Chemical Industry and Engineering Progress ›› 2020, Vol. 39 ›› Issue (1): 152-165.DOI: 10.16085/j.issn.1000-6613.2019-0432
• Industrial catalysis • Previous Articles Next Articles
Xiaoru ZHUANG(),Xinhai XU(),Xin XIA,Lun LI,Wenfu XU
Received:
2019-03-22
Online:
2020-01-14
Published:
2020-01-05
Contact:
Xinhai XU
通讯作者:
徐心海
作者简介:
庄晓如(1989—),女,博士,研究方向为流体传热传质、制氢反应器、太阳能热发电等。E-mail:基金资助:
CLC Number:
Xiaoru ZHUANG,Xinhai XU,Xin XIA,Lun LI,Wenfu XU. Review of reaction kinetics of methanol steam reforming forhydrogen production[J]. Chemical Industry and Engineering Progress, 2020, 39(1): 152-165.
庄晓如,徐心海,夏鑫,李伦,徐文福. 甲醇蒸汽重整制氢反应动力学研究进展[J]. 化工进展, 2020, 39(1): 152-165.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2019-0432
1 | JAMPA S, JAMIESON A M, CHAISUWAN T, et al. Achievement of hydrogen production from autothermal steam reforming of methanol over Cu-loaded mesoporous CeO2, and Cu-loaded mesoporous CeO2-ZrO2, catalysts[J]. International Journal of Hydrogen Energy, 2017, 42(22): 15073-15084. |
2 | HUANG G, LIAW B J, JHANG C J, et al. Steam reforming of methanol over CuO/ZnO/CeO2/ZrO2/Al2O3 catalysts[J]. International Journal of Hydrogen Energy, 2009, 358(1): 7-12. |
3 | POUR V, BARTON J, BENDA A. Kinetics of catalyzed reaction of methanol with water vapour[J]. Collection of Czechoslovak Chemical Communications, 1975, 40(10): 2923-2934. |
4 | SANTACESARIA E, CARRA S. Kinetics of catalytic steam reforming of methanol in a CSTR reactor[J]. Applied Catalysis, 1983, 5(3): 345-358. |
5 | LEE J K, KO J B, KIM D H. Methanol steam reforming over Cu/ZnO/Al2O3 catalyst: kinetics and effectiveness factor[J]. Applied Catalysis A: General, 2004, 278(1): 25-35. |
6 | AGRELL J, BIRGERSSON H, BOUTONNET M. Steam reforming of methanol over a Cu/ZnO/Al2O3 catalyst: a kinetic analysis and strategies for suppression of CO formation[J]. Journal of Power Source, 2002, 106(12): 249-257. |
7 | AGRELL J, BIRGERSSON H, BOUTONNET M, et al. Production of hydrogen from methanol over Cu/ZnO catalysts promoted by ZrO2 and Al2O3[J]. Journal of Catalysis, 2003, 219(2): 389-403. |
8 | VANDERBORGH N E, GOODBY B E, SPRINGER T E. Oxygen exchange reactions during methanol steam reforming[C]//New Jersey: Proc. 32nd International Power Sources Symposium, Electrochemical Society Inc., 1986: 623-628. |
9 | CHOI Y, STENGER H G. Fuel cell grade hydrogen from methanol on a commercial Cu/ZnO/A12O3 catalyst[J]. Applied Catalysis B: Environmental, 2002, 38(4): 259-269. |
10 | 李言浩, 马沛生, 苏旭, 等. 铜系催化剂上甲醉蒸汽转化制氢过程的原位红外研究[J]. 催化学报, 2003, 24(2): 93-96. |
LI Y H, MA P S, SU X, et al. Study on process of methanol steam-reforming to hydrogen over CuO/ZnO/Al2O3 catalyst by in situ infrared spectroscopy[J]. Chinese Journal of Catalysis, 2003, 24(2): 93-96. | |
11 | BREEN J P, ROSS J R H. Methanol reforming for fuel-cell applications: development of zirconia-containing Cu-Zn-Al catalysts[J]. Catalysis Today, 1999, 51(3): 521-533. |
12 | PURNAMA H, RESSLER T, JENTOFT R E, et al. CO formation/selectivity for steam reforming of methanol with a commercial Cu/ZnO/A12O3 catalyst[J]. Applied Catalysis A: General, 2004, 259(1): 83-94. |
13 | PEPPLEY B A, AMPHLETT J C, KEARNS L M, et al. Methanol-steam reforming on Cu/ZnO/Al2O3 part 1: the reaction network[J]. Applied Catalysis A: General, 1999, 179(1/2): 21-29. |
14 | PEPPLEY B A, AMPHLETT J C, KEARNS L M, et al. Methanol-steam reforming on Cu/ZnO/Al2O3 catalysts part 2: a comprehensive kinetic model[J]. Applied Catalysis A: General, 1999, 179(1/2): 31-49. |
15 | KOBAYASHI H, TAKEZAWA N, MINOCHI C. Methanol reforming reaction over copper-containing mixed oxides[J]. Chemistry Letters, 1976, 5(12): 1347-1350. |
16 | TAKEZAWA N, IWASA N. Steam reforming and dehydrogenation of methanol: difference in the catalytic functions of copper and group VIII metals[J]. Catalysis Today, 1997, 36(1): 45-56. |
17 | 张磊, 潘立卫, 倪长军, 等. CuO/ZnO/CeO2/ZrO2催化剂上甲醇水蒸气重整制氢反应机理研究[J]. 大连理工大学学报, 2014, 54(1): 13-19. |
ZHANG L, PAN L W, NI C J, et al. Research on mechanism of methanol steam reforming for hydrogen-making over CuO/ZnO/CeO2/ZrO2 catalyst[J]. Journal of Dalian University of Technology, 2014, 54(1): 13-19. | |
18 | JIANG C J, TRIMM D L, WAINWRIGHT M S, et al. Kinetic study of steam reforming of methanol over copper-based catalysts[J]. Applied Catalysis A: General, 1993, 93(2): 245-255. |
19 | TESSER R, SERIO M D, SANTACESARIA E. Methanol steam reforming: a comparison of different kinetics in the simulation of a packed bed reactor[J]. Chemical Engineering Journal, 2009, 154(1/2/3): 69-75. |
20 | AGARWAL V, PATEL S, PANT K K. H2 production by steam reforming of methanol over Cu/ZnO/Al2O3 catalysts: transient deactivation kinetics modeling[J]. Applied Catalysis A: General, 2005, 279(1/2): 155-164. |
21 | KIM J H, JANG Y S, KIM J C, et al. Anodic aluminum oxide supported Cu-Zn catalyst for oxidative steam reforming of methanol[J]. Korean Journal of Chemical Engineering, 2019, 36(3): 368-376. |
22 | LI Y F, LIN W M, YU L, et al. Kinetics of methanol steam reforming over COPZr-2 catalyst[J]. Journal of Natural Gas Chemistry, 2008, 17(2): 171-174. |
23 | PATEL S, PANT K K. Activity and stability enhancement of copper-alumina catalysts using cerium and zinc promoters for the selective production of hydrogen via steam reforming of methanol[J]. Journal of Power Sources, 2006, 159(1): 139-143. |
24 | RIBEIRINHA P, MATEOS-PEDRERO C, BOAVENTURA M, et al. CuO/ZnO/Ga2O3 catalyst for low temperature MSR reaction: synthesis, characterization and kinetic model[J]. Applied Catalysis B: Environmental, 2018, 221: 371-379. |
25 | 王胜年, 洪学伦, 王树东, 等. Cr-Zn催化剂上甲醇水蒸气转化反应动力学Ⅰ.本征动力学[J]. 石油化工, 2001, 30(4): 259-262. |
WANG S N, HONG X L, WANG S D, et al. Reaction kinetics of methanol steam reforming over Cr-Zn catalyst for PEMFC Ⅰ. Model of intrinsic kinetics[J]. Petrochemical Technology, 2001, 30(4): 259-262. | |
26 | 王胜年, 王树东, 吴迪镛, 等. Cr-Zn催化剂上甲醇水蒸气转化反应动力学Ⅱ.宏观动力学[J]. 石油化工, 2001, 30(8): 593-596. |
WANG S N, WANG S D, WU D Y, et al. Reaction kinetics of methanol steam reforming over Cr-Zn catalyst for PEMFC Ⅱ. Model of macro kinetics[J]. Petrochemical Technology, 2001, 30(8): 593-596. | |
27 | CHIN Y H, DAGLE R, HU J, et al. Steam reforming of methanol over highly active Pd/ZnO catalyst[J]. Catalysis Today, 2002, 77(1/2): 79-88. |
28 | AZENHA C S R, MATEOS-PEDRERO C, QUEIROS S, et al. Innovative ZrO2-supported CuPd catalysts for the selective production of hydrogen from methanol steam reforming[J]. Applied Catalysis B: Environmental, 2017, 203: 400-407. |
29 | WICHERT M, ZAPF R, ZIOGAS A, et al. Kinetic investigations of the steam reforming of methanol over a Pt/In2O3/Al2O3 catalyst in microchannels[J]. Chemical Engineering Science, 2016, 155: 201-209. |
30 | MARTINELLI M, JACOBS G, GRAHAM U M, et al. Methanol steam reforming: Na doping of Pt/YSZ provides fine tuning of selectivity[J]. Catalysts, 2017, 7(5): 148. |
31 | IDEM R O, BAKHSHI N N. Kinetic modeling of the production of hydrogen from the methanol-steam reforming process over Mn-promoted coprecipitated Cu-Al catalyst[J]. Chemical Engineering Science, 1996, 51(14): 3697-3708. |
32 | 蒋元力, 黄强, 王福安, 等. 在Cu/ZnO/Al2O3催化剂上进行甲醇蒸气重整的动力学研究[J]. 燃料化学学报, 2001, 29(4): 347-350. |
JIANG Y L, HUANG Q, WANG F A, et al. Kinetic study of methanol steam reforming over Cu/ZnO/Al2O3 catalysts[J]. Journal of Fuel Chemistry and Technology, 2001, 29(4): 347-350. | |
33 | PATEL S, PANT K K. Experimental study and mechanistic kinetic modeling for selective production of hydrogen via catalytic steam reforming of methanol[J]. Chemical Engineering Science, 2007, 62(18/19/20): 5425-5435. |
34 | SA S, SOUSA J M, MENDES A. Steam reforming of methanol over a CuO/ZnO/Al2O3 catalyst, part I: kinetic modelling[J]. Chemical Engineering Science, 2011, 66(20): 4913-4921. |
35 | AMPHLETT J C, CREBER K A M, DAVIS J M, et al. Hydrogen production by steam reforming of methanol for polymer electrolyte fuel-cells[J]. International Journal of Hydrogen Energy, 1994, 19(2): 131-137. |
36 | THATTARATHODY R, ARTOUL M, DIGILOV R M, et al. Pressure, diffusion, and S/M ratio effects in methanol steam reforming kinetics[J]. Industrial & Engineering Chemistry Research, 2018, 57(9): 3175-3186. |
37 | CAO C, XIA G, HOLLADAY J, et al. Kinetic studies of methanol steam reforming over Pd/ZnO catalyst using a microchannel reactor[J]. Applied Catalysis A: General, 2004, 262(1): 19-29. |
38 | 袁彪, 于新海, 王正东, 等. 在涂层催化剂上甲醇水蒸气重整的本征动力学研究[J]. 石油化工, 2005, 34(11): 1055-1059. |
YUAN B, YU X H, WANG Z D, et al. Intrinsic kinetics of methanol-steam reforming over coating catalyst[J]. Petrochemical Technology, 2005, 34(11): 1055-1059. | |
39 | 王国强. 甲醇水蒸气重整制氢过程强化特性研究[D]. 重庆: 重庆大学, 2014. |
WANG G Q. Process intensification characteristic study on methanol steam reforming for hydrogen production[D]. Chongqing: Chongqing University, 2014. | |
40 | YONG S T, OOI C W, CHAI S P, et al. Review of methanol reforming-Cu-based catalysts, surface reaction mechanisms, and reaction schemes[J]. International Journal of Hydrogen Energy, 2013, 38(22): 9541-9552. |
41 | 王胜年. Cr-Zn催化剂上甲醇水蒸气重整制氢反应动力学研究[D]. 大连: 中科院大连化学物理研究所, 2000. |
WANG S N. Kinetic study of steam reforming of methanol over Cr-Zn catalyst for PEMFC[D]. Dalian: Dalian Institute of Chemical Physics, Chinese Academy of Scieces, 2000. | |
42 | HERDEM M S, SINAKI M Y, FARHAD S, et al. An overview of the methanol reforming process: comparison of fuels, catalysts, reformers, and systems[J]. International Journal of Energy Research, 2019, 43: 5076-5105. |
43 | COMMENGE J M, FALK L, CORRIOU J P, et al. Optimal design for flow uniformity in microchannel reactors[J]. American Institute of Chemical Engineers Journal, 2002, 48(2): 345-358. |
44 | ASPREY S P, WOJCIECHOWSKI B W, PEPPLEY B A. Kinetic studies using temperature-scanning: the steam-reforming of methanol[J]. Applied Catalysis A: General, 1999, 179(1): 51-70. |
[1] | XIE Luyao, CHEN Songzhe, WANG Laijun, ZHANG Ping. Platinum-based catalysts for SO2 depolarized electrolysis [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 299-309. |
[2] | XU Jiaheng, LI Yongsheng, LUO Chunhuan, SU Qingquan. Optimization of methanol steam reforming process [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 41-46. |
[3] | GE Quanqian, XU Mai, LIANG Xian, WANG Fengwu. Research progress on the application of MOFs in photoelectrocatalysis [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4692-4705. |
[4] | ZHANG Yajuan, XU Hui, HU Bei, SHI Xingwei. Preparation of NiCoP/rGO/NF electrocatalyst by eletroless plating for efficient hydrogen evolution reaction [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4275-4282. |
[5] | WANG Junjie, PAN Yanqiu, NIU Yabin, YU Lu. Molecular level catalytic reforming model construction and application [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3404-3412. |
[6] | WANG Yunqing, YANG Guorui, YAN Wei. Transition metal phosphide modification and its applications in electrochemical hydrogen evolution reaction [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3532-3549. |
[7] | ZHAO Yi, YANG Zhen, ZHANG Xinwei, WANG Gang, YANG Xuan. Molecular simulation of self-healing behavior of asphalt under different crack damage and healing temperature [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3147-3156. |
[8] | FU Shurong, WANG Lina, WANG Dongwei, LIU Rui, ZHANG Xiaohui, MA Zhanwei. Oxygen evolution cocatalyst enhancing the photoanode performances for photoelectrochemical water splitting [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2353-2370. |
[9] | GE Weitong, LIAO Yalong, LI Mingyuan, JI Guangxiong, XI Jiajun. Preparation and dechlorination kinetics of Pd-Fe/MWCNTs bimetallic catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 1885-1894. |
[10] | XIAO Zhourong, LI Guozhu, WANG Li, ZHANG Xiangwen, GU Jianmin, WANG Desong. Research progress of the catalysts for hydrogen production via liquid hydrocarbon fuels steam reforming [J]. Chemical Industry and Engineering Progress, 2022, 41(S1): 97-107. |
[11] | ZHANG Guangyu, ZHAO Jian, SUN Feng, JIANG Jie, SUN Bing, XU Wei. Recent advances on catalytic conversion of CO2 into propylene carbonate: catalyst design, performance and reaction mechanism [J]. Chemical Industry and Engineering Progress, 2022, 41(S1): 177-189. |
[12] | HU Bing, XU Lijun, HE Shan, SU Xin, WANG Jiwei. Researching progress of hydrogen production by PEM water electrolysis under the goal of carbon peak and carbon neutrality [J]. Chemical Industry and Engineering Progress, 2022, 41(9): 4595-4604. |
[13] | HU Wende, WANG Yangdong, WANG Chuanming. Research progress on the direct catalytic conversion of syngas to light olefins [J]. Chemical Industry and Engineering Progress, 2022, 41(9): 4754-4766. |
[14] | CHANG Yaoping, GUAN Xiushuai, ZHENG Qian, JIN Shanbiao, ZHANG Changming, ZHANG Xiaochao. Hydrothermal preparation of 3D flower-spherical Bi2SiO5 for photocatalytic esterification of oleic acid [J]. Chemical Industry and Engineering Progress, 2022, 41(8): 4181-4191. |
[15] | LI Yanping, YAN Dazhou, YANG Tao, WEN Guosheng, HAN Zhicheng. Removal of methylchlorosilane in silicon-based electron gas by molecular dynamics simulation [J]. Chemical Industry and Engineering Progress, 2022, 41(8): 4375-4385. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |