Chemical Industry and Engineering Progress ›› 2021, Vol. 40 ›› Issue (2): 652-663.DOI: 10.16085/j.issn.1000-6613.2020-0741
• Chemical processes and equipment • Previous Articles Next Articles
Ning JIANG(), Shichao ZHAO, Xiaodong XIE, Wei FAN, Xinjie XU, Yingjie XU
Received:
2020-05-06
Revised:
2020-06-24
Online:
2021-02-09
Published:
2021-02-05
Contact:
Ning JIANG
通讯作者:
蒋宁
作者简介:
蒋宁(1977—),女,博士,副教授,硕士生导师,研究方向为过程能量集成。E-mail:基金资助:
CLC Number:
Ning JIANG, Shichao ZHAO, Xiaodong XIE, Wei FAN, Xinjie XU, Yingjie XU. Retrofit of heat integrated system of crude oil distillation system with multi-energy complementation by waste heat recovery[J]. Chemical Industry and Engineering Progress, 2021, 40(2): 652-663.
蒋宁, 赵世超, 谢小东, 范伟, 徐新杰, 徐英杰. 利用余热回收多能互补技术的原油蒸馏装置热集成系统的优化改造[J]. 化工进展, 2021, 40(2): 652-663.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2020-0741
流股 | 进口温Tin /℃ | 出口温度Tout /℃ | 热容流率CP /kW·K-1 | 传热系数h /kW·m-2·K-1 |
---|---|---|---|---|
H1 | 319.4 | 244.1 | 136.2 | 1.30 |
H2 | 347.3 | 45 | 194.5 | 0.76 |
H3 | 263.5 | 181 | 123 | 1.40 |
H4 | 297.4 | 150 | 20.7 | 1.20 |
H5 | 248 | 50 | 63.2 | 1.20 |
H6 | 73.2 | 40 | 57.7 | 1.30 |
H7 | 231.8 | 120 | 48.5 | 1.40 |
H8 | 167.1 | 69.6 | 165.3 | 1.40 |
H9 | 146.7 | 73.4 | 253.6 | 1.20 |
H10 | 250 | 198 | 120.5 | 1.50 |
C1 | 30 | 232.2 | 373.3 | 0.60 |
C2 | 232.2 | 343.3 | 488.1 | 0.79 |
C3 | 226.2 | 231.8 | 392.6 | 3.20 |
C4 | 120 | 186 | 200.4 | 1.50 |
C5 | 180 | 290 | 320.6 | 1.20 |
HU | 1000 | 500 | — | 0.12 |
CU | 20 | 40 | — | 2.00 |
流股 | 进口温Tin /℃ | 出口温度Tout /℃ | 热容流率CP /kW·K-1 | 传热系数h /kW·m-2·K-1 |
---|---|---|---|---|
H1 | 319.4 | 244.1 | 136.2 | 1.30 |
H2 | 347.3 | 45 | 194.5 | 0.76 |
H3 | 263.5 | 181 | 123 | 1.40 |
H4 | 297.4 | 150 | 20.7 | 1.20 |
H5 | 248 | 50 | 63.2 | 1.20 |
H6 | 73.2 | 40 | 57.7 | 1.30 |
H7 | 231.8 | 120 | 48.5 | 1.40 |
H8 | 167.1 | 69.6 | 165.3 | 1.40 |
H9 | 146.7 | 73.4 | 253.6 | 1.20 |
H10 | 250 | 198 | 120.5 | 1.50 |
C1 | 30 | 232.2 | 373.3 | 0.60 |
C2 | 232.2 | 343.3 | 488.1 | 0.79 |
C3 | 226.2 | 231.8 | 392.6 | 3.20 |
C4 | 120 | 186 | 200.4 | 1.50 |
C5 | 180 | 290 | 320.6 | 1.20 |
HU | 1000 | 500 | — | 0.12 |
CU | 20 | 40 | — | 2.00 |
项目 | 参数或公式 |
---|---|
新增换热器费用/USD | 54672+622.6A |
现有换热器增加面积的费用/USD | 622.6ΔA |
单位热公用工程费用UChu/USD·kW-1·a-1 | 140 |
单位冷公用工程费用UCcu/USD·kW-1·a-1 | 10 |
ORC系统的投资费用[ | 1726 |
ARS系统的投资费用[ | 239 |
MHP系统的投资费用[ | 442 |
电力销售价格[ | 0.089 |
冷量(7℃)销售价格[ | 0.042 |
热量(70℃)销售价格[ | 0.027 |
项目 | 参数或公式 |
---|---|
新增换热器费用/USD | 54672+622.6A |
现有换热器增加面积的费用/USD | 622.6ΔA |
单位热公用工程费用UChu/USD·kW-1·a-1 | 140 |
单位冷公用工程费用UCcu/USD·kW-1·a-1 | 10 |
ORC系统的投资费用[ | 1726 |
ARS系统的投资费用[ | 239 |
MHP系统的投资费用[ | 442 |
电力销售价格[ | 0.089 |
冷量(7℃)销售价格[ | 0.042 |
热量(70℃)销售价格[ | 0.027 |
方案 | EC /kW | WHO /kW | ARC /USD·a-1 | ARP /USD·a-1 | TAC /USD·a-1 | ROI /a |
---|---|---|---|---|---|---|
原网络 | 153289 | — | — | — | 13930590 | — |
方案1 | 118135 | 26026 | 2053937 | 9901834 | 6082573 | 96% |
方案2 | 175152 | 40025 | 2555750 | 11473811 | 5012410 | 90% |
方案3 | 133170 | 24842 | 1848463 | 11033477 | 4745456 | 119% |
方案4 | 167996 | 34187 | 1942166 | 11731185 | 4118961 | 121% |
方案 | EC /kW | WHO /kW | ARC /USD·a-1 | ARP /USD·a-1 | TAC /USD·a-1 | ROI /a |
---|---|---|---|---|---|---|
原网络 | 153289 | — | — | — | 13930590 | — |
方案1 | 118135 | 26026 | 2053937 | 9901834 | 6082573 | 96% |
方案2 | 175152 | 40025 | 2555750 | 11473811 | 5012410 | 90% |
方案3 | 133170 | 24842 | 1848463 | 11033477 | 4745456 | 119% |
方案4 | 167996 | 34187 | 1942166 | 11731185 | 4118961 | 121% |
评价指标 | HEN-Scenario A | HEN-WHR-Scenario B | 占比 |
---|---|---|---|
总废热回收量/kW | — | 51913 | |
总发电量/kW | — | 417 | |
总制冷量/kW | — | 29665 | |
总制热量/kW | — | 4105 | |
投资费用 | |||
HEN改造投资费用/ USD·a-1 | 916576 | 17349 | 0.9% |
ORC设备投资费用/ USD·a-1 | — | 143948 | 7.4% |
ARS设备投资费用/ USD·a-1 | — | 1417987 | 73.0% |
MHP设备投资费用/ USD·a-1 | — | 362882 | 18.7% |
总投资费用/USD·a-1 | — | 1942166 | 100% |
操作费用 | |||
HEN操作费用/USD·a-1 | 13012600 | 12493460 | 89.8% |
ORC操作费用/USD·a-1 | — | 19310 | 0.1% |
ARS操作费用/USD·a-1 | — | 759750 | 5.5% |
MHP操作费用/USD·a-1 | — | 635460 | 4.6% |
总操作费用/USD·a-1 | — | 13907980 | 100% |
改造收益 | |||
HEN改造收益/USD·a-1 | 917990 | 1437130 | 12.3% |
ORC集成收益/USD·a-1 | — | 292439 | 2.5% |
ARS集成收益/USD·a-1 | — | 9706062 | 82.7% |
MHP集成收益/USD·a-1 | — | 295554 | 2.5% |
总改造收益/USD·a-1 | 917990 | 11731185 | 100% |
投资回报率 | 100.2% | 120.8% | |
总年度费用/USD·a-1 | 12277925 | 4118961 |
评价指标 | HEN-Scenario A | HEN-WHR-Scenario B | 占比 |
---|---|---|---|
总废热回收量/kW | — | 51913 | |
总发电量/kW | — | 417 | |
总制冷量/kW | — | 29665 | |
总制热量/kW | — | 4105 | |
投资费用 | |||
HEN改造投资费用/ USD·a-1 | 916576 | 17349 | 0.9% |
ORC设备投资费用/ USD·a-1 | — | 143948 | 7.4% |
ARS设备投资费用/ USD·a-1 | — | 1417987 | 73.0% |
MHP设备投资费用/ USD·a-1 | — | 362882 | 18.7% |
总投资费用/USD·a-1 | — | 1942166 | 100% |
操作费用 | |||
HEN操作费用/USD·a-1 | 13012600 | 12493460 | 89.8% |
ORC操作费用/USD·a-1 | — | 19310 | 0.1% |
ARS操作费用/USD·a-1 | — | 759750 | 5.5% |
MHP操作费用/USD·a-1 | — | 635460 | 4.6% |
总操作费用/USD·a-1 | — | 13907980 | 100% |
改造收益 | |||
HEN改造收益/USD·a-1 | 917990 | 1437130 | 12.3% |
ORC集成收益/USD·a-1 | — | 292439 | 2.5% |
ARS集成收益/USD·a-1 | — | 9706062 | 82.7% |
MHP集成收益/USD·a-1 | — | 295554 | 2.5% |
总改造收益/USD·a-1 | 917990 | 11731185 | 100% |
投资回报率 | 100.2% | 120.8% | |
总年度费用/USD·a-1 | 12277925 | 4118961 |
1 | 俞杭生. 基于改进超结构的换热网络优化改造[D]. 杭州: 浙江工业大学, 2017. |
YU Hangsheng. Heat exchanger networks retrofit based on modified superstructure[D]. Hangzhou: Zhejiang University of Technology, 2017. | |
2 | 谢小东, 范伟, 蒋宁, 等. 基于NSGA-Ⅲ算法的高维能量集成网络的优化改造[J]. 化工进展, 2020, 39(3): 872-881. |
XIE Xiaodong, FAN Wei, JIANG Ning, et al. Retrofit of high-dimensional energy integrated network based on NSGA-Ⅲ algorithm[J]. Chemical Industry and Engineering Progress, 2020, 39(3): 872-881. | |
3 | AJAH A N, PATIL A C, HERDER P M, et al. Integrated conceptual design of a robust and reliable waste-heat district heating system[J]. Applied Thermal Engineering, 2007, 27(7): 1158-1164. |
4 | I-L SVENSSON, JÖNSSON J, BERNTSSON T, et al. Excess heat from Kraft pulp mills: trade-offs between internal and external use in the case of Sweden (): methodology[J]. Energy Policy, 2008, 36(11): 4178-4185. |
5 | XIA Li, LIU Renmin, ZENG Yiting, et al. A review of low-temperature heat recovery technologies for industry processes[J]. Chinese Journal of Chemical Engineering, 2019, 27(10): 2227-2237. |
6 | TJOE T N, LINNHOFF B. Using pinch technology for process retrofit[J]. Chemical Engineering, 1986, 93(8): 47-60. |
7 | XIAO Yuan, SUN Tao, CUI Guomin. Enhancing strategy promoted by large step length for the structure optimization of heat exchanger networks[J]. Applied Thermal Engineering, 2020, 173: 115199. |
8 | CHEN Chengliang, LI Poyi, CHEN Huichu, et al. Synthesis of transcritical ORC-integrated heat exchanger networks for waste heat recovery[M]// Computer Aided Chemical Engineering. New York: Elsevier, 2015, 37: 1073-1078. |
9 | 王弘历, 龚燕, 郭彦, 等. 炼化过程低温余热利用技术的应用及进展[J]. 石油规划设计, 2017(1): 14-17. |
WANG Hongli, GONG Yan, GUO Yan, et al. Application and development of low-temperature heat utilization technologies applied in refining and petrochemical processes[J]. Petroleum Planning and Design, 2017(1): 14-17. | |
10 | KÖSE Ö, KOÇ Y, YAĞLI H. Performance improvement of the bottoming steam Rankine cycle (SRC) and organic Rankine cycle (ORC) systems for a triple combined system using gas turbine (GT) as topping cycle[J]. Energy Conversion and Management, 2020, 211: 112745. |
11 | ABDELHAY A O, FATH H E S, NADA S A. Solar driven polygeneration system for power, desalination and cooling[J]. Energy, 2020, 198: 117341. |
12 | WANG Mengying, DENG Chun, WANG Yufei, et al. Exergoeconomic performance comparison, selection and integration of industrial heat pumps for low grade waste heat recovery[J]. Energy Conversion and Management, 2020, 207: 112532. |
13 | HUPPMANN G. Industrial waste heat recovery by use of organic Rankine cycles (ORC)[M]//Energy Conservation in Industry— Combustion, Heat Recovery and Rankine Cycle Machines. Dordrecht: Springer, 1983: 160-176. |
14 | HUNG T C, SHAI T Y, WANG Shoukong. A review of organic Rankine cycles (ORCs) for the recovery of low-grade waste heat[J]. Energy, 1997, 22(7): 661-667. |
15 | WEI Donghong, LU Xuesheng, LU Zhen, et al. Performance analysis and optimization of organic Rankine cycle (ORC) for waste heat recovery[J]. Energy Conversion and Management, 2007, 48(4): 1113-1119. |
16 | BULGAN A T. Use of low temperature energy sources in aqua-ammonia absorption refrigeration systems[J]. Energy Conversion and Management, 1997, 38(14): 1431-1438. |
17 | ABOU-ZIYAN H Z, AHMED M F, METWALLY M N, et al. Solar-assisted R22 and R134a heat pump systems for low-temperature applications[J]. Applied Thermal Engineering, 1997, 17(5): 455-469. |
18 | 谭忠富, 谭清坤, 赵蕊. 多能互补系统关键技术综述[J]. 分布式能源, 2017(5): 4-13. |
TAN Zhongfu, TAN Qingkun, ZHAO Rui. Review of technologies for multi energy complementary systems[J]. Distributed Energy, 2017(5): 4-13. | |
19 | DARAEI M, AVELIN A, DOTZAUER E, et al. Evaluation of biofuel production integrated with existing CHP plants and the impacts on production planning of the system—A case study[J]. Applied Energy, 2019, 252: 113461. |
20 | SI Fanyuan, WANG Jinkuan, HAN Yinghua, et al. Cost-efficient multi-energy management with flexible complementarity strategy for energy internet[J]. Applied Energy, 2018, 231: 803-815. |
21 | YEE T F, GROSSMANN I E, KRAVANJA Z. Simultaneous optimization models for heat integration (I): area and energy targeting and modeling of multi-stream exchangers[J]. Computers & Chemical Engineering, 1990, 14(10): 1151-1164. |
22 | SANTOS L F, COSTA C B B, CABALLERO J A, et al. Synthesis and optimization of work and heat exchange networks using an MINLP model with a reduced number of decision variables[J]. Applied Energy, 2020, 262: 114441. |
23 | LAL N S, WALMSLEY T G, WALMSLEY M R W, et al. A novel heat exchanger network bridge retrofit method using the modified energy transfer diagram[J]. Energy, 2018, 155: 190-204. |
24 | HUANG Xiaojian, LU Pei, LUO Xianglong, et al. Synthesis and simultaneous MINLP optimization of heat exchanger network, steam Rankine cycle, and organic Rankine cycle[J]. Energy, 2020, 195: 116922. |
25 | OLULEYE G, JIANG Ning, SMITH R, et al. A novel screening framework for waste heat utilization technologies[J]. Energy, 2017, 125: 367-381. |
26 | YANG Sheng, DENG Chengwei, LIU Zhiqiang. Optimal design and analysis of a cascade LiBr/H2O absorption refrigeration/transcritical CO2 process for low-grade waste heat recovery[J]. Energy Conversion and Management, 2019, 192: 232-242. |
27 | WANG Mengying, DENG Chun, WANG Yufei, et al. Exergoeconomic performance comparison, selection and integration of industrial heat pumps for low grade waste heat recovery[J]. Energy Conversion and Management, 2020, 207: 112532. |
28 | DEB K, JAIN H. An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach (Ⅰ): solving problems with box constraints[J]. IEEE Transactions on Evolutionary Computation, 2013, 18(4): 577-601. |
29 | SREEPATHI B K, RANGAIAH G P. Heat exchanger network retrofitting: alternative solutions via multi-objective optimization for industrial implementation[M]//Chemical Process Retrofitting and Revamping: Techniques and Applications, USA: Wiley, 2016: 193-222. |
30 | ARVAY P, MULLER M R, RAMDEEN V, et al. Economic implementation of the organic Rankine cycle in industry[C]//ACEEE Summer Study on Energy Efficiency in Industry, 2011. |
31 | HAMMOND G P, NORMAN J B. Heat recovery opportunities in UK industry[J]. Applied Energy, 2014, 116: 387-397. |
32 | BRÜCKNER S, LIU S, MIRÓ L, et al. Industrial waste heat recovery technologies: an economic analysis of heat transformation technologies[J]. Applied Energy, 2015, 151: 157-167. |
33 | 冯志兵, 金红光. 冷热电联产系统的评价准则[J]. 工程热物理学报, 2005, 26(5): 725-728. |
FENG Zhibing, JIN Hongguang. Performance assessment of combined cooling, heating and power[J]. Journal of Engineering Thermophysics, 2005, 26(5): 725-728. |
[1] | HU Yafei, FENG Ziping, TIAN Jiayao, SONG Wenji. Waste heat recovery performance of an air-source gas engine-driven heat pump system in multi-heating operation modes [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4204-4211. |
[2] | LYU Jie, HUANG Chong, FENG Ziping, HU Yafei, SONG Wenji. Performance and control system of gas engine heat pump based on waste heat recovery [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4182-4192. |
[3] | LING Shan, LIU Juming, ZHANG Qiancheng, LI Yan. Research progress on simulated moving bed separation process and its optimization methods [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2233-2244. |
[4] | ZHANG Qunli, HUANG Haotian, ZHANG Lin, ZHAO Wenqiang, ZHANG Qiuyue. Analysis of condensation waste heat recovery system of spray flue gas source heat pump [J]. Chemical Industry and Engineering Progress, 2023, 42(2): 650-657. |
[5] | DAI Min, YANG Fusheng, ZHANG Zaoxiao, LIU Guilian, FENG Xiao. 3E Multi-objective optimization of hexane oil distillation process based on multi-strategy ensemble optimization algorithm [J]. Chemical Industry and Engineering Progress, 2022, 41(6): 2852-2863. |
[6] | MA Youfu, WANG Ziwen, LYU Junfu. Simulation of off-design performance of an efficient power generation system with cold-ends optimization using hot air recirculation [J]. Chemical Industry and Engineering Progress, 2022, 41(5): 2340-2347. |
[7] | LIU Hongbin, CUI Guomin, ZHOU Zhiqiang, XIAO Yuan, ZHANG Guanhua, YANG Qiguo. Parallel double-layer RWCE algorithm for heat exchanger network optimization [J]. Chemical Industry and Engineering Progress, 2022, 41(10): 5247-5258. |
[8] | SONG Zhengyuan, SUN Guogang, ZU Zehui, WANG Zhongyuan. Design and analysis of FCC desulfurized wet flue gas plume elimination, purification and heat recovery system coupling with heat pump [J]. Chemical Industry and Engineering Progress, 2021, 40(12): 6934-6940. |
[9] | Gongchu SHI, Yalong LIAO, Bowen SU, Yu ZHANG, Jiajun XI. Multi-objective optimization of pressure oxidative selective leaching of copper smelting slag by response surface methodology [J]. Chemical Industry and Engineering Progress, 2020, 39(S1): 270-280. |
[10] | Jiangwei XIE, Chunli LI, Guoming HUANG. Structural optimization of dividing wall column using response surface methodology coupled with NSGA-Ⅱ algorithm [J]. Chemical Industry and Engineering Progress, 2020, 39(8): 2962-2971. |
[11] | Hengyu YIN,Junjie FAN,Jiaxiao DENG,Meifang DU,Shixuan CHEN. Analysis and optimization of waste heat recovery system in coke oven [J]. Chemical Industry and Engineering Progress, 2020, 39(3): 1181-1186. |
[12] | Weiyi XIE,Xiaoping CHEN,Jiliang MA,Daoyin LIU,Cai LIANG,Ye WU,Tianyi CAI. Waste heat recovery from sodium-based CO2 capture process incoal-fired power plants [J]. Chemical Industry and Engineering Progress, 2020, 39(2): 720-727. |
[13] | Lin SUN, Mingda YANG, Xionglin LUO. Slow-release optimization of heat exchange networks based on sustainable energy saving [J]. Chemical Industry and Engineering Progress, 2020, 39(10): 3941-3948. |
[14] | Rui YANG, Yu ZHUANG, Linlin LIU, Lei ZHANG, Jian DU. Research progress on work and heat exchange network synthesis [J]. Chemical Industry and Engineering Progress, 2019, 38(06): 2550-2558. |
[15] | Ning JIANG, Fengyuan GUO, Wenqiao HAN, Huajing LIU, Lu LIN. 3E Optimization of heat exchanger network system based on non-counterflow heat transfer [J]. Chemical Industry and Engineering Progress, 2019, 38(02): 761-771. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |