Chemical Industry and Engineering Progress ›› 2020, Vol. 39 ›› Issue (1): 372-379.DOI: 10.16085/j.issn.1000-6613.2019-0633
• Resources and environmental engineering • Previous Articles Next Articles
Haoliang LU(),Qing TIAN(),Yanbin ZHU,Jian ZHANG,Pengbo JIAO,Huan LIN
Received:
2019-04-21
Online:
2020-01-14
Published:
2020-01-05
Contact:
Qing TIAN
通讯作者:
田晴
作者简介:
陆浩良(1995—),男,硕士研究生,研究方向为污水生物脱氮除磷。E-mail:<email>2181543@mail.dhu.edu.cn</email>。
基金资助:
CLC Number:
Haoliang LU, Qing TIAN, Yanbin ZHU, Jian ZHANG, Pengbo JIAO, Huan LIN. State of the art for mechanisms and countermeasures of low temperature biological nitrogen removal[J]. Chemical Industry and Engineering Progress, 2020, 39(1): 372-379.
陆浩良, 田晴, 朱艳彬, 张健, 焦彭博, 林欢. 耐低温生物脱氮机制与对策研究进展[J]. 化工进展, 2020, 39(1): 372-379.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2019-0633
1 | DAI H L , CHEN W L , LU X W . The application of multi-objective optimization method for activated sludge process: a review[J]. Water Science and Technology, 2016, 73(2): 223-235. |
2 | LAURENI M , FALAS P , ROBIN O , et al . Mainstream partial nitritation and anammox: long-term process stability and effluent quality at low temperatures[J]. Water Research, 2016, 101: 628-639. |
3 | 杨建鹏, 张健, 田晴, 等 . 内源碳PHA的贮存对混合菌群耐低温特性的影响[J]. 环境科学, 2019, 40(4): 1914-1921. |
YANG J P , ZHANG J , TIAN Q , et al . Effect of intracellular carbon source (PHA) storage on the mixed growth microbial community resistance to low temperature[J]. Environment Science, 2019, 40(4): 1914-1921. | |
4 | MORITA R Y . Psychrophilic bacteria[J]. Bacteriological Reviews, 1975, 39(2): 144-167. |
5 | RODRIGUES D F , TIEDJE J M . Coping with our cold planet[J]. Applied and Environmental Microbiology, 2008, 74(6): 1677-1686. |
6 | TEHEI M , ZACCAI G . Adaptation to extreme environments: macromolecular dynamics in complex systems[J]. Biochimica et Biophysica Acta: General Subjects, 2005, 1724(3): 404-410. |
7 | MORGAN-KISS R M , PRISCU J C , POCOCK T , et al . Adaptation and acclimation of photosynthetic microorganisms to permanently cold environments[J]. Microbiology and Molecular Biology Reviews, 2006, 70(1): 222-252. |
8 | AYALA-DEL-RIO H L , CHAIN P S , GRZYMSKI J J , et al . The genome sequence of Psychrobacter arcticus 273-4, a psychroactive siberian permafrost bacterium, reveals mechanisms for adaptation to low-temperature growth[J]. Applied and Environmental Microbiology, 2010, 76(7): 2304-2312. |
9 | MA Y , WANG Q Y , XU W S , et al . Stationary phase-dependent accumulation of ectoine is an efficient adaptation strategy in Vibrio anguillarum against cold stress[J]. Microbiological Research, 2017, 205: 8-18. |
10 | SALAMA Y , CHENNAOUI M , SYLLA A , et al . Characterization, structure, and function of extracellular polymeric substances (EPS) of microbial biofilm in biological wastewater treatment systems: a review[J]. Desalination and Water Treatment, 2016, 57(35): 16220-16237. |
11 | WILLIAMS T J , LIAO Y , YE J , et al . Cold adaptation of the Antarctic haloarchaea Halohasta litchfieldiae and Halorubrum lacusprofundi [J]. Environmental Microbiology, 2017, 19(6): 2210-2227. |
12 | DE MAAYER P , ANDERSON D , CARY C , et al . Some like it cold: understanding the survival strategies of psychrophiles[J]. EMBO Reports, 2014, 15(5): 508-517. |
13 | 李硕, 彭永臻, 王然登 . 胞外聚合物在污水生物处理中的作用[J]. 黑龙江大学自然科学学报, 2016, 33(4): 515-520. |
LI S , PENG Y Z , WANG R D , et al . The role of extracellular polymers substance in biological treatment of wastewater[J]. Journal of Natural Science of Heilongjiang University, 2016, 33(4): 515-520. | |
14 | 韩晓云 . 低温生物膜及其微生物特性的研究[D]. 哈尔滨: 哈尔滨工业大学, 2006. |
HAN X Y . Low temperature biofilm and its microbial charactistics[D]. Harbin: Harbin Institute of Technology, 2006. | |
15 | MA Z , WEN X H , ZHAO F , et al . Effect of temperature variation on membrane fouling and microbial community structure in membrane bioreactor[J]. Bioresource Technology, 2013, 133: 462-468. |
16 | NICHOLS C M , BOWMAN J P , GUEZENNEC J . Effects of incubation temperature on growth and production of exopolysaccharides by an Antarctic sea ice bacterium grown in batch culture[J]. Applied and Environmental Microbiology, 2005, 71(7): 3519-3523. |
17 | HE S L , CHEN Y , QIN M , et al . Effects of temperature on anammox performance and community structure[J]. Bioresource Technology, 2018, 260: 186-195. |
18 | VARIN T , LOVEJOY C , JUNGBLUT A D , et al . Metagenomic analysis of stress genes in microbial mat communities from antarctica and the high arctic[J]. Applied and Environmental Microbiology, 2012, 78(2): 549-559. |
19 | COLLINS T , MARGESIN R . Psychrophilic lifestyles: mechanisms of adaptation and biotechnological tools[J]. Applied Microbiology and Biotechnology, 2019, 203(7): 2857-2871. |
20 | SATHYA A B , SIVASUBRAMANIAN V , SANTHIAGU A , et al . Production of polyhydroxyalkanoates from renewable sources using bacteria[J]. Journal of Polymers and the Environment, 2018, 26(9): 3995-4012. |
21 | TIAN Q , ZHUANG L J , ONG S K, et al . Phosphorus (P) recovery coupled with increasing influent ammonium facilitated intracellular carbon source storage and simultaneous aerobic phosphorus & nitrogen removal[J]. Water Research, 2017, 119: 267-275. |
22 | INOUE D , SUZUKI Y , SAWADA K , et al . Polyhydroxyalkanoate accumulation ability and associated microbial community in activated sludge-derived acetate-fed microbial cultures enriched under different temperature and pH conditions[J]. Journal of Bioscience and Bioengineering, 2018, 125(3): 339-345. |
23 | TING L , WILLIAMS T J , COWLEY M J , et al . Cold adaptation in the marine bacterium, Sphingopyxis alaskensis, assessed using quantitative proteomics[J]. Environmental Microbiology, 2010, 12(10): 2658-2676. |
24 | RAIGER-IUSTMAN L J , RUIZ J A . The alternative sigma factor, sigma(S), affects polyhydroxyalkanoate metabolism in Pseudomonas putida [J]. Fems Microbiology Letters, 2008, 284(2): 218-224. |
25 | SEDLACEK P , SLANINOVA E , KOLLER M , et al . PHA granules help bacterial cells to preserve cell integrity when exposed to sudden osmotic imbalances[J]. New Biotechnology, 2019, 49: 129-136. |
26 | 车雪梅, 司徒卫, 余柳松, 等 . 聚羟基脂肪酸酯的应用展望[J]. 生物工程学报, 2018, 34(10): 1531-1542. |
CHE X M , SITU W , YU L S , et al . Application perspectives of polyhydroxyalkanoates[J]. Chinese Journal of Biotechnology, 2018, 34(10): 1531-1542. | |
27 | 游佳, 吴金香, 郑兴灿 . A2/O型氧化沟工艺中硝化速率的变化特征研究[J]. 中国给水排水, 2011, 27(19): 75-77. |
YOU J , WU J X , ZHENG X C . Study on variation characteristic of nitrification rate of activated sludge in A2/O type oxidation ditch process[J]. China Water & Wastewater, 2011, 27(19): 75-77. | |
28 | OEHMEN A , LEMOS P C , CARVALHO G , et al . Advances in enhanced biological phosphorus removal: From micro to macro scale[J]. Water Research, 2007, 41(11): 2271-2300. |
29 | SHEN N , CHEN Y , ZHOU Y . Multi-cycle operation of enhanced biological phosphorus removal (ESPR) with different carbon sources under high temperature[J]. Water Research, 2017, 114: 308-315. |
30 | 尹军, 王建辉, 王雪峰, 等 . 污水生物除磷若干影响因素分析[J]. 环境工程学报, 2007, 1(4): 6-11. |
YIN J , WANG J H , WANG X F , et al . Influencing factors of biological phosphorus removal in sewage treatment[J]. Chinese Journal of Environmental Engineering, 2007, 1(4): 6-11. | |
31 | DAIMS H , LEBEDEVA E V , PJEVAC P , et al . Complete nitrification by Nitrospira bacteria[J]. Nature, 2015, 528(7583): 504-509. |
32 | PAN K-L , GAO J-F , LI H-Y , et al . Ammonia-oxidizing bacteria dominate ammonia oxidation in a full-scale wastewater treatment plant revealed by DNA-based stable isotope probing[J]. Bioresource Technology, 2018, 256: 152-159. |
33 | YIN Z X , BI X J , XU C L . Ammonia-oxidizing archaea (AOA) play with ammonia-oxidizing bacteria (AOB) in nitrogen removal from wastewater[J]. Archaea, 2018, 2018: 1-9. |
34 | CHEN Y , LAN S , WANG L , et al . A review: driving factors and regulation strategies of microbial community structure and dynamics in wastewater treatment systems[J]. Chemosphere, 2017, 174: 173-182. |
35 | ZHOU H X , LI X K , CHU Z R , et al . Effect of temperature downshifts on a bench-scale hybrid A/O system: process performance and microbial community dynamics[J]. Chemosphere, 2016, 153: 500-507. |
36 | MA Q , QU Y , SHEN W , et al . Bacterial community compositions of coking wastewater treatment plants in steel industry revealed by Illumina high-throughput sequencing[J]. Bioresource Technology, 2015, 179: 436-443. |
37 | WANG W D , LIU W Y , WU D , et al . Differentiation of nitrogen and microbial community in the littoral and limnetic sediments of a large shallow eutrophic lake (Chaohu Lake, China)[J]. Journal of Soils and Sediments, 2019, 19(2): 1005-1016. |
38 | ZHANG D , LI W , HUANG X , et al . Removal of ammonium in surface water at low temperature by a newly isolated Microbacterium sp. strain SFA13[J]. Bioresource Technology, 2013, 137: 147-152. |
39 | 秦必达 . 耐冷硝化细菌Pseudomonas mohnii . M-8的筛选鉴定及脱氮效能研究[D]. 哈尔滨: 哈尔滨工业大学, 2018. |
QIN B D . Research on isolation, identification and nitrogen removal efficiency of cold tolerant nitrifying bacteria Pseudomonas mohnii .M-8[D]. Harbin: Harbin Institute of Technology, 2018. | |
40 | HUANG X , LI W , ZHANG D , et al . Ammonium removal by a novel oligotrophic Acinetobacter sp. Y16 capable of heterotrophic nitrification-aerobic denitrification at low temperature[J]. Bioresource Technology, 2013, 146: 44-50. |
41 | YAO S , NI J , CHEN Q , et al . Enrichment and characterization of a bacteria consortium capable of heterotrophic nitrification and aerobic denitrification at low temperature[J]. Bioresource Technology, 2013, 127: 151-157. |
42 | 路俊玲, 陈慧萍, 肖琳 . 低温反硝化菌——施氏假单胞菌N3的筛选及脱氮性能[J]. 环境科学, 2018, 39(12): 5612-5619. |
LU J L , CHEN H P , XIAO L . Characterization of a newly isolated strain Pseudomonas sp. N3 for denitrification at low temperature[J]. Environment Science, 2018, 39(12): 5612-5619. | |
43 | ZHOU H X , LI X , XU G R , et al . Overview of strategies for enhanced treatment of municipal/domestic wastewater at low temperature[J]. Science of the Total Environment, 2018, 643: 225-237. |
44 | REGMI P , THOMAS W , SCHAFRAN G , et al . Nitrogen removal assessment through nitrification rates and media biofilm accumulation in an IFAS process demonstration study[J]. Water Research, 2011, 45(20): 6699-6708. |
45 | HE S , DING L L , WANG X , et al . Biochar carrier application for nitrogen removal of domestic WWTPs in winter: challenges and opportunities[J]. Applied Microbiology and Biotechnology, 2018, 102(22): 9411-9418. |
46 | FAGBOHUNGBE M O , HERBERT B M J , HURST L , et al . The challenges of anaerobic digestion and the role of biochar in optimizing anaerobic digestion[J]. Waste Management, 2017, 61: 236-249. |
47 | 艾胜书, 单慧, 王帆, 等 . 低温下悬浮球生物填料的性能优化研究[J]. 水处理技术, 2019, 45(2): 76-101. |
AI S S , SHAN H , WANG F , et al . Study on performance optimization of suspended ball bio-filler at low temperature[J]. Technology of Water Treatment, 2019, 45(2): 76-101. | |
48 | VYRIDES I , STUCKEY D C . Compatible solute addition to biological systems treating waste/wastewater to counteract osmotic and other environmental stresses: a review[J]. Critical Reviews in Biotechnology, 2017, 37(7): 865-879. |
49 | BOETIUS A , ANESIO A M , DEMING J W , et al . Microbial ecology of the cryosphere: sea ice and glacial habitats[J]. Nature Reviews Microbiology, 2015, 13(11): 677-690. |
50 | LI J , BAI L J , QIANG Z M , et al . Nitrogen removal through "Candidatus Brocadia sinica" treating high-salinity and low-temperature wastewater with glycine addition: enhanced performance and kinetics[J]. Bioresource Technology, 2018, 270: 755-761. |
51 | 苑宏英, 孙烨怡, 李原玲, 等 . 不同碳源对低温投加氧化还原介体污水生物反硝化脱氮过程的影响[J]. 化工进展, 2018, 37(2): 783-788. |
YUAN H Y , SUN Y Y , LI Y L , et al . Effects of different carbon sources on biological denitrification of wastewater at low temperature with adding redox mediator[J]. Chemical Industry and Engineering Progress, 2018, 37(2): 783-788. | |
52 | SHU D , HE Y , YUE H , et al . Effects of Fe(Ⅱ) on microbial communities, nitrogen transformation pathways and iron cycling in the anammox process: kinetics, quantitative molecular mechanism and metagenomic analysis[J]. RSC Advances, 2016, 6(72): 68005-68016. |
53 | ZHANG X , ZHOU Y , ZHANG N , et al . Short-term and long-term effects of Zn (Ⅱ) on the microbial activity and sludge property of partial nitrification process[J]. Bioresource Technology, 2017, 228: 315-321. |
54 | ZHANG X , CHEN Z , ZHOU Y , et al . Impacts of the heavy metals Cu (Ⅱ), Zn (Ⅱ) and Fe (Ⅱ) on an Anammox system treating synthetic wastewater in low ammonia nitrogen and low temperature: Fe (Ⅱ) makes a difference[J]. Science of the Total Environment, 2019, 648: 798-804. |
55 | HAO L , GUO Y , BYRNE J M , et al . Binding of heavy metal ions in aggregates of microbial cells, EPS and biogenic iron minerals measured in-situ using metal- and glycoconjugates-specific fluorophores[J]. Geochimica et Cosmochimica Acta, 2016, 180: 66-96. |
56 | 魏亮亮, 王胜, 薛茂, 等 . 城镇污泥胞外聚合物对重金属吸附特征及机制[J]. 哈尔滨工业大学学报, 2018, 50(8): 188-198. |
WEI L L , WANG S , XUE M , et al . Study on adsorption of heavy metals onto sludge extracellular polymers substances (EPS) : a review[J]. Journal of Harbin Institute of Technology, 2018, 50(8): 188-198. | |
57 | WANG J H , PENG Y Z , CHEN Y Z . Advanced nitrogen and phosphorus removal in A2/O-BAF system treating low carbon-to-nitrogen ratio domestic wastewater[J]. Frontiers of Environmental Science & Engineering in China, 2011, 5(3): 474-480. |
[1] | WANG Lele, YANG Wanrong, YAO Yan, LIU Tao, HE Chuan, LIU Xiao, SU Sheng, KONG Fanhai, ZHU Canghai, XIANG Jun. Influence of spent SCR catalyst blending on the characteristics and deNO x performance for new SCR catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 489-497. |
[2] | XU Zhongshuo, ZHOU Panpan, WANG Yuhui, HUANG Wei, SONG Xinshan. Advances in sulfur iron ore mediated autotrophic denitrification [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4863-4871. |
[3] | ZHANG Wei, QIN Chuan, XIE Kang, ZHOU Yunhe, DONG Mengyao, LI Jie, TANG Yunhao, MA Ying, SONG Jian. Application and performance enhancement challenges of H2-SCR modified platinum-based catalysts for low-temperature denitrification [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 2954-2962. |
[4] | LI Baixue, XIN Xin, ZHU Yumeng, LIU Qin, LIU Xin. Construction of sulfur autotrophic short-cut denitrification and anaerobic ammonium oxidation (SASD-A) coupling system and effect mechanisms of influent S/N ratio on denitrification process [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3261-3271. |
[5] | ZHAO Xingcheng, JIA Fangxu, JIANG Weiyu, CHEN Jiayi, LIU Chenyu, YAO Hong. Redox mediators-mediated anaerobic ammonium oxidation process for biological nitrogen removal: a review [J]. Chemical Industry and Engineering Progress, 2023, 42(3): 1606-1617. |
[6] | WU Xinbo, DANG Hongzhong, MA Jiao, YAN Yuan, ZENG Tianxu, LI Weiwei, ZHANG Guozhen, CHEN Yongzhi. Effect of denitrifying phosphorus removal under short-cut nitrification mode with A2/O-BAF process [J]. Chemical Industry and Engineering Progress, 2023, 42(2): 1089-1097. |
[7] | SONG Yukun, WANG Guogang, ZHANG Xingong, LIU Dakuo, ZHANG Jinqing, LIN Han. SNAR: a new non-amino reduction technology for acid and denitration [J]. Chemical Industry and Engineering Progress, 2022, 41(S1): 606-612. |
[8] | YANG Xigang, CHEN Guoqing, HUANG Linbin, GU Shijun, LI Changsong, ZHANG Yong, JIN Baosheng. Industrial experiment on the effect of SNCR using urea as the reducing agent on the operation of large capacity power station pulverized coal boiler [J]. Chemical Industry and Engineering Progress, 2022, 41(7): 3573-3581. |
[9] | WANG Chaochao, WU Yiling, CHEN Jiaqiao, CAI Tianning, LIU Wenru, LI Xiang, WU Peng. A novel anaerobic hydrolysis acidification-partial denitrification anaerobic ammonia oxidation process for advanced nitrogen removal from simulated domestic and nitrate-containing wastewater [J]. Chemical Industry and Engineering Progress, 2022, 41(7): 3890-3899. |
[10] | WANG Yuguang, ZHANG Xingxing, WANG Chaochao, XIA Yunkang, WANG Yao, ZHOU Cheng, WU Yiling, WU Peng, XU Lezhong. Achieving advanced nitrogen and phosphorus removal based on denitrifying phosphorus removal and partial denitrification Anammox process [J]. Chemical Industry and Engineering Progress, 2022, 41(4): 2191-2201. |
[11] | LIU Feng, ZHANG Xuezhi, WANG Suqin, FENG Zhen, GE Dandan, YANG Yang. Thiosulfate-driven denitrification coupled with ANAMMOX to enhance total nitrogen removal [J]. Chemical Industry and Engineering Progress, 2022, 41(2): 990-997. |
[12] | NI Qing, LAI Jinbo, PENG Dongyue, GUAN Cuishi, LONG Jun. Progress in extraction separation of hydrocarbons by ionic liquids [J]. Chemical Industry and Engineering Progress, 2022, 41(2): 619-627. |
[13] | CHEN Zhihua, ZHOU Jian, WANG Sanfan. Summary of solid phase denitrification in water pollution control [J]. Chemical Industry and Engineering Progress, 2021, 40(S1): 366-374. |
[14] | YAN Wenjie, XIONG Yuanquan, YANG Siyuan, HE Shanshan. NO preoxidation by gas phase Fenton reaction with Fe2O3 over rice husk-based silica carrier [J]. Chemical Industry and Engineering Progress, 2021, 40(7): 4027-4035. |
[15] | HAO Runlong, QIAN Zhen, FU Le, YUAN Bo. Research progress of microwave-induced catalytic denitrification [J]. Chemical Industry and Engineering Progress, 2021, 40(5): 2747-2752. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |