Chemical Industry and Engineering Progress ›› 2019, Vol. 38 ›› Issue (12): 5390-5401.DOI: 10.16085/j.issn.1000-6613.2019-0411
• Industrial catalysis • Previous Articles Next Articles
Shuquan NI1(),Fengyu GAO1,2,Xiaolong TANG1,2(),Honghong YI1,2,Chengzhi WANG1,Chen YANG1
Received:
2019-03-19
Online:
2019-12-05
Published:
2019-12-05
Contact:
Xiaolong TANG
倪书权1(),高凤雨1,2,唐晓龙1,2(),易红宏1,2,王成志1,杨晨1
通讯作者:
唐晓龙
作者简介:
倪书权(1995—),男,硕士研究生,研究方向为环境催化。E-mail:基金资助:
CLC Number:
Shuquan NI,Fengyu GAO,Xiaolong TANG,Honghong YI,Chengzhi WANG,Chen YANG. Research progress in catalytic purification of gaseous pollutants by flexible supported catalysts[J]. Chemical Industry and Engineering Progress, 2019, 38(12): 5390-5401.
倪书权,高凤雨,唐晓龙,易红宏,王成志,杨晨. 柔性负载型催化剂催化净化气态污染物研究进展[J]. 化工进展, 2019, 38(12): 5390-5401.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2019-0411
1 | LI K, TANG X L, YI H H, et al. Low-temperature catalytic oxidation of NO over Mn-Co-Ce-Ox catalyst[J]. Chemical Engineering Journal, 2012, 192: 99-104. |
2 | OLSSON L, WIJAYANTI K, LEISTNER K, et al. A kinetic model for sulfur poisoning and regeneration of Cu/SSZ-13 used for NH3-SCR[J]. Applied Catalysis B: Environmental, 2016, 183: 394-406. |
3 | WANG X Y, JIANG L L, WANG J Y, et al. Ag/bauxite catalysts: improved low-temperature activity and SO2 tolerance for H2-promoted NH3-SCR of NOx[J]. Applied Catalysis B: Environmental, 2015, 165: 700-705. |
4 | VALTANEN A, HUUHTANEN M, RAUTIO A R, et al. Noble metal/CNT based catalysts in NH3 and EtOH assisted SCR of NO[J]. Topics in Catalysis, 2015, 58(14/15/16/17): 984-992. |
5 | GAO F Y, TANG X L, YI H H, et al. Promotional mechanisms of activity and SO2 tolerance of Co- or Ni-doped MnOx-CeO2 catalysts for SCR of NOx with NH3 at low temperature[J]. Chemical Engineering Journal, 2017, 317: 20-31. |
6 | LI Y, LI Y P, WANG P F, et al. Low-temperature selective catalytic reduction of NOx with NH3 over MnFeOx nanorods[J]. Chemical Engineering Journal, 2017, 330: 213-222. |
7 | LI S H, HUANG B C, YU C L. A CeO2-MnOx core-shell catalyst for low-temperature NH3-SCR of NO[J]. Catalysis Communications, 2017, 98: 47-51. |
8 | ZHANG D S, ZHANG L, FANG C, et al. MnOx-CeOx/CNTs pyridine-thermally prepared via a novel in situ deposition strategy for selective catalytic reduction of NO with NH3[J]. RSC Advances, 2013, 3(23): 8811-8819. |
9 | ZHANG Z Q, ATKINSON J D, JIANG B Q, et al. Nitric oxide oxidation catalyzed by microporous activated carbon fiber cloth: an updated reaction mechanism[J]. Applied Catalysis B: Environmental, 2014, 148: 573-581. |
10 | YANG B, SHEN Y S, SU Y, et al. Removal characteristics of nitrogen oxides and particulates of a novel Mn-Ce-Nb-Ox/P84 catalytic filter applied for cement kiln[J]. Journal of Industrial and Engineering Chemistry, 2017, 50: 133-141. |
11 | LIU Q, ZHENG Y Y, WANG X. Research on de-NO by low-temperature SCR based on MnOx-CeO2/PPSN[J]. Journal of Fuel Chemistry and Technology, 2012, 40(4): 452-455. |
12 | CHEN X H, ZHENG Y Y, ZHANG Y B. MnO2-Fe2O3 catalysts supported on polyphenylene sulfide filter felt by a redox method for the low-temperature NO reduction with NH3[J]. Catalysis Communications, 2018, 105: 16-19. |
13 | CAI S X, ZHANG D S, SHI L Y, et al. Porous Ni-Mn oxide nanosheets in situ formed on nickel foam as 3D hierarchical monolith de-NOx catalysts[J]. Nanoscale, 2014, 6(13): 7346-7353. |
14 | FANG C, SHI L Y, HU H, et al. Rational design of 3D hierarchical foam-like Fe2O3@CuOx monolith catalysts for selective catalytic reduction of NO with NH3[J]. RSC Advances, 2015, 5(15): 11013-11022. |
15 | CAI S X, LIU J, ZHA K W, et al. A general strategy for the insitu decoration of porous Mn-Co bi-metal oxides on metal mesh/foam for high performance de-NOx monolith catalysts[J]. Nanoscale, 2017, 9(17): 5648-5657. |
16 | 李锦, 许绿丝, 李宝宁, 等. 改性酚醛基炭泡沫的表面结构及脱硫脱硝[J]. 环境工程学报, 2012, 6(5): 1637-1642. |
LI J, XU L S, LI B N, et al. Surface structure and simultaneous removal of SO2 and NO of modified phenolic carbon foam[J]. Chinese Journal of Environmental Engineering, 2012, 6(5): 1637-1642. | |
17 | XIONG X H, DING D, CHEN D C, et al. Three-dimensional ultrathin Ni(OH)2 nanosheets grown on nickel foam for high-performance supercapacitors[J]. Nano Energy, 2015, 11: 154-161. |
18 | RAJA D S, LIN H W, LU S Y. Synergistically well-mixed MOFs grown on nickel foam as highly efficient durable bifunctional electrocatalysts for overall water splitting at high current densities[J]. Nano Energy, 2019, 57: 1-13. |
19 | WAN Y P, ZHAO W R, TANG Y, et al. Ni-Mn bi-metal oxide catalysts for the low temperature SCR removal of NO with NH3[J]. Applied Catalysis B: Environmental, 2014, 148/149(6): 114-122. |
20 | ZHANG L, SHI L Y, HUANG L, et al. Rational design of high-performance deNOx catalysts based on MnxCo3-xO4 nanocages derived from metal-organic frameworks[J]. ACS Catalysis, 2014, 4(6): 1753-1763. |
21 | LIU Y, XU J, LI H R, et al. Rational design and in situ fabrication of MnO2@NiCo2O4 nanowire arrays on Ni foam as high-performance monolith de-NOx catalysts[J]. Journal of Materials Chemistry A, 2015, 3(21): 11543-11553. |
22 | ZHANG T, LIU J, WANG D X, et al. Selective catalytic reduction of NO with NH3 over HZSM-5-supported Fe-Cu nanocomposite catalysts: the Fe-Cu bimetallic effect[J]. Applied Catalysis B: Environmental, 2014, 148/149(6): 520-531. |
23 | LI X B, WANG L L, LU X H. Preparation of silver-modified TiO2via microwave-assisted method and its photocatalytic activity for toluene degradation[J]. Journal of Hazardous Materials, 2010, 177(1): 639-647. |
24 | ZHANG Q, LI F, CHANG X Y, et al. Comparison of nickel foam/Ag-supported ZnO, TiO2, and WO3 for toluene photodegradation[J]. Materials and Manufacturing Processes, 2014, 29(7): 789-794. |
25 | WU J L, HUANG Y X, X Q B, et al. Decomposition of toluene in a plasma catalysis system with NiO, MnO2, CeO2, Fe2O3, and CuO catalysts[J]. Plasma Chemistry & Plasma Processing, 2013, 33(6): 1073-1082. |
26 | ZHENG M F, YU D Q, DUAN L J, et al. In-situ fabricated CuO nanowires/Cu foam as a monolithic catalyst for plasma-catalytic oxidation of toluene[J]. Catalysis Communications, 2017, 100: 187-190. |
27 | LIAO Y C, XIE C S, LIU Y, et al. Comparison on photocatalytic degradation of gaseous formaldehyde by TiO2, ZnO and their composite[J]. Ceramics International, 2012, 38(6): 4437-4444. |
28 | 丁震, 冯小刚, 陈晓东, 等. 金属泡沫镍负载纳米TiO2光催化降解甲醛和VOCs[J]. 环境科学, 2006 (9): 1814-1819. |
DING Z, FENG X G, CHEN X D, et al. Photocatalytic degradation of formaldehyde and VOCs in air on the porous nickel mesh coated with nanometer TiO2[J]. Environmental Science, 2006 (9): 1814-1819. | |
29 | GUO Y F, YE D Q, CHEN K F, et al. Toluene removal by a DBD-type plasma combined with metal oxides catalysts supported by nickel foam[J]. Catalysis today, 2007, 126(3/4): 328-337. |
30 | YANG L P, LIU Z Y, SHI J W, et al. Design consideration of photocatalytic oxidation reactors using TiO2-coated foam nickels for degrading indoor gaseous formaldehyde[J]. Catalysis Today, 2007, 126(3/4): 359-368. |
31 | CAO C M, XING L L, YANG Y X, et al. Diesel soot elimination over potassium-promoted Co3O4 nanowires monolithic catalysts under gravitation contact mode[J]. Applied Catalysis B: Environmental, 2017, 218: 32-45. |
32 | CAO C M, LI X G, ZHA Y Q, et al. Crossed ferric oxide nanosheets supported cobalt oxide on 3-dimensional macroporous Ni foam substrate used for diesel soot elimination under self-capture contact mode[J]. Nanoscale, 2016, 8(11): 5857-5864. |
33 | CAO C M, XING L L, YANG Y X, et al. The monolithic transition metal oxide crossed nanosheets used for diesel soot combustion under gravitational contact mode[J]. Applied Surface Science, 2017, 406: 245-253. |
34 | XING L L, YANG Y X, CAO C M, et al. Decorating CeO2 nanoparticles on Mn2O3 nanosheets to improve catalytic soot combustion[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(12): 16544-16554. |
35 | SHEN B X, LIU T, ZHAO N, et al. Iron-doped Mn-Ce/TiO2 catalyst for low temperature selective catalytic reduction of NO with NH3[J]. Journal of Environmental Sciences, 2010, 22(9): 1447-1454. |
36 | LI H, YU D H, HU Y, et al. Effect of preparation method on the structure and catalytic property of activated carbon supported nickel oxide catalysts[J]. Carbon, 2010, 48(15): 4547-4555. |
37 | JIANG B Q, LIU Y, WU Z B. Low-temperature selective catalytic reduction of NO on MnOx/TiO2 prepared by different methods[J]. Journal of Hazardous Materials, 2009, 162(2/3): 1249-1254. |
38 | ZHU L L, HUANG B C, WANG W H, et al. Low-temperature SCR of NO with NH3 over CeO2 supported on modified activated carbon fibers[J]. Catalysis Communications, 2011, 12(6): 394-398. |
39 | LI P, LU P, ZHAI Y B, et al. Low temperature SCR of NO with catalysts prepared by modified ACF loading Mn and Ce: effects of modification method[J]. Environmental technology, 2015, 36(18): 2390-2400. |
40 | LU P, LI C T, ZENG G M, et al. Low temperature selective catalytic reduction of NO by activated carbon fiber loading lanthanum oxide and ceria[J]. Applied Catalysis B: Environmental, 2010, 96(1/2): 157-161. |
41 | ZENG Z, LU P, LI C T, et al. Reaction of NO at low temperature by ACF loading urea and rare-earth element oxides (La2O3, CeO2)[J]. Journal of Coordination Chemistry, 2012, 65(11): 1992-1998. |
42 | ZENG Z, LU P, LI C T, et al. Selective catalytic reduction (SCR) of NO by urea loaded on activated carbon fibre (ACF) and CeO2/ACF at 30 C: the SCR mechanism[J]. Environmental Technology, 2012, 33(11): 1331-1337. |
43 | JIANG X, LU P, LI C T, et al. Experimental study on a room temperature urea-SCR of NO over activated carbon fibre-supported CeO2-CuO[J]. Environmental technology, 2013, 34(5): 591-598. |
44 | WANG M X, LIU H N, HUANG Z H, et al. Activated carbon fibers loaded with MnO2 for removing NO at room temperature[J]. Chemical Engineering Journal, 2014, 256: 101-106. |
45 | TIAN M J, LIAO F, KE Q F, et al. Synergetic effect of titanium dioxide ultralong nanofibers and activated carbon fibers on adsorption and photodegradation of toluene[J]. Chemical Engineering Journal, 2017, 328: 962-976. |
46 | LI M, LU B, KE Q F, et al. Synergetic effect between adsorption and photodegradation on nanostructured TiO2/activated carbon fiber felt porous composites for toluene removal[J]. Journal of Hazardous Materials, 2017, 333: 88-98. |
47 | YAO Y, LI G H, CISTON S, et al. Photoreactive TiO2/carbon nanotube composites: synthesis and reactivity[J]. Environmental Science & Technology, 2008, 42(13): 4952-4957. |
48 | DAI Z J, YU X W, HUANG C, et al. Nanocrystalline MnO2 on an activated carbon fiber for catalytic formaldehyde removal[J]. RSC Advances, 2016, 6(99): 97022-97029. |
49 | KANG M, PARK E D, KIM J M, et al. Simultaneo removal of particulates and NO by the catalytic bag filter containing MnOx catalysts[J]. Korean Journal of Chemical Engineering, 2009, 26(1): 86-89. |
50 | ZHENG Y Y, ZHANG Y B, WANG X, et al. MnO2 catalysts uniformly decorated on polyphenylene sulfide filter felt by a polypyrrole-assisted method for use in the selective catalytic reduction of NO with NH3[J]. RSC Advances, 2014, 4(103): 59242-59247. |
51 | YANG B, ZHENG D H, SHEN Y S, et al. Influencing factors on low-temperature deNOx performance of Mn-La-Ce-Ni-Ox/PPS catalytic filters applied for cement kiln[J]. Journal of Industrial and Engineering Chemistry, 2015, 24: 148-152. |
52 | 邱军, 李娜. 有机多孔泡沫材料应用的研究进展[J]. 材料导报, 2012, 26(3): 91-95. |
QIU J, LI N. Research progress of application for organic porous foam[J]. Materials Research, 2012, 26(3): 91-95. | |
53 | 纳宏波, 许绿丝, 李锦. 改性酚醛基活性炭泡沫的制备与表征[J]. 材料导报, 2010, 24(18): 104-107. |
NA H B, XU L S, LI J. Study on the surface characters of modified phenolic based activated carbon foam[J]. Materials Review, 2010, 24 (18): 104-107. | |
54 | 程辛, 许绿丝. 钴、锰改性方法对酚醛炭泡沫除SO2/NO的影响[J]. 华侨大学学报(自然科学版), 2014, 35(5): 552-557. |
CHENG X, XU L S. Modification methods of Co and Mn and the influence on removel of SO2 and NO of the carbon foams from phenolic resin[J]. Journal of Huaqiao University(Natural Science), 2014, 35(5): 552-557. | |
55 | HAJIESMAILI S, JOSSET S, BÉGIN D, et al. 3D solid carbon foam-based photocatalytic materials for vapor phase flow-through structured photoreactors[J]. Applied Catalysis A: General, 2010, 382(1): 122-130. |
56 | JANIK H, MARZEC M. A review: fabrication of porous polyurethane scaffolds[J]. Materials Science and Engineering: C, 2015, 48: 586-591. |
57 | CHEN S L, HE G H, HU H, et al. Elastic carbon foam via direct carbonization of polymer foam for flexible electrodes and organic chemical absorption[J]. Energy & Environmental Science, 2013, 6(8): 2435-2439. |
58 | HE S J, CHEN W. High performance supercapacitors based on three-dimensional ultralight flexible manganese oxide nanosheets/carbon foam composites[J]. Journal of Power Sources, 2014, 262: 391-400. |
59 | YING B, LIANG Z, WANG C X, et al. Synthesis of carbon nanofiber/carbon-foam composite for catalyst support in gas-phase catalytic reactions[J]. New Carbon Materials, 2011, 26(5): 341-346. |
60 | ORDOMSKY V, SCHOUTEN J, VAN D S J, et al. Foam supported sulfonated polystyrene as a new acidic material for catalytic reactions[J]. Chemical Engineering Journal, 2012, 207: 218-225. |
[1] | ZHANG Mingyan, LIU Yan, ZHANG Xueting, LIU Yake, LI Congju, ZHANG Xiuling. Research progress of non-noble metal bifunctional catalysts in zinc-air batteries [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 276-286. |
[2] | SHI Yongxing, LIN Gang, SUN Xiaohang, JIANG Weigeng, QIAO Dawei, YAN Binhang. Research progress on active sites in Cu-based catalysts for CO2 hydrogenation to methanol [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 287-298. |
[3] | XIE Luyao, CHEN Songzhe, WANG Laijun, ZHANG Ping. Platinum-based catalysts for SO2 depolarized electrolysis [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 299-309. |
[4] | YANG Xiazhen, PENG Yifan, LIU Huazhang, HUO Chao. Regulation of active phase of fused iron catalyst and its catalytic performance of Fischer-Tropsch synthesis [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 310-318. |
[5] | ZHENG Qian, GUAN Xiushuai, JIN Shanbiao, ZHANG Changming, ZHANG Xiaochao. Photothermal catalysis synthesis of DMC from CO2 and methanol over Ce0.25Zr0.75O2 solid solution [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 319-327. |
[6] | WANG Jiaqing, SONG Guangwei, LI Qiang, GUO Shuaicheng, DAI Qingli. Rubber-concrete interface modification method and performance enhancement path [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 328-343. |
[7] | WANG Zhengkun, LI Sifang. Green synthesis of gemini surfactant decyne diol [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 400-410. |
[8] | WANG Lele, YANG Wanrong, YAO Yan, LIU Tao, HE Chuan, LIU Xiao, SU Sheng, KONG Fanhai, ZHU Canghai, XIANG Jun. Influence of spent SCR catalyst blending on the characteristics and deNO x performance for new SCR catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 489-497. |
[9] | DENG Liping, SHI Haoyu, LIU Xiaolong, CHEN Yaoji, YAN Jingying. Non-noble metal modified vanadium titanium-based catalyst for NH3-SCR denitrification simultaneous control VOCs [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 542-548. |
[10] | GENG Yuanze, ZHOU Junhu, ZHANG Tianyou, ZHU Xiaoyu, YANG Weijuan. Homogeneous/heterogeneous coupled combustion of heptane in a partially packed bed burner [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4514-4521. |
[11] | CHENG Tao, CUI Ruili, SONG Junnan, ZHANG Tianqi, ZHANG Yunhe, LIANG Shijie, PU Shi. Analysis of impurity deposition and pressure drop increase mechanisms in residue hydrotreating unit [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4616-4627. |
[12] | WANG Peng, SHI Huibing, ZHAO Deming, FENG Baolin, CHEN Qian, YANG Da. Recent advances on transition metal catalyzed carbonylation of chlorinated compounds [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4649-4666. |
[13] | GAO Yanjing. Analysis of international research trend of single-atom catalysis technology [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4667-4676. |
[14] | ZHANG Qi, ZHAO Hong, RONG Junfeng. Research progress of anti-toxicity electrocatalysts for oxygen reduction reaction in PEMFC [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4677-4691. |
[15] | GE Quanqian, XU Mai, LIANG Xian, WANG Fengwu. Research progress on the application of MOFs in photoelectrocatalysis [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4692-4705. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |