Chemical Industry and Engineering Progress ›› 2021, Vol. 40 ›› Issue (2): 642-651.DOI: 10.16085/j.issn.1000-6613.2020-0626
• Chemical processes and equipment • Previous Articles Next Articles
Bo FU(), Jianchang TIAN, Ju LIU, Runye ZHANG, Muhua CHEN, Xinbao ZHU()
Received:
2020-04-20
Revised:
2020-06-07
Online:
2021-02-09
Published:
2021-02-05
Contact:
Xinbao ZHU
付博(), 田建昌, 刘菊, 张润叶, 陈慕华, 朱新宝()
通讯作者:
朱新宝
作者简介:
付博(1984—),男,博士,副教授,研究方向为传质与分离工程、环境工程。E-mail:基金资助:
CLC Number:
Bo FU, Jianchang TIAN, Ju LIU, Runye ZHANG, Muhua CHEN, Xinbao ZHU. Rayleigh convection of carbon dioxide absorption in saline water by lattice Boltzmann simulation[J]. Chemical Industry and Engineering Progress, 2021, 40(2): 642-651.
付博, 田建昌, 刘菊, 张润叶, 陈慕华, 朱新宝. 格子Boltzmann方法模拟咸水吸收CO2的Rayleigh对流过程[J]. 化工进展, 2021, 40(2): 642-651.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2020-0626
盐浓度 /mol·L-1 | 溶液密度 /kg·m-3 | 密度差 /kg·m-3 | 溶解度 /kg·m-3 | 扩散系数 /×10-9m2·s-1 | 动力黏度 /mPa·s |
---|---|---|---|---|---|
0.0 | 998.50 | 0.32 | 1.72 | 1.75 | 1.10 |
0.5 | 1018.2 | 0.29 | 1.58 | 1.56 | 1.11 |
1.0 | 1038.1 | 0.27 | 1.41 | 1.39 | 1.21 |
1.5 | 1058.1 | 0.25 | 1.29 | 1.24 | 1.27 |
2.0 | 1077.5 | 0.24 | 1.19 | 1.11 | 1.32 |
2.5 | 1096.1 | 0.22 | 1.10 | 0.99 | 1.40 |
3.0 | 1114.2 | 0.21 | 1.01 | 0.88 | 1.50 |
盐浓度 /mol·L-1 | 溶液密度 /kg·m-3 | 密度差 /kg·m-3 | 溶解度 /kg·m-3 | 扩散系数 /×10-9m2·s-1 | 动力黏度 /mPa·s |
---|---|---|---|---|---|
0.0 | 998.50 | 0.32 | 1.72 | 1.75 | 1.10 |
0.5 | 1018.2 | 0.29 | 1.58 | 1.56 | 1.11 |
1.0 | 1038.1 | 0.27 | 1.41 | 1.39 | 1.21 |
1.5 | 1058.1 | 0.25 | 1.29 | 1.24 | 1.27 |
2.0 | 1077.5 | 0.24 | 1.19 | 1.11 | 1.32 |
2.5 | 1096.1 | 0.22 | 1.10 | 0.99 | 1.40 |
3.0 | 1114.2 | 0.21 | 1.01 | 0.88 | 1.50 |
25 | DUAN Lianyun, ZHOU Gongdu. Intermolecular force, an important factor determining the properties of matter[J]. University Chemistry, 1989, 4(2): 1-7. |
26 | 彭勇, 张富民, 许春慧, 等. CO2和N2O在Kureha活性炭上吸附行为的对比研究[C]//第五届全国化工年会论文集. 西安, 2008. |
PENG Yong, ZHANG Fumin, XU Chunhui, et al. Comparison of adsorption behaviors of CO2and N2O on Kureha activated carbon[C]// Paper collection of the 5th National Chemical Industry Annual Meeting. Xi’an, 2008. | |
27 | ALLEN M P, TILDESLAY D J. Computer simulation of liquids[M]. Oxford: Clarendon Press, 1987. |
28 | 付博, 袁希钢, 陈淑勇, 等. Rayleigh对流及其对界面传质影响模拟的格子Boltzmann方法[J]. 化工学报, 2011, 62(11): 2995-3000. |
FU Bo, YUAN Xigang, CHEN Shuyong, et al. Rayleigh convection and its effect on interfacial mass transfer by lattice Boltzmann simulation[J]. CIESC Journal, 2011, 62(11): 2995-3000. | |
29 | SHAN Xiaowen. Simulation of Rayleigh-Bénard convection using a lattice Boltzmann method[J]. Physical Review E, 1997, 55(3): 2780-2788. |
30 | SHAN Xiaowen, DOOLEN G. Multicomponent lattice Boltzmann model with interparticle interaction[J]. Journal of Statistical Physics, 1995, 81(1/2): 379-393. |
31 | INANURO T, YOSHINO M, OGINO F. A non-slip boundary condition for lattice Boltzmann simulations[J]. Physics of Fluids, 1996, 8(4): 2928-2930. |
32 | SHI Yong, ZHAO Tianshou, GUO Zhixiong. Finite difference-based lattice Boltzmann simulation of natural convection heat transfer in a horizontal concentric annulus[J]. Computers & Fluids, 2006, 35(1): 1-15. |
33 | SUKOP M C, THORNE D T. Lattice Boltzmann modeling: an introduction for geoscientists and engineers[M]. Berlin, Heidelberg, New York: Springer, 2006. |
34 | 刘光启, 马连湘, 刘杰, 等. 化学化工物性数据手册·无机卷[M]. 北京: 化学工业出版社, 2002. |
1 | 康丽娜, 尚会建, 郑学明. CO2的捕集封存技术进展及在我国的应用前景[J]. 化工进展, 2010, 29(S1): 24-27. |
KANG Lina, SHANG Huijian, ZHENG Xueming, et al. Development of carbon dioxide capture and storage technology and its application prospect in China[J]. Chemical Industry and Engineering Progress, 2010, 29(S1): 24-27. | |
2 | SMYTH R C, MECKEL T A. Best management practices for subseabed geologic sequestration of carbon dioxide[M]. USA: IEEE, 2012. |
3 | LEUNG D Y C, CARAMANNA G, MAROTO-VALER M. An overview of current status of carbon dioxide capture and storage technologies[J]. Renewable and Sustainable Energy Review, 2014, 39: 426-443. |
4 | LINDERBERG E, WESSELBERG D. Vertical convection in an aquifer column under a gas cap of CO2[J]. Energy Conversion and Management, 1997, 38(96): s229-s234. |
5 | WEIR G J, WHITE S P, KISSLING W M, et al. Reservoir storage and containment of greenhouse gases[J]. Energy Conversion and Management, 1995, 36(6): 531-534. |
6 | 傅强, 张会书, 胡楠, 等. 水溶解CO2过程界面对流现象的PIV/LIF测量及传质系数预测[J]. 化工学报, 2018, 69(2): 586-594. |
FU Qiang, ZHANG Huishu, HU Nan, et al. Simultaneous PIV/LIF measurements of interfacial convection during CO2 dissolution in water and prediction of mass transfer coefficient[J]. CIESC Journal, 2018, 69(2): 586-594. | |
7 | ENNIS-KING J, PRESTON I, PATERSON L. Onset of convection in anisotropic porous media subject to a rapid change in boundary conditions[J]. Physics of Fluids, 2005, 17(8): 84-107. |
8 | KHOSROKHAVAR R, ELSINGA G, FARAJZADEH R, et al. Visualization and investigation of natural convection flow of CO2 in aqueous and oleic systems[J]. Journal of Petroleum Science & Engineering, 2014, 122(21): 230-239. |
9 | KNEAFSEY T J, PRUESS K. Laboratory flow experiments for visualizing carbon dioxide-induced, density-driven brine convection[J]. Transport in Porous Media, 2010, 82(1): 123-139. |
10 | SOROUSH M, WESSEL-BERG D, OLE T, et al. Affecting parameters in density driven convection mixing in CO2 storage in brine[C]// SPE Europec/Eage Conference. Copenhagen Denmark: Society of Petroleum Engineers, 2012. |
11 | ABAD M S N, ROSTAMI B, PAZHOOHAN J. Experimental study of the impact of salinity and temperature on convection mechanism during CO2 storage in saline aquifers[C]// Proceedings of the 78th EAGE Conference and Exhibition, Vienna, Austria: European Association of Geoscientists & Engineers, 2016. |
12 | KHOSROKHAVAR R, EFTEKHARI A, FARAJZDADEH R, et al. Effect of salinity and pressure on the rate of mass transfer in aquifer storage of CO2[C]// IOR 2015-18th European Symposium on Improved Oil Recovery, Dresden, Germany: Springer International Publishing, 2016. |
13 | MACMINN C W, SZULCZEWSKI M L, JUANES R. CO2 migration in saline aquifers: regimes in migration with dissolution[J]. Energy Procedia, 2011, 4: 3904-3910. |
14 | XU Xiaofeng, CHEN Shiyi, ZHANG Dongxiao. Convective stability analysis of the long-term storage of carbon dioxide in deep saline aquifers[J]. Advances in Water Resources, 2006, 29(3): 397-407. |
15 | PRUESS K, ZHANG Keni. Numerical modeling studies of the dissolution-diffusion-convection process during CO2 storage in saline aquifers[C]//Technical Report LBNL1243E, Lawrence Berkeley National Laboratory, California, 2008. |
16 | 张潇丹, 雍玉梅, 李文军, 等. REV尺度多孔介质格子Boltzmann方法的数学模型及应用的研究进展[J]. 化工进展, 2016, 35(6): 1698-1712. |
ZHANG Xiaodan, YONG Yumei, LI Wenjun, et al. Models and application of lattice Boltzmann method at REV-scale in porous media[J]. Chemical Industry and Engineering Progress, 2016, 35(6): 1698-1712. | |
17 | INAMURO T, YOSHINO M, INOUE H, et al. A lattice Boltzmann method for a binary miscible fluid mixture and its application to a heat-transfer problem[J]. Journal of Computational Physics, 2002, 179(1): 201-215. |
18 | QIAN Y H, D’HUMIERES D, LALLEMAND P. Lattice BGK models for Navier-Stokes equation[J]. Europhysics Letters, 1992, 17(6): 479-484. |
19 | 郭照立, 郑楚光. 格子Boltzmann方法的原理及应用[M]. 北京: 科学出版社, 2009: 156-157. |
GUO Zhaoli, ZHENG Chuguang. The principle and application of lattice Boltzmann method[M]. Beijing: Science Press, 2009: 156-157. | |
20 | GUO Zhaoli, SHI Baochang, WANG Nengchao. Fully Lagrangian and lattice Boltzmann methods for the advection-diffusion equation[J]. Journal of Scientific Computing, 1999, 14(3): 291-300. |
21 | BUICK J M, GREATED C A. Gravity in a lattice Boltzmann model[J]. Physical Review E: Statistical Physics Plasmas Fluids & Related Interdisciplinary Topics, 2000, 61(5A): 5307-5320. |
22 | CHALBAUD C, ROBIN M, LOMBARD J M, et al. Interfacial tension measurements and wettability evaluation for geological CO2 storage[J]. Advances in Water Resources, 2009, 32(1): 98-109. |
23 | AGGELOPOULOS C A, ROBIN M, PERFETTI E, et al. CO2/CaCl2 solution interfacial tensions under CO2 geological storage conditions: influence of cation valence on interfacial tension[J]. Advances in Water Resources, 2010, 33(6): 691-697. |
24 | AGGELOPOULOS C A, ROBIN M, VIZIKA O. Interfacial tension between CO2 and brine (NaCl+CaCl2) at elevated pressures and temperatures: the additive effect of different salts[J]. Advances in Water Resources, 2011, 34(4): 505-511. |
25 | 段连运, 周公度. 决定物质性质的一种重要因素-分子间作用力[J]. 大学化学, 1989, 4(2): 1-7. |
34 | LIU Guangqi, MA Lianxiang, LIU Jie, et al. Physical property data manual of chemical industry—Inorganic volume[M]. Beijing: Chemical Industry Press, 2002. |
35 | NIELSEN L C, BOURG I C, SPOSITO G. Predicting CO2-water interfacial tension under pressure and temperature conditions of geologic CO2 storage[J]. Geochimica et Cosmochimica Acta, 2012, 81: 1-38. |
36 | PARKINSON W J, DENEVERS N J. Partial molar volume of carbon dioxide in water solutions[J]. Industrial & Engineering Chemistry Research Fundamentals, 1969, 8(4): 709-713. |
37 | SHARYGIN A V, WOOD R H. Volumes and heat capacities of aqueous solutions of ammonium chloride from the temperatures 298.15K to 623K and pressures to 28MPa[J]. Journal of Chemical Thermodynamics, 1996, 28(8): 851-872. |
38 | FU Bo, LIU Botan, YUAN Xigang, et al. Modeling of Rayleigh convection in gas-liquid interfacial mass transfer using lattice Boltzmann method[J]. Chemical Engineering Research and Design, 2013, 91(3): 437-447. |
39 | THOMAS C, DEHAECK A, DEWIT A, et al. Convective dissolution of CO2 in water and salt solutions[J]. International Journal of Greenhouse Gas Control, 2018, 72: 105-116. |
40 | 沙勇, 李樟云, 林芬芬, 等. 气液传质界面湍动现象投影观察[J]. 化工学报, 2010, 61(4): 844-847. |
SHA Yong, LI Zhangyun, LIN Fenfen, et al. Shadowgraph observation on interfacial turbulence phenomena in gas-liquid mass transfer[J]. CIESC Journal, 2010, 61(4): 844-847. | |
41 | GRAHN A. Two-dimensional numerical simulations of Marangoni-Bénard instabilities during liquid-liquid mass transfer in a vertical gap[J]. Chemical Engineering Science, 2006, 61(11): 3586-3592. |
42 | 杨盼瑞, 郭会荣, 周倩, 等. 广泛温度和盐度条件下二氧化碳在盐水中的扩散系数[J]. 地质科技情报, 2018, 37(6): 258-263. |
YANG Panrui, GUO Huirong, ZHOU Qian, et al. Diffusion coefficient of carbon dioxide in brine in wide temperature and salinity ranges: measurement and model calculation[J]. Geological Science and Technology Information, 2018, 37(6): 258-263. | |
43 | LOODTS V, RONGY L, DEWIT A, et al. Impact of pressure, salt concentration, and temperature on the convective dissolution of carbon dioxide in aqueous solutions[J]. Chaos: An Interdisciplinary Journal of Nonlinea, 2014, 24(4): 1-12. |
44 | GEROGE S H P, BELL J B, PRUESS K, et al. High-resolution simulation and characterization of density-driven flow in CO2 storage in saline aquifers[J]. Advances in Water Resources, 2010, 33(4): 443-455. |
[1] | LI Jitong, WANG Gang, XIONG Yaxuan, XU Qian. Energy and exergy analysis of single-effect absorption refrigeration system with different refrigerants [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 104-112. |
[2] | LI Mengyuan, GUO Fan, LI Qunsheng. Simulation and optimization of the third and fourth distillation columns in the recovery section of polyvinyl alcohol production [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 113-123. |
[3] | ZHANG Ruijie, LIU Zhilin, WANG Junwen, ZHANG Wei, HAN Deqiu, LI Ting, ZOU Xiong. On-line dynamic simulation and optimization of water-cooled cascade refrigeration system [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 124-132. |
[4] | WANG Tai, SU Shuo, LI Shengrui, MA Xiaolong, LIU Chuntao. Dynamic behavior of single bubble attached to the solid wall in the AC electric field [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 133-141. |
[5] | SHENG Weiwu, CHENG Yongpan, CHEN Qiang, LI Xiaoting, WEI Jia, LI Linge, CHEN Xianfeng. Operating condition analysis of the microbubble and microdroplet dual-enhanced desulfurization reactor [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 142-147. |
[6] | HUANG Yiping, LI Ting, ZHENG Longyun, QI Ao, CHEN Zhenglin, SHI Tianhao, ZHANG Xinyu, GUO Kai, HU Meng, NI Zeyu, LIU Hui, XIA Miao, ZHU Kai, LIU Chunjiang. Hydrodynamics and mass transfer characteristics of a three-stage internal loop airlift reactor [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 175-188. |
[7] | SUN Jipeng, HAN Jing, TANG Yangchao, YAN Bowen, ZHANG Jieyao, XIAO Ping, WU Feng. Numerical simulation and optimization of operating parameters of sulfur wet molding process [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 189-196. |
[8] | YANG Hanyue, KONG Lingzhen, CHEN Jiaqing, SUN Huan, SONG Jiakai, WANG Sicheng, KONG Biao. Decarbonization performance of downflow tubular gas-liquid contactor of microbubble-type [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 197-204. |
[9] | CHEN Kuangyin, LI Ruilan, TONG Yang, SHEN Jianhua. Structure design of gas diffusion layer in proton exchange membrane fuel cell [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 246-259. |
[10] | YANG Yudi, LI Wentao, QIAN Yongkang, HUI Junhong. Analysis of influencing factors of natural gas turbulent diffusion flame length in industrial combustion chamber [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 267-275. |
[11] | CUI Shoucheng, XU Hongbo, PENG Nan. Simulation analysis of two MOFs materials for O2/He adsorption separation [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 382-390. |
[12] | XU Ruosi, TAN Wei. Flow field simulation and fluid-structure coupling analysis of C-tube pool boiling two-phase flow model [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 47-55. |
[13] | ZHANG Fengqi, CUI Chengdong, BAO Xuewei, ZHU Weixuan, DONG Hongguang. Design and evaluation of sweetening process with amine solution absorption and multiple desorption [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 518-528. |
[14] | GUO Qiang, ZHAO Wenkai, XIAO Yonghou. Numerical simulation of enhancing fluid perturbation to improve separation of dimethyl sulfide/nitrogen via pressure swing adsorption [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 64-72. |
[15] | SHAO Boshi, TAN Hongbo. Simulation on the enhancement of cryogenic removal of volatile organic compounds by sawtooth plate [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 84-93. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |