多孔材料。E-mail:基金资助:
CLC Number:
ZHOU Yalan, YAN Wen, LUO Lu, FAN Mizi, DU Guanben, ZHAO Weigang. Recent development of phenolic carbon aerogels: a review[J]. Chemical Industry and Engineering Progress, 2022, 41(4): 1970-1981.
周亚兰, 闫雯, 罗路, 范毜仔, 杜官本, 赵伟刚. 酚醛基炭气凝胶的研究进展[J]. 化工进展, 2022, 41(4): 1970-1981.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2021-0930
4 | 张洁, 段荣帅, 李子江, 等. 生物质基碳气凝胶的研究进展[J]. 生物质化学工程, 2021, 55(1): 91-100. |
ZHANG Jie, DUAN Rongshuai, LI Zijiang, et al. Research advances on biomass derived carbon aerogel[J]. Biomass Chemical Engineering, 2021, 55(1): 91-100. | |
1 | 刘守新, 鄂雷, 李伟, 等. 炭气凝胶研究现状及其发展前景[J]. 林业工程学报, 2017, 2(2): 1-8. |
LIU Shouxin, Lei E, LI Wei, et al. A review of research progress on carbon aerogel[J]. Journal of Forestry Engineering, 2017, 2(2): 1-8. | |
2 | PEKALA R W. Organic aerogels from the polycondensation of resorcinol with formaldehyde[J]. Journal of Materials Science, 1989, 24(9): 3221-3227. |
3 | 孙超. 酚醛树脂基有机气凝胶及炭气凝胶的低成本制备及结构控制[D]. 上海: 华东理工大学, 2014. |
5 | 邓慧, 李培金, 孟庆函, 等. 碳气凝胶改性全氟磺酸质子交换膜的性能[J]. 化工进展, 2011, 30(2): 376-380. |
DENG Hui, LI Peijin, MENG Qinghan, et al. Performance of carbon aerogel modified perfluorosulfonate ion exchange membrane[J]. Chemical Industry and Engineering Progress, 2011, 30(2): 376-380. | |
6 | 王丽娜, 马晓军. 植物纤维素基碳气凝胶的制备及应用研究进展[J]. 生物质化学工程, 2021, 55(1): 83-90. |
WANG Lina, MA Xiaojun. Preparation and application progress of plant cellulose-based carbon aerogel[J]. Biomass Chemical Engineering, 2021, 55(1): 83-90. | |
7 | 段一凡, 张光磊, 史新月, 等. 纤维素气凝胶的制备与应用研究进展[J]. 陶瓷学报, 2021, 42(1): 36-43. |
DUAN Yifan, ZHANG Guanglei, SHI Xinyue, et al. Research progress in preparation and application of cellulose aerogels[J]. Journal of Ceramics, 2021, 42(1): 36-43. | |
3 | SUN Chao. Low-cost preparation and structure control of phenolic-novolac based organic aerogels and carbon aerogels[D]. Shanghai: East China University of Science and Technology, 2014. |
8 | 雷倩. 间苯二酚-甲醛基炭气凝胶的形貌控制及电化学性能研究[D]. 北京: 北京化工大学, 2016. |
LEI Qian. Morphology control and electrochemical performance of resorcinol-formaldehyde carbon aerogels[D]. Beijing: Beijing University of Chemical Technology, 2016. | |
9 | WIENER M, REICHENAUER G, SCHERB T, et al. Accelerating the synthesis of carbon aerogel precursors[J]. Journal of Non-Crystalline Solids, 2004, 350: 126-130. |
10 | JOB N, PIRARD R, MARIEN J, et al. Porous carbon xerogels with texture tailored by pH control during sol-gel process[J]. Carbon, 2004, 42(3): 619-628. |
11 | BABIĆ B, KALUĐEROVIĆ B, VRAČAR L, et al. Characterization of carbon cryogel synthesized by sol-gel polycondensation and freeze-drying[J]. Carbon, 2004, 42(12/13): 2617-2624. |
12 | KRAIWATTANAWONG K, MUKAI S R, TAMON H, et al. Preparation of carbon cryogels from wattle tannin and furfural[J]. Microporous and Mesoporous Materials, 2007, 98(1/2/3): 258-266. |
13 | KRAIWATTANAWONG K, MUKAI S R, TAMON H, et al. Improvement of mesoporosity of carbon cryogels by acid treatment of hydrogels[J]. Microporous and Mesoporous Materials, 2008, 115(3): 432-439. |
14 | DE HORIKAWA T, HAYASHI J, MUROYAMA K. Controllability of pore characteristics of resorcinol-formaldehyde carbon aerogel[J]. Carbon, 2004, 42(8/9): 1625-1633. |
15 | LI Z L, CHEN T T, WU X, et al. Nitrogen-containing high surface area carbon cryogel from co-condensed phenol-urea-formaldehyde resin for CO2 capture[J]. Journal of Porous Materials, 2019, 26(3): 847-854. |
16 | LI Z L, ZHOU Y L, YAN W, et al. Cost-effective monolithic hierarchical carbon cryogels with nitrogen doping and high-performance mechanical properties for CO2 capture[J]. ACS Applied Materials & Interfaces, 2020, 12(19): 21748-21760. |
17 | MULIK S, SOTIRIOU-LEVENTIS C, LEVENTIS N. Time-efficient acid-catalyzed synthesis of resorcinol–formaldehyde aerogels[J]. Chemistry of Materials, 2007, 19(25): 6138-6144. |
18 | BARRIOS E, FOX D, LI SIP Y Y, et al. Nanomaterials in advanced, high-performance aerogel composites: a review[J]. Polymers, 2019, 11(4): 726. |
19 | ZIEGLER C, WOLF A, LIU W, et al. Modern inorganic aerogels[J]. Angewandte Chemie International Edition, 2017, 56(43): 13200-13221. |
20 | AMARAL-LABAT G, SZCZUREK A, FIERRO V, et al. Unique bimodal carbon xerogels from soft templating of tannin[J]. Materials Chemistry and Physics, 2015, 149/150: 193-201. |
21 | KESHAVARZ L, GHAANI M R, MACELROY J M D, et al. A comprehensive review on the application of aerogels in CO2-adsorption: materials and characterisation[J]. Chemical Engineering Journal, 2021, 412: 128604. |
22 | SZCZUREK A, AMARAL-LABAT G, FIERRO V, et al. Porosity of resorcinol-formaldehyde organic and carbon aerogels exchanged and dried with supercritical organic solvents[J]. Materials Chemistry and Physics, 2011, 129(3): 1221-1232. |
23 | JOB N, PANARIELLO F, MARIEN J, et al. Synthesis optimization of organic xerogels produced from convective air-drying of resorcinol-formaldehyde gels[J]. Journal of Non-Crystalline Solids, 2006, 352(1): 24-34. |
24 | LÉONARD A, JOB N, BLACHER S, et al. Suitability of convective air drying for the production of porous resorcinol-formaldehyde and carbon xerogels[J]. Carbon, 2005, 43(8): 1808-1811. |
25 | PIERRE A C, PAJONK G M. Chemistry of aerogels and their applications[J]. Chemical Reviews, 2002, 102(11): 4243-4266. |
26 | JOB N, THÉRY A, PIRARD R, et al. Carbon aerogels, cryogels and xerogels: influence of the drying method on the textural properties of porous carbon materials[J]. Carbon, 2005, 43(12): 2481-2494. |
27 | SHEN J, GUAN D Y. Preparation and application of carbon aerogels[M]. Aerogels Handbook. New York: Springer New York, 2011: 813-831. |
28 | LIU Q, HAN Y, QIAN X C, et al. CO2 adsorption over carbon aerogels: the effect of pore and surface properties[J]. ChemistrySelect, 2019, 4(11): 3161-3168. |
29 | WANG S S, XU Y L, ZHANG L H, et al. The effect of carbonization temperature on carbon aerogels structure[J]. Key Engineering Materials, 2020, 842: 182-185. |
30 | 徐娟, 陈敏智, 周晓燕. 生物质基炭气凝胶炭基前驱体的研究进展[J]. 林产化学与工业, 2017, 37(5): 1-8. |
XU Juan, CHEN Minzhi, ZHOU Xiaoyan. Research progress of carbon precursors of biomass based carbon aerogels[J]. Chemistry and Industry of Forest Products, 2017, 37(5): 1-8. | |
31 | LEE J H, PARK S J. Recent advances in preparations and applications of carbon aerogels: a review[J]. Carbon, 2020, 163: 1-18. |
32 | KOCKLENBERG R, MATHIEU B, BLACHER S, et al. Texture control of freeze-dried resorcinol-formaldehyde gels[J]. Journal of Non-Crystalline Solids, 1998, 225: 8-13. |
33 | ALONSO-BUENAPOSADA I D, REY-RAAP N, CALVO E G, et al. Acid-based resorcinol-formaldehyde xerogels synthesized by microwave heating[J]. Journal of Sol-Gel Science and Technology, 2017, 84(1): 60-69. |
34 | WU D C, FU R W, YU Z Q. Organic and carbon aerogels from the NaOH-catalyzed polycondensation of resorcinol-furfural and supercritical drying in ethanol[J]. Journal of Applied Polymer Science, 2005, 96(4): 1429-1435. |
35 | MUKAI S R, TAMITSUJI C, NISHIHARA H, et al. Preparation of mesoporous carbon gels from an inexpensive combination of phenol and formaldehyde[J]. Carbon, 2005, 43(12): 2628-2630. |
36 | WU D C, FU R W, SUN Z Q, et al. Low-density organic and carbon aerogels from the sol-gel polymerization of phenol with formaldehyde[J]. Journal of Non-Crystalline Solids, 2005, 351(10/11): 915-921. |
37 | LONG D H, LIU X J, QIAO W M, et al. Molecular design of polymer precursors for controlling microstructure of organic and carbon aerogels[J]. Journal of Non-Crystalline Solids, 2009, 355(22/23): 1252-1258. |
38 | 易东, 刘秘, 周贵方, 等. 苯酚-三聚氰胺-甲醛气凝胶的制备与表征研究[J]. 功能材料, 2017, 48(4): 4141-4144. |
YI Dong, LIU Mi, ZHOU Guifang, et al. Preparation and characterization of phenol-melamine-formaldehyde aerogels[J]. Journal of Functional Materials, 2017, 48(4): 4141-4144. | |
39 | BRAGHIROLI F L, AMARAL-LABAT G, BOSS A F N, et al. Tannin gels and their carbon derivatives: a review[J]. Biomolecules, 2019, 9(10): 587. |
40 | 陈峰. 木质素-RF有机气凝胶的制备及其性能研究[D]. 哈尔滨: 东北林业大学, 2011. |
CHEN Feng. Preparation and properties study of organic aerogels based on lignin[D]. Harbin: Northeast Forestry University, 2011. | |
41 | 段亚军, 程岩岩, 隋光辉, 等. 木质素对木质素-脲醛共聚树脂的影响及反应机理[J]. 高等学校化学学报, 2019, 40(5): 1058-1064. |
DUAN Yajun, CHENG Yanyan, SUI Guanghui, et al. Lignin impacts on the lignin-urea-formaldehyde copolymer resin and the reaction mechanism[J]. Chemical Journal of Chinese Universities, 2019, 40(5): 1058-1064. | |
42 | GRISHECHKO L I, AMARAL-LABAT G, SZCZUREK A, et al. Lignin-phenol-formaldehyde aerogels and cryogels[J]. Microporous and Mesoporous Materials, 2013, 168: 19-29. |
43 | 羿颖, 马媛媛, 王佳楠, 等. 木质素/纤维素复合气凝胶的制备与表征[J]. 化工新型材料, 2019, 47(S1): 179-183. |
YI Ying, MA Yuanyuan, WANG Jianan, et al. Preparation and characterization of lignin/cellulose composite aerogel[J]. New Chemical Materials, 2019, 47(S1): 179-183. | |
44 | 兰平. 葡萄渣凝缩单宁的提取及单宁基胶粘剂研制[D]. 南京: 南京林业大学, 2013. |
LAN Ping. Condensed tannins extraction from grape pomace: characterization and utilization as tannin-based adhesives[D]. Nanjing: Nanjing Forestry University, 2013. | |
45 | AMARAL-LABAT G, GRISHECHKO L I, FIERRO V, et al. Tannin-based xerogels with distinctive porous structures[J]. Biomass and Bioenergy, 2013, 56: 437-445. |
46 | SZCZUREK A, AMARAL-LABAT G, FIERRO V, et al. The use of tannin to prepare carbon gels. Part Ⅰ: Carbon aerogels[J]. Carbon, 2011, 49(8): 2773-2784. |
47 | SZCZUREK A, AMARAL-LABAT G, FIERRO V, et al. The use of tannin to prepare carbon gels. Part Ⅱ. Carbon cryogels[J]. Carbon, 2011, 49(8): 2785-2794. |
48 | REY-RAAP N, SZCZUREK A, FIERRO V, et al. Advances in tailoring the porosity of tannin-based carbon xerogels[J]. Industrial Crops and Products, 2016, 82: 100-106. |
49 | MUEHLEMANN S E, HUBER L, ZHAO S Y, et al. Facile synthesis of resorcinol-melamine-formaldehyde based carbon xerogel[J]. Materials Today: Proceedings, 2018, 5(5): 13776-13784. |
50 | ROBERTSON C, MOKAYA R. Microporous activated carbon aerogels via a simple subcritical drying route for CO2 capture and hydrogen storage[J]. Microporous and Mesoporous Materials, 2013, 179: 151-156. |
51 | LI W C, REICHENAUER G, FRICKE J. Carbon aerogels derived from cresol-resorcinol-formaldehyde for supercapacitors[J]. Carbon, 2002, 40(15): 2955-2959. |
52 | HWANG S W, HYUN S H. Capacitance control of carbon aerogel electrodes[J]. Journal of Non-Crystalline Solids, 2004, 347(1/2/3): 238-245. |
53 | SZCZUREK A, JUREWICZ K, AMARAL-LABAT G, et al. Structure and electrochemical capacitance of carbon cryogels derived from phenol-formaldehyde resins[J]. Carbon, 2010, 48(13): 3874-3883. |
54 | GRISHECHKO L I, AMARAL-LABAT G, FIERRO V, et al. Biosourced, highly porous, carbon xerogel microspheres[J]. RSC Advances, 2016, 6(70): 65698-65708. |
55 | CHEN F, LI J. Synthesis and structural characteristics of organic aerogels with different content of lignin[J]. Advanced Materials Research, 2010, 113/114/115/116: 1837-1840. |
56 | 张倩, 禹筱元, 麦嘉雯, 等. 木质素酚醛基炭气凝胶的制备及电化学性能[J]. 高分子材料科学与工程, 2013, 29(4): 152-154, 159. |
ZHANG Qian, YU Xiaoyuan, Jiawen MAI, et al. Preparation and electrochemical performance of lignin-phenoic carbon aerogels[J]. Polymer Materials Science & Engineering, 2013, 29(4): 152-154, 159. | |
57 | GUARÍN-ROMERO J R, RODRÍGUEZ-ESTUPIÑÁN P, GIRALDO L, et al. Study of adsorption of CO2 and CH4 on resorcinol-formaldehyde aerogels at high pressures[J]. Journal of Chemical & Engineering Data, 2019, 64(12): 5263-5274. |
58 | REYNOLDS J G, CORONADO P R, HRUBESH L W. Hydrophobic aerogels for oil-spill cleanup? Intrinsic absorbing properties[J]. Energy Sources, 2001, 23(9): 831-843. |
59 | WANG Y, ZHU L, ZHU F Y, et al. Removal of organic solvents/oils using carbon aerogels derived from waste durian shell[J]. Journal of the Taiwan Institute of Chemical Engineers, 2017, 78: 351-358. |
60 | MARIA RAHMAN M, AKTER N, KARIM M R, et al. Optimization, kinetic and thermodynamic studies for removal of Brilliant Red (X-3B) using Tannin gel[J]. Journal of Environmental Chemical Engineering, 2014, 2(1): 76-83. |
61 | AKTER N, HOSSAIN M A, HASSAN M J, et al. Amine modified tannin gel for adsorptive removal of Brilliant Green dye[J]. Journal of Environmental Chemical Engineering, 2016, 4(1): 1231-1241. |
62 | KIM Y H, OGATA T, NAKANO Y. Kinetic analysis of palladium(Ⅱ) adsorption process on condensed-tannin gel based on redox reaction models[J]. Water Research, 2007, 41(14): 3043-3050. |
63 | NAKANO Y, TAKESHITA K, TSUTSUMI T. Adsorption mechanism of hexavalent chromium by redox within condensed-tannin gel[J]. Water Research, 2001, 35(2): 496-500. |
64 | MOON C W, KIM Y, IM S S, et al. Effect of activation temperature on CO2 capture behaviors of resorcinol-based carbon aerogels[J]. Bulletin of the Korean Chemical Society, 2014, 35(1): 57-61. |
65 | ELLO A S, YAPO J A, TROKOUREY A. N-doped carbon aerogels for carbon dioxide (CO2) capture[J]. African Journal of Pure and Applied Chemistry, 2013, 7(2): 61-66. |
66 | MARQUES L M, CARROTT P J M, CARROTT M M L R. Carbon aerogels used in carbon dioxide capture[J]. Boletín del Grupo Español del Carbón 2016, (40): 9-12. |
67 | PANDEY A P, BHATNAGAR A, SHUKLA V, et al. Hydrogen storage properties of carbon aerogel synthesized by ambient pressure drying using new catalyst triethylamine[J]. International Journal of Hydrogen Energy, 2020, 45(55): 30818-30827. |
68 | ALVARES RODRIGUES L, KOIBUCHI SAKANE K, ALVES NUNES SIMONETTI E, et al. Cr total removal in aqueous solution by PHENOTAN AP based tannin gel (TFC)[J]. Journal of Environmental Chemical Engineering, 2015, 3(2): 725-733. |
69 | MALAIKA A, MORAWA EBLAGON K, SOARES O S G P, et al. The impact of surface chemistry of carbon xerogels on their performance in phenol removal from wastewaters via combined adsorption-catalytic process[J]. Applied Surface Science, 2020, 511: 145467. |
70 | LIU Q, HE P P, QIAN X C, et al. Carbon aerogels synthesizd with cetyltrimethyl ammonium bromide (CTAB) as a catalyst and its application for CO2 capture[J]. Zeitschrift Für Anorganische Und Allgemeine Chemie, 2018, 644(3): 155-160. |
71 | XU Y, YANG Z X, ZHANG G J, et al. Excellent CO2 adsorption performance of nitrogen-doped waste biocarbon prepared with different activators[J]. Journal of Cleaner Production, 2020, 264: 121645. |
72 | WEI H M, CHEN J, FU N, et al. Biomass-derived nitrogen-doped porous carbon with superior capacitive performance and high CO2 capture capacity[J]. Electrochimica Acta, 2018, 266: 161-169. |
73 | ADIO S O, GANIYU S A, USMAN M, et al. Facile and efficient nitrogen modified porous carbon derived from sugarcane bagasse for CO2 capture: experimental and DFT investigation of nitrogen atoms on carbon frameworks[J]. Chemical Engineering Journal, 2020, 382: 122964. |
74 | CUI H M, XU J G, SHI J S, et al. Facile fabrication of nitrogen doped carbon from filter paper for CO2 adsorption[J]. Energy, 2019, 187: 115936. |
75 | MA X C, LI L Q, ZENG Z, et al. Experimental and theoretical demonstration of the relative effects of O-doping and N-doping in porous carbons for CO2 capture[J]. Applied Surface Science, 2019, 481: 1139-1147. |
76 | FANG B Z, BINDER L. A modified activated carbon aerogel for high-energy storage in electric double layer capacitors[J]. Journal of Power Sources, 2006, 163(1): 616-622. |
77 | XU Y L, REN B, WANG S S, et al. Carbon aerogels with oxygen-containing surface groups for use in supercapacitors[J]. Solid State Ionics, 2019, 339: 115005. |
78 | ZHUO H, HU Y J, TONG X, et al. Sustainable hierarchical porous carbon aerogel from cellulose for high-performance supercapacitor and CO2 capture[J]. Industrial Crops and Products, 2016, 87: 229-235. |
79 | MEZZAVILLA S, ZANELLA C, ARAVIND P R, et al. Carbon xerogels as electrodes for supercapacitors. The influence of the catalyst concentration on the microstructure and on the electrochemical properties[J]. Journal of Materials Science, 2012, 47(20): 7175-7180. |
80 | KALIJADIS A, GAVRILOV N, JOKIĆ B, et al. Composition, structure and potential energy application of nitrogen doped carbon cryogels[J]. Materials Chemistry and Physics, 2020, 239: 122120. |
81 | ZAPATA-BENABITHE Z, DIOSSA G, CASTRO C D, et al. Activated carbon bio-xerogels as electrodes for super capacitors applications[J]. Procedia Engineering, 2016, 148: 18-24. |
82 | AMARAL-LABAT G, SZCZUREK A, FIERRO V, et al. Pore structure and electrochemical performances of tannin-based carbon cryogels[J]. Biomass and Bioenergy, 2012, 39: 274-282. |
83 | SMIRNOVA A, DONG X, HARA H, et al. Novel carbon aerogel-supported catalysts for PEM fuel cell application[J]. International Journal of Hydrogen Energy, 2005, 30(2): 149-158. |
84 | WANG C, XIONG Y, FAN B T, et al. Cellulose as an adhesion agent for the synthesis of lignin aerogel with strong mechanical performance, sound-absorption and thermal Insulation[J]. Scientific Reports, 2016, 6: 32383. |
85 | WEI S, QIU X Y, AN J Q, et al. Highly sensitive, flexible, green synthesized graphene/biomass aerogels for pressure sensing application[J]. Composites Science and Technology, 2021, 207: 108730. |
86 | GUO F, JIANG Y Q, XU Z, et al. Highly stretchable carbon aerogels[J]. Nature Communications, 2018, 9(1): 881. |
87 | LONG D, CHEN Q, QIAO W, et al. Three-dimensional mesoporous carbon aerogels: ideal catalyst supports for enhanced H2S oxidation[J]. Chemical Communications, 2009(26): 3898-3900. |
88 | MOHAMMAD ZAINOL M, SAIDINA AMIN N A, ASMADI M, et al. Carbon cryogel from lignin-furfural as acid catalyst in esterification of oleic acid[M]//International Conference on Global Sustainability and Chemical Engineering (ICGSCE), 2014. Singapore: Springer Singapore, 2015: 315-322. |
[1] | HUI Bo, HOU Hongyi, ZHANG Tao, CHE Shengwen. Drying characteristics of cylindrical annular pulsating heat pipe [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 33-40. |
[2] | LI Zhiyuan, HUANG Yaji, ZHAO Jiaqi, YU Mengzhu, ZHU Zhicheng, CHENG Haoqiang, SHI Hao, WANG Sheng. Characterization of heavy metals during co-pyrolysis of sludge with PVC [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4947-4956. |
[3] | YANG Ying, HOU Haojie, HUANG Rui, CUI Yu, WANG Bing, LIU Jian, BAO Weiren, CHANG Liping, WANG Jiancheng, HAN Lina. Coal tar phenol-based carbon nanosphere prepared by Stöber method for adsorption of CO2 [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 5011-5018. |
[4] | YIN Xinyu, PI Pihui, WEN Xiufang, QIAN Yu. Application of special wettability materials for anti-hydrate-nucleation and anti-hydrate-adhesion in oil and gas pipelines [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4076-4092. |
[5] | LI Haidong, YANG Yuankun, GUO Shushu, WANG Benjin, YUE Tingting, FU Kaibin, WANG Zhe, HE Shouqin, YAO Jun, CHEN Shu. Effect of carbonization and calcination temperature on As(Ⅲ) removal performance of plant-based Fe-C microelectrolytic materials [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3652-3663. |
[6] | XU Peiyao, CHEN Biaoqi, KANKALA Ranjith Kumar, WANG Shibin, CHEN Aizheng. Research progress of nanomaterials for synergistic ferroptosis anticancer therapy [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3684-3694. |
[7] | YAO Liming, WANG Yazhuo, FAN Honggang, GU Qing, YUAN Haoran, CHEN Yong. Treatment status of kitchen waste and its research progress of pyrolysis technology [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3791-3801. |
[8] | ZHANG Shan, ZHONG Zhaoping, YANG Yuxuan, DU Haoran, LI Qian. Enrichment of heavy metals in pyrolysis of municipal solid waste by phosphate modified kaolin [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3893-3903. |
[9] | LI Dongxian, WANG Jia, JIANG Jianchun. Producing biofuels from soapstock via pyrolysis and subsequent catalytic vapor-phase hydrotreating process [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 2874-2883. |
[10] | XU Chunshu, YAO Qingda, LIANG Yongxian, ZHOU Hualong. Effects of graphene oxide/carbon nanotubes on the properties of several typical polymer materials [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3012-3028. |
[11] | LI Ruolin, HE Shaolin, YUAN Hongying, LIU Boyue, JI Dongli, SONG Yang, LIU Bo, YU Jiqing, XU Yingjun. Effect of in-situ pyrolysis on physical properties of oil shale and groundwater quality [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3309-3318. |
[12] | ZHANG Chenyu, WANG Ning, XU Hongtao, LUO Zhuqing. Performance evaluation of the multiple layer latent heat thermal energy storage unit combined with nanoparticle for heat transfer enhancement [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2332-2342. |
[13] | CHEN Shaohua, WANG Yihua, HU Qiangfei, HU Kun, CHEN Li’ai, LI Jie. Research progress on detection of Cr(Ⅵ) by electrochemically modified electrode [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2429-2438. |
[14] | SUN Yanchenhao, WANG Wei, LI Yizhe, ZHU Yanni, LIU Xuewu, ZHANG Dawei. Preparation of mandarin oil microcapsules and its product quality evaluation [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2626-2637. |
[15] | WANG Zhiwei, GUO Shuaihua, WU Mengge, CHEN Yan, ZHAO Junting, LI Hui, LEI Tingzhou. Recent advances on catalytic co-pyrolysis of biomass and plastic [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2655-2665. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |