Chemical Industry and Engineering Progress ›› 2019, Vol. 38 ›› Issue (12): 5380-5389.DOI: 10.16085/j.issn.1000-6613.2019-0377
• Industrial catalysis • Previous Articles Next Articles
Zhinuo WANG1,2,Hui WANG3,Jifeng PANG2(),Shimin LIU1(),Mingyuan ZHENG2()
Received:
2019-03-13
Online:
2019-12-05
Published:
2019-12-05
Contact:
Jifeng PANG,Shimin LIU,Mingyuan ZHENG
王祉诺1,2,王辉3,庞纪峰2(),刘世民1(),郑明远2()
通讯作者:
庞纪峰,刘世民,郑明远
作者简介:
王祉诺(1995—),女,硕士研究生,从事乙醇催化转化到丁醇研究。
基金资助:
CLC Number:
Zhinuo WANG,Hui WANG,Jifeng PANG,Shimin LIU,Mingyuan ZHENG. Progress in catalytic conversion of ethanol to butanol[J]. Chemical Industry and Engineering Progress, 2019, 38(12): 5380-5389.
王祉诺,王辉,庞纪峰,刘世民,郑明远. 乙醇催化转化到丁醇研究进展[J]. 化工进展, 2019, 38(12): 5380-5389.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2019-0377
1 | HUBER G W, IBORRA S, CORMA A. Synthesis of transportation fuels from biomass: chemistry, catalysts, and engineering[J]. Chemical Reviews, 2006, 106(9): 4044-4098. |
2 | 石宁, 刘琪英, 王铁军, 等. 一步催化转化纤维素制备化学品的研究进展[J]. 新能源进展, 2014, 2(4): 245-253. |
SHI N, LIU Q Y, WANG T J, et al. Progress in one-pot catalytic transformation of cellulose into valuable chemicals[J]. Advances in New and Renewable Energy, 2014, 2(4): 245-253. | |
3 | 陈宇, 纪红兵. 木质素类生物质催化热解制备精细化学品研究进展[J]. 化工进展, 2019, 38(1): 626-638. |
CHEN Y, JI H B. Catalytic pyrolysis of lignin biomass for the production of fine chemicals[J]. Chemical Industry and Engineering Progress, 2019, 38(1): 626-638. | |
4 | SUN J, WANG Y. Recent advances in catalytic conversion of ethanol to chemicals[J]. ACS Catalysis, 2014, 4(4): 1078-1090. |
5 | MIKA L T, CSEFALVAY E, NEMETH A. Catalytic conversion of carbohydrates to initial platform chemicals: chemistry and sustainability[J]. Chemical Reviews, 2018, 118(2): 505-613. |
6 | THOMPSON R, BEHNAM M, SWANA J, et al. An analysis of net energy production and feedstock availability for biobutanol and bioethanol[J]. Bioresource Technology, 2011, 102(2): 2112-2117. |
7 | SINGH S B, DHAR A, AGARWAL A K. Technical feasibility study of butanol-gasoline blends for powering medium-duty transportation spark ignition engine[J]. Renewable Energy, 2015, 76: 706-716. |
8 | YUSRI I M, MAMAT R, NAJAFI G, et al. Alcohol based automotive fuels from first four alcohol family in compression and spark ignition engine: a review on engine performance and exhaust emissions[J]. Renewable & Sustainable Energy Reviews, 2017, 77: 169-181. |
9 | UYTTEBROEK M, HECKE W VAN, VANBROEKHOVEN K. Sustainability metrics of 1-butanol[J]. Catalysts Today, 2015, 239(1): 7-10. |
10 | JIN C, YAO M, LIU H, et al. Progress in the production and application of n-butanol as a biofuel[J]. Renewable & Sustainable Energy Reviews, 2011, 15(8): 4080-4106. |
11 | 林逸君, 闻志强, 朱力,等. Clostridium thermocellum 与 Clostridium beijerinckii 偶联发酵玉米棒芯产丁醇[J]. 高校化学工程学报, 2013, 27(3): 444-449. |
LIN Y J, WEN Z Q, ZHU L, et al. Butanol production from corncob in the sequential co-culture of Clostridium thermocellum and Clostridium beijerinckii[J]. Journal of Chemical Engineering of Chinese Universities, 2013, 27(3): 444-449. | |
12 | UEDA W, OHSHIDA T, KUWABARA T, et al. Condensation of alcohol over solid-base catalyst to form higher alcohols[J]. Catalysis Letters, 1992, 12(1/2/3): 97-104. |
13 | KOZLOWSKI J T, DAVIS R J. Heterogeneous catalysts for the Guerbet coupling of alcohols[J]. ACS Catalysis, 2013, 3(7): 1588-1600. |
14 | KODA K, MATSU-URA T, OBORA Y, et al. Guerbet reaction of ethanol to n-butanol catalyzed by Iridium complexes[J]. Chemistry Letters, 2009, 38(8): 838-839. |
15 | DOWSON G R M, HADDOW M F, LEE J, et al. Catalytic conversion of ethanol into an advanced biofuel: unprecedented selectivity for n-butanol[J]. Angewandte Chemie International Edition, 2013, 52(34): 9005-9008. |
16 | WINGAD R L, GATES P J, STREET S T G, et al. Catalytic conversion of ethanol to n-butanol using Ruthenium P-N ligand complexes[J]. ACS Catalysis, 2015, 5(10): 5822-5826. |
17 | TSENG K N T, LIN S, KAMPF J W, et al. Upgrading ethanol to 1-butanol with a homogeneous air-stable ruthenium catalyst[J]. Chemical Communications, 2016, 52: 2901-2904. |
18 | XIE Y J, BEN-DAVID Y, SHIMON L J, et al. Highly efficient process for production of biofuel from ethanol catalyzed by ruthenium pincer complexes[J]. Journal of the American Chemical Society, 2016, 138(29): 9077-9080. |
19 | CHAKRABORTY S, PISZEL P E, HAYES C E, et al. Highly selective formation of n-butanol from ethanol through the Guerbet process: a tandem catalytic approach[J]. Journal of the American Chemical Society, 2015, 137(45): 14264-14267. |
20 | FU S, SHAO Z, WANG Y, et al. Manganese-catalyzed upgrading of ethanol into 1-butanol[J]. Journal of the American Chemical Society, 2017, 139(34): 11941-11948. |
21 | TSENG K N T, KAMPF J W, SZYMCZAK N K. Mechanism of N,N,N-amide ruthenium(Ⅱ) hydride mediated acceptorless alcohol dehydrogenation: inner-sphere β-H elimination versus outer-sphere bifunctional metal-ligand cooperativity[J]. ACS Catalysis, 2015, 5(9): 5468-5485. |
22 | TSENG K N T, KAMPF J W, SZYMCZAK N K. Base-free acceptorless, and chemoselective alcohol dehydrogenation catalyzed by an amide-derived N,N,N-ruthenium(Ⅱ) hydride complex[J]. Organometallics, 2013, 32(7): 2046-2049. |
23 | TSUCHIDA T, SAKUMA S, TAKEGUCHI T, et al. Direct synthesis of n-butanol from ethanol over nonstoichiometric hydroxyapatite[J]. Industrial & Engineering Chemistry Research, 2006, 45(25): 8634-8642. |
24 | TSUCHIDA T, KUBO J, YOSHIOKA T, et al. Reaction of ethanol over hydroxyapatite affected by Ca/P ratio of catalyst[J]. Journal of Catalysis, 2008, 259(2):183-189. |
25 | OGO S, ONDA A, YANAGISAWA K. Selective synthesis of 1-butanol from ethanol over strontium phosphate hydroxyapatite catalysts[J]. Applied Catalysis A: General, 2011, 402(1/2): 188-195. |
26 | OGO S, ONDA A, IWASA Y, et al. 1-Butanol synthesis from ethanol over strontium phosphate hydroxyapatite catalysts with various Sr/P ratios[J]. Catalysts, 2012, 296: 24-30. |
27 | SIVESTER L, LAMONIER J, FAYE J, et al. Reactivity of ethanol over hydroxyapatite-based Ca-enriched catalysts with various carbonate contents[J]. Catalysis Science & Technology, 2015, 5: 2994-3006. |
28 | YANG C, MENG Z Y. Bimolecular condensation of ethanol catalyzed by alkali cation zeolites[J]. Journal of Catalysis, 1993, 142(1): 37-44. |
29 | NDOU A, PLINT N, COVILLE N J. Dimerisation of ethanol to butanol over solid-base catalysts[J]. Applied Catalysis A: General, 2003, 251(2): 337-345. |
30 | DI COSIMO J I, APESTEGUIA C R, GINES M J L, et al. Structural requirements and reaction pathways in condensation reactions of alcohols on MgyAlOxcatalysts[J]. Journal of Catalysis, 2000, 190(2): 261-275. |
31 | GINES M J L, IGLESIA E. Bifunctional condensation reactions of alcohols on basic oxides modified by copper and potassium[J]. Catalysis, 1998,176(1): 155-172. |
32 | CARVALHO D L, DE AVILLEZ R R, RODRIGUES M T, et al. Mg and Al mixed oxides and the synthesis of n-butanol from ethanol[J]. Applied Catalysis A: General, 2012, 415/416(16): 96-100. |
33 | CARVALHO D L, BORGES L E P, APPEL L G, et al. In situ infrared spectroscopic study of the reaction pathway of the direct synthesis of n-butanol from ethanol over MgAl mixed-oxide catalysts[J]. Catalysis Today, 2013, 213(18): 115-121. |
34 | RAMASAMY K, GRAY M, JOB H, et al. Role of calcination temperature on the hydrotalcite derived MgO-Al2O3 in converting ethanol to butanol[J]. Topics in Catalysis, 2016, 59(1): 46-54. |
35 | YANG K W, JIANG X Z, ZHANG W C. One-step synthesis of n-butanol from ethanol condensation over alumina-supported metal catalysts[J]. Chinese Chemical Letters, 2004, 15(12):1497-1500. |
36 | GHAZIASKAR H S, XU C C. One-step continuous process for the production of 1-butanol and 1-hexanol by catalytic conversion of bioethanol at its sub-/supercritical state[J]. RSC Advances, 2013, 3(13): 4271-4280. |
37 | JORDISON T L, LIRA C T, MILLER D J. Condensed-phase ethanol conversion to higher alcohols[J]. Industrial & Engineering Chemistry Research, 2015, 54(44): 10991-11000. |
38 | RIITTONEN T, TOUKONIITTY E, MADNANI D K, et al. One-pot liquid-phase catalytic conversion of ethanol to 1-butanol over aluminium oxide-the effect of the active metal on the selectivity[J]. Catalysts, 2012, 2(4): 68-84. |
39 | RIITTONEN T, ERÄNEN K, MÄKI-ARVELA P, et al. Continuous liquid-phase valorization of bio-ethanol towards bio-butanol over metal modified alumina[J]. Renewable Energy, 2015, 74: 369-378. |
40 | EARLEY J H, BOURNE R A, WATSON M J, et al. Continuous catalytic upgrading of ethanol to n-butanol and >C4 products over Cu/CeO2 catalysts in supercritical CO2[J]. Green Chemistry, 2015, 17: 3018-3025. |
41 | JIANG D, WU X, MAO J, et al. Continuous catalytic upgrading of ethanol to n-butanol over Cu-CeO2/AC catalysts[J]. Chemical Communications, 2016, 52: 13749-13752. |
42 | JIANG D, FANG G, TONG Y, et al. Multifunctional Pd@UiO-66 catalysts for continuous catalytic upgrading of ethanol to n-butanol[J]. ACS Catalysis, 2018, 8(12): 11973-11978. |
43 | MARCU I C, TICHIT D, FAJULA F, et al. Catalytic valorization of bioethanol over Cu-Mg-Al mixed oxide catalysts[J]. Catalysis Today, 2009, 147(3/4): 231-238. |
44 | PANG J F, ZHENG M Y, HE L, et al. Upgrading ethanol to n-butanol over highly dispersed Ni-MgAlO catalysts[J]. Journal of Catalysis, 2016, 344: 184-193. |
45 | SUN Z H, VASCONCELOS A C, BOTTARI G, et al. Efficient catalytic conversion of ethanol to 1-butanol via the Guerbet reaction over copper- and nickel-doped porous[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(2): 1738-1746. |
46 | MARCU I C, TANCHOUX N, FAJULA F, et al. Catalytic conversion of ethanol into butanol over M-Mg-Al mixed oxide catalysts (M=Pd, Ag, Mn, Fe, Cu, Sm, Yb) obtained from LDH precursors[J]. Catalysis Letters, 2013, 143(1): 23-30. |
47 | ZHANG X L, LIU Z, XU X, et al. Hydrothermal synthesis of 1-butanol from ethanol catalyzed with commercial cobalt powder[J]. ACS Sustainable Chemistry & Engineering, 2013, 1(12): 1493-1497. |
48 | WU X, FANG G, LIANG Z, et al. Catalytic upgrading of ethanol to n-butanol over M-CeO2/AC(M=Cu, Fe, Co, Ni and Pd) catalysts[J]. Catalysis Communications, 2017, 100: 15-18. |
49 | QUESADA J, FABA L, DÍAZ E, et al. Tuning the selectivities of Mg-Al mixed oxides for ethanol upgrading reactions through the presence of transition metals[J]. Applied Catalysis A: General, 2018, 559(5):167-174. |
50 | HE X H, LIU H C. Efficient synthesis of 1,1-diethoxyethane via sequential ethanol reactions on silica-supported copper and H-Y zeolite catalysts[J]. Catalysis Today, 2014, 233: 133-139. |
51 | 田戈, 张显龙, 冯守华, 等. 一种利用水热技术由乙醇制备正丁醇的方法:CN103193593B[P]. 2014-07-09. |
TIAN G, ZHANG X L, FENG S H, et al. Method for preparing n-butanol from ethenol by using hydrothermal technique:CN103193593 B[P]. 2014-07-09. | |
52 | SCALBERT J, THIBAULT-STARZYK F, JACQUOT R, et al. Ethanol condensation to butanol at high temperatures over a basic heterogeneous catalyst: how relevant is acetaldehyde self-aldolization? [J]. Journal of Catalysis, 2014, 311: 28-32. |
53 | MEUNIER F C, SCALBERT J, STARZYK F T. Unraveling the mechanism of catalytic reactions through combined kinetic and thermodynamic analyses: application to the condensation of ethanol[J]. Comptes Rendus Chimie, 2015, 18(3): 345-350. |
54 | HO C R, SHIYLESH S, BELL A T. Mechanism and kinetics of ethanol coupling to butanol over hydroxyapatite[J]. ACS Catalysis, 2016, 6(2): 939-948. |
55 | MOTEKI T, FLAHERTY D W. Mechanistic insight to C—C bond formation and predictive models for cascade reactions among alcohols on Ca- and Sr hydroxyapatites[J]. ACS Catalysis, 2016, 6(7): 4170-4183. |
56 | DI COSIMO J I, DIEZ V K, XU M, et al. Structure and surface and catalytic properties of Mg-Al basic oxides[J]. Journal of Catalysis, 1998, 178(2): 499-510. |
57 | LEÓN M, DÍAZ E, ORDÓŃEZ S. Ethanol catalytic condensation over Mg-Al mixed oxides derived from hydrotalcites[J]. Catalysis Today, 2011, 164(1): 436-442. |
[1] | SHI Yongxing, LIN Gang, SUN Xiaohang, JIANG Weigeng, QIAO Dawei, YAN Binhang. Research progress on active sites in Cu-based catalysts for CO2 hydrogenation to methanol [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 287-298. |
[2] | ZHENG Qian, GUAN Xiushuai, JIN Shanbiao, ZHANG Changming, ZHANG Xiaochao. Photothermal catalysis synthesis of DMC from CO2 and methanol over Ce0.25Zr0.75O2 solid solution [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 319-327. |
[3] | WANG Zhengkun, LI Sifang. Green synthesis of gemini surfactant decyne diol [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 400-410. |
[4] | XU Jiaheng, LI Yongsheng, LUO Chunhuan, SU Qingquan. Optimization of methanol steam reforming process [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 41-46. |
[5] | WANG Lele, YANG Wanrong, YAO Yan, LIU Tao, HE Chuan, LIU Xiao, SU Sheng, KONG Fanhai, ZHU Canghai, XIANG Jun. Influence of spent SCR catalyst blending on the characteristics and deNO x performance for new SCR catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 489-497. |
[6] | DENG Liping, SHI Haoyu, LIU Xiaolong, CHEN Yaoji, YAN Jingying. Non-noble metal modified vanadium titanium-based catalyst for NH3-SCR denitrification simultaneous control VOCs [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 542-548. |
[7] | SHU Bin, CHEN Jianhong, XIONG Jian, WU Qirong, YU Jiangtao, YANG Ping. Necessity analysis of promoting the development of green methanol under the goal of carbon neutrality [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4471-4478. |
[8] | GENG Yuanze, ZHOU Junhu, ZHANG Tianyou, ZHU Xiaoyu, YANG Weijuan. Homogeneous/heterogeneous coupled combustion of heptane in a partially packed bed burner [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4514-4521. |
[9] | WANG Jinhang, HE Yong, SHI Lingli, LONG Zhen, LIANG Deqing. Progress of gas hydrate anti-agglomerants [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4587-4602. |
[10] | GAO Yanjing. Analysis of international research trend of single-atom catalysis technology [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4667-4676. |
[11] | XU Zhongshuo, ZHOU Panpan, WANG Yuhui, HUANG Wei, SONG Xinshan. Advances in sulfur iron ore mediated autotrophic denitrification [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4863-4871. |
[12] | LI Dongze, ZHANG Xiang, TIAN Jian, HU Pan, YAO Jie, ZHU Lin, BU Changsheng, WANG Xinye. Research progress of NO x reduction by carbonaceous substances for denitration in cement kiln [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4882-4893. |
[13] | SONG Weitao, SONG Huiping, FAN Zhenlian, FAN Biao, XUE Fangbin. Research progress of fly ash in anti-corrosion coatings [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4894-4904. |
[14] | WANG Chen, BAI Haoliang, KANG Xue. Performance study of high power UV-LED heat dissipation and nano-TiO2 photocatalytic acid red 26 coupling system [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4905-4916. |
[15] | LI Xin, YANG Zao, ZHONG Xinru, HAN Haoxuan, ZHUANG Xuning, BAI Jianfeng, DONG Bin, XU Zuxin. Binding mechanism of Pb2+ onto humic acids from sludge hyper-thermophilic composting [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4957-4966. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |