Chemical Industry and Engineering Progress ›› 2021, Vol. 40 ›› Issue (7): 4027-4035.DOI: 10.16085/j.issn.1000-6613.2020-1542
• Resources and environmental engineering • Previous Articles Next Articles
YAN Wenjie(), XIONG Yuanquan(), YANG Siyuan, HE Shanshan
Received:
2020-08-05
Revised:
2020-09-29
Online:
2021-07-19
Published:
2021-07-06
Contact:
XIONG Yuanquan
通讯作者:
熊源泉
作者简介:
闫文杰(1994—),男,硕士研究生,研究方向为烟气脱硫脱硝。E-mail:基金资助:
CLC Number:
YAN Wenjie, XIONG Yuanquan, YANG Siyuan, HE Shanshan. NO preoxidation by gas phase Fenton reaction with Fe2O3 over rice husk-based silica carrier[J]. Chemical Industry and Engineering Progress, 2021, 40(7): 4027-4035.
闫文杰, 熊源泉, 杨思源, 何珊珊. 稻壳白炭黑负载Fe2O3的气相芬顿反应NO预氧化[J]. 化工进展, 2021, 40(7): 4027-4035.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2020-1542
样品 | 比表面积/m2·g-1 | 孔体积/m3·g-1 | 孔径/nm |
---|---|---|---|
30% Fe2O3/SiO2 | 123.69 | 0.208 | 6.73 |
40% Fe2O3/SiO2 | 97.64 | 0.193 | 7.89 |
50% Fe2O3/SiO2 | 90.45 | 0.232 | 10.27 |
60% Fe2O3/SiO2 | 83.82 | 0.174 | 11.29 |
70% Fe2O3/SiO2 | 57.99 | 0.141 | 13.35 |
Fe2O3 | 12.17 | 0.135 | 44.51 |
50%Fe2O3/C-SiO2 | 146.71 | 0.748 | 20.55 |
样品 | 比表面积/m2·g-1 | 孔体积/m3·g-1 | 孔径/nm |
---|---|---|---|
30% Fe2O3/SiO2 | 123.69 | 0.208 | 6.73 |
40% Fe2O3/SiO2 | 97.64 | 0.193 | 7.89 |
50% Fe2O3/SiO2 | 90.45 | 0.232 | 10.27 |
60% Fe2O3/SiO2 | 83.82 | 0.174 | 11.29 |
70% Fe2O3/SiO2 | 57.99 | 0.141 | 13.35 |
Fe2O3 | 12.17 | 0.135 | 44.51 |
50%Fe2O3/C-SiO2 | 146.71 | 0.748 | 20.55 |
催化剂 | Fe2+ | Feocta3+ | Fetet3+ | Fe2+/Fe3+ |
---|---|---|---|---|
Fe2O3/SiO2 | ||||
结合能/eV | 709.3 | 710.2 | 711.8 | 0.212 |
原子分数/% | 17.48 | 26.41 | 56.11 | |
Fe2O3/C-SiO2 | ||||
结合能/eV | 709.2 | 710.2 | 711.3 | 0.09 |
原子分数/% | 8.22 | 47.31 | 44.47 |
催化剂 | Fe2+ | Feocta3+ | Fetet3+ | Fe2+/Fe3+ |
---|---|---|---|---|
Fe2O3/SiO2 | ||||
结合能/eV | 709.3 | 710.2 | 711.8 | 0.212 |
原子分数/% | 17.48 | 26.41 | 56.11 | |
Fe2O3/C-SiO2 | ||||
结合能/eV | 709.2 | 710.2 | 711.3 | 0.09 |
原子分数/% | 8.22 | 47.31 | 44.47 |
催化剂 | Oad | Olat | Oad/(Oad+Olat) | |
---|---|---|---|---|
Fe2O3/SiO2 | ||||
结合能/eV | 530.2 | 529.5 | 532.8 | 0.486 |
原子分数/% | 24.78 | 26.17 | 49.05 | |
Fe2O3/C-SiO2 | ||||
结合能/eV | 530.6 | 529.5 | 532.4 | 0.193 |
原子分数/% | 2 | 8.36 | 89.64 |
催化剂 | Oad | Olat | Oad/(Oad+Olat) | |
---|---|---|---|---|
Fe2O3/SiO2 | ||||
结合能/eV | 530.2 | 529.5 | 532.8 | 0.486 |
原子分数/% | 24.78 | 26.17 | 49.05 | |
Fe2O3/C-SiO2 | ||||
结合能/eV | 530.6 | 529.5 | 532.4 | 0.193 |
原子分数/% | 2 | 8.36 | 89.64 |
H2O2流量/mL·h-1 | H2O2浓度/mol·L-1 |
---|---|
10 | 2.5 |
7.5 | 3.3 |
5 | 5 |
3.3 | 7.5 |
2.5 | 10 |
H2O2流量/mL·h-1 | H2O2浓度/mol·L-1 |
---|---|
10 | 2.5 |
7.5 | 3.3 |
5 | 5 |
3.3 | 7.5 |
2.5 | 10 |
1 | YUAN Bo, ZHAO Yi, MAO Xingzhou, et al. Simultaneous removal of SO2, NO and Hg0 from flue gas using vaporized oxidant catalyzed by Fe/ZSM-5[J]. Fuel, 2020, 262: 116567. |
2 | YANG Bingchuan, MA Suxia, CUI Rongji, et al. Simultaneous removal of NOx and SO2 with H2O2 catalyzed by alkali/magnetism-modified fly ash: high efficiency, low cost and catalytic mechanism[J]. Chemical Engineering Journal, 2019, 359: 233-243. |
3 | RAGHUNATH C V, MONDAL M K. Reactive absorption of NO and SO2 into aqueous NaClO in a counter-current spray column[J]. Asia-Pacific Journal of Chemical Engineering, 2016, 11(1): 88-97. |
4 | HAO Runlong, ZHANG Yaoyu, WANG Zhaoyue, et al. An advanced wet method for simultaneous removal of SO2 and NO from coal-fired flue gas by utilizing a complex absorbent[J]. Chemical Engineering Journal, 2017, 307: 562-571. |
5 | PARK Hyun-Woo, CHOI Sooseok, PARK Dong-Wha. Simultaneous treatment of NO and SO2 with aqueous NaClO2 solution in a wet scrubber combined with a plasma electrostatic precipitator[J]. Journal of Hazardous Materials, 2015, 285: 117-126. |
6 | PAN Weiguo, ZHANG Xiaobo, GUO Ruitang, et al. A thermodynamic study of simultaneous removal of SO2 and NO by a KMnO4/ammonia solution[J]. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 2015, 37(7): 721-726. |
7 | ZHANG Jia, ZHANG Rui, CHEN Xin, et al. Simultaneous removal of NO and SO2 from flue gas by ozone oxidation and NaOH absorption[J]. Industrial & Engineering Chemistry Research, 2014, 53(15): 6450-6456. |
8 | GUO Ruitang, PAN Weiguo, ZHANG Xiaobo, et al. Removal of NO by using Fenton reagent solution in a lab-scale bubbling reactor[J]. Fuel, 2011, 90(11): 3295-3298. |
9 | HAO Runlong, ZHAO Yi, YUAN Bo, et al. Establishment of a novel advanced oxidation process for economical and effective removal of SO2 and NO[J]. Journal of Hazardous Materials, 2016, 318: 224-232. |
10 | LIU Yangxian, WANG Yan, WANG Qian, et al. Simultaneous removal of NO and SO2 using vacuum ultraviolet light (VUV)/heat/peroxymonosulfate (PMS)[J]. Chemosphere, 2018, 190: 431-441. |
11 | LIU Yunlong, LIU Ziyang, WANG Yan, et al. Simultaneous absorption of SO2 and NO from flue gas using ultrasound/Fe2+/heat coactivated persulfate system[J]. Journal of Hazardous Materials, 2018, 342: 326-334. |
12 | DING Jie, ZHONG Qin, ZHANG Shule, et al. Simultaneous removal of NOx and SO2 from coal-fired flue gas by catalytic oxidation-removal process with H2O2[J]. Chemical Engineering Journal, 2014, 243: 176-182. |
13 | DING Jie, ZHONG Qin, ZHANG Shule. Catalytic efficiency of iron oxides in decomposition of H2O2 for simultaneous NOx and SO2 removal: effect of calcination temperature[J]. Journal of Molecular Catalysis A: Chemical, 2014, 393: 222-231. |
14 | WU Bo, XIONG Yuanquan, GE Yangyang. Simultaneous removal of SO2 and NO from flue gas with ·OH from the catalytic decomposition of gas-phase H2O2 over solid-phase Fe2(SO4)3[J]. Chemical Engineering Journal, 2018, 331: 343-354. |
15 | CHANG Siu Hua. Rice husk and its pretreatments for bio-oil production via fast pyrolysis: a review[J]. BioEnergy Research, 2019, 13(1): 23-42. |
16 | PARK Byung-Dae, Seung Gon WI, LEE Kwang Ho, et al. Characterization of anatomical features and silica distribution in rice husk using microscopic and micro-analytical techniques[J]. Biomass and Bioenergy, 2003, 25(3): 319-327. |
17 | ADAM F, APPATURI J N, IQBAL A. The utilization of rice husk silica as a catalyst: review and recent progress[J]. Catalysis Today, 2012, 190(1): 2-14. |
18 | LIU Houfan, GAN Lu, LI Risheng, et al. Study on the new preparation method of white carbon black from rice husk[J]. Inorganic Chemicals Industry, 2007, 39(2): 40-42. |
19 | YANG Siyuan, XU Dan, HE Shanshan, et al. Modified Fe-rich palygorskite as an efficient and low-cost heterogeneous Fenton fatalyst for NOx and SO2 removal[J]. Energy Fuels, 2020, 34: 8493-8502. |
20 | ZIELIŃSKI J, ZGLINICKA I, ZNAK L, et al. Reduction of Fe2O3 with hydrogen[J]. Applied Catalysis A: General, 2010, 381(1/2): 191-196. |
21 | LIU Xuan, WANG Changan, ZHU Tao, et al. Simultaneous removal of NOx and SO2 from coal-fired flue gas based on the catalytic decomposition of H2O2 over Fe2(MoO4)3[J]. Chemical Engineering Journal, 2019, 371: 486-499. |
22 | LOUSADA C M, Kinetics JONSSON M., mechanism, and activation energy of H2O2decomposition on the surface of ZrO2[J]. Journal of Physical Chemistry C, 2010, 114(25): 11202-11208. |
23 | WU Bo, XIONG Yuanquan. A novel low-temperature NO removal approach with ·OH from catalytic decomposition of H2O2 over La1-xCaxFeO3 oxides[J]. Journal of Chemical Technology & Biotechnology, 2018, 93(1): 43-53. |
24 | HUANG Xianming, DING Jie, ZHONG Qin. Catalytic decomposition of H2O2 over Fe-based catalysts for simultaneous removal of NOx and SO2[J]. Applied Surface Science, 2015, 326: 66-72. |
25 | WU Bo, ZHANG Shuping, HE Shanshan, et al. Follow-up mechanism study on NO oxidation with vaporized H2O2 catalyzed by Fe2O3 in a fixed-bed reactor[J]. Chemical Engineering Journal, 2019, 356: 662-672. |
26 | YANG Siyuan, XIONG Yuanquan, GE Yangyang, et al. Heterogeneous Fenton oxidation of nitric oxide by magnetite: kinetics and mechanism[J]. Materials Letters, 2018, 218: 257-261. |
27 | Hacgyu LIM, LEE Jinwoo, JIN Sunmi, et al. Highly active heterogeneous Fenton catalyst using iron oxide nanoparticles immobilized in alumina coated mesoporous silica[J]. Chemical Communications, 2006(4): 463-465. |
28 | LIU Caixia, YANG Shijian, MA Lei, et al. Comparison on the performance of α-Fe2O3 and γ-Fe2O3 for selective catalytic reduction of nitrogen oxides with ammonia[J]. Catalysis Letters, 2013, 143(7): 697-704. |
29 | WANG Yanan, ZHANG Shule, ZENG Yiqing, et al. Photocatalytic oxidation of NO over TiO2-graphene catalyst by UV/H2O2 process and enhanced mechanism analysis[J]. Journal of Molecular Catalysis A: Chemical, 2016, 423: 339-346. |
30 | CUI Rongji, MA Suxia, WANG Jie, et al. NO oxidation over Fe-based catalysts supported on montmorillonite K10, gamma-alumina and ZSM-5 with gas-phase H2O2[J]. Chemosphere, 2019, 234: 302-309. |
[1] | WANG Lele, YANG Wanrong, YAO Yan, LIU Tao, HE Chuan, LIU Xiao, SU Sheng, KONG Fanhai, ZHU Canghai, XIANG Jun. Influence of spent SCR catalyst blending on the characteristics and deNO x performance for new SCR catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 489-497. |
[2] | WANG Shangbin, OU Hongxiang, XUE Honglai, CAO Haizhen, WANG Junqi, BI Haipu. Effect of xanthan gum and nano silica on the properties of fluorine-free surfactant mixed solution foam [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4856-4862. |
[3] | XU Zhongshuo, ZHOU Panpan, WANG Yuhui, HUANG Wei, SONG Xinshan. Advances in sulfur iron ore mediated autotrophic denitrification [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4863-4871. |
[4] | SONG Weitao, SONG Huiping, FAN Zhenlian, FAN Biao, XUE Fangbin. Research progress of fly ash in anti-corrosion coatings [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4894-4904. |
[5] | ZHANG Wei, QIN Chuan, XIE Kang, ZHOU Yunhe, DONG Mengyao, LI Jie, TANG Yunhao, MA Ying, SONG Jian. Application and performance enhancement challenges of H2-SCR modified platinum-based catalysts for low-temperature denitrification [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 2954-2962. |
[6] | ZHU Wei, QI Penggang, SU Yinhai, ZHANG Shuping, XIONG Yuanquan. Preparation and properties of bio-oil hierarchical porous carbon electrode materials for supercapacitor [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3077-3086. |
[7] | LI Baixue, XIN Xin, ZHU Yumeng, LIU Qin, LIU Xin. Construction of sulfur autotrophic short-cut denitrification and anaerobic ammonium oxidation (SASD-A) coupling system and effect mechanisms of influent S/N ratio on denitrification process [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3261-3271. |
[8] | LI Yunchuang, XIE Fangming, XI Yanan, WAN Xinyue, SUN Yuhu, ZHAO Yongfeng, LI Gen, LIU Honghai, GAO Xionghou, LIU Hongtao. Low-cost synthesis of hydrothermally stable mesoporous aluminosilicates [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 1877-1884. |
[9] | SHANG Xiaobiao, LI Guangchao, XIAO Liping, BAI Yongzhen, XIAO Renyou, LI Jiajian, ZHANG Zhihao. Wave transmission performance of zirconium aluminum silicate fiberboard under large temperature gradient [J]. Chemical Industry and Engineering Progress, 2023, 42(3): 1551-1561. |
[10] | WU Xinbo, DANG Hongzhong, MA Jiao, YAN Yuan, ZENG Tianxu, LI Weiwei, ZHANG Guozhen, CHEN Yongzhi. Effect of denitrifying phosphorus removal under short-cut nitrification mode with A2/O-BAF process [J]. Chemical Industry and Engineering Progress, 2023, 42(2): 1089-1097. |
[11] | YANG Chengruixue, HUANG Qiyuan, RAN Jiansu, CUI Yuntong, WANG Jianjian. Palladium nanoparticles supported by phosphoric acid-modified SiO2 as efficient catalysts for low-temperature hydrodeoxygenation of vanillin in water [J]. Chemical Industry and Engineering Progress, 2023, 42(10): 5179-5190. |
[12] | KONG Qian, SUN Jinchao, GE Jiaqi, ZHANG Peng, MA Yanlong, LIU Baijun. Effect of precipitant on the hydrocracking performance of NiW/TiO2-ASA catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(1): 265-271. |
[13] | PAN Yuelei, CHENG Xudong, YAN Mingyuan, HE Pan, ZHANG Heping. Silica aerogel and its application in the field of thermal insulation [J]. Chemical Industry and Engineering Progress, 2023, 42(1): 297-309. |
[14] | HUANG Ye, YAN Xing, WU Qiaowei, CHAI Xiaotao, PAN Gongying, ZHANG Jinfeng, LI Xiangqian. Study of silica gel regeneration applied on cyclosporine A column chromatography [J]. Chemical Industry and Engineering Progress, 2022, 41(S1): 461-468. |
[15] | WANG Yiru, SONG Xiaosan, SHUI Boyang, WANG Sanfan. Progress in amine-functionalized mesoporous silica for CO2 capture [J]. Chemical Industry and Engineering Progress, 2022, 41(S1): 536-544. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |