Chemical Industry and Engineering Progress ›› 2019, Vol. 38 ›› Issue (12): 5372-5379.DOI: 10.16085/j.issn.1000-6613.2019-0343
• Industrial catalysis • Previous Articles Next Articles
Ning GAO1,2(),Yukang ZHOU1,2,Shubao SHEN1,2,Yingwen CHEN1,2()
Received:
2019-03-08
Online:
2019-12-05
Published:
2019-12-05
Contact:
Yingwen CHEN
高宁1,2(),周玉康1,2,沈树宝1,2,陈英文1,2()
通讯作者:
陈英文
作者简介:
高宁(1994—),男,硕士研究生,研究方向为大气污染处理技术及环保工程材料开发与应用。E-mail:基金资助:
CLC Number:
Ning GAO,Yukang ZHOU,Shubao SHEN,Yingwen CHEN. Research progress in application of cadmium-containing compounds in photocatalysis[J]. Chemical Industry and Engineering Progress, 2019, 38(12): 5372-5379.
高宁,周玉康,沈树宝,陈英文. 含镉化合物在光催化领域应用的研究进展[J]. 化工进展, 2019, 38(12): 5372-5379.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2019-0343
1 | AZIMI-FOULADI A, HASSANZADEH-TABRIZI S A, SAFFAR-TELURI A. Sol-gel synthesis and characterization of TiO2-CdO-Ag nanocomposite with superior photocatalytic efficiency[J]. Ceramics International, 2018, 44(4): 4292-4297. |
2 | AN Z, GAO J, WANG L, et al. Novel microreactors of polyacrylamide (PAM) CdS microgels for admirable photocatalytic H2 production under visible light[J]. International Journal of Hydrogen Energy, 2019, 44(3): 1514-1524. |
3 | 董庆华.半导体光催化[J]. 影像科学与光化学, 1993, 11(2): 76-81. |
DONG Q H. Semiconductor photocatalysis[J]. Imaging Science and Photochemistry, 1993, 11(2): 76-81. | |
4 | WANG W, ZHANG L, AN T, et al. Comparative study of visible-light-driven photocatalytic mechanisms of dye decolorization and bacterial disinfection by B-Ni-codoped TiO2 microspheres: the role of different reactive species[J]. Applied Catalysis B: Environmental, 2011, 108: 108-116. |
5 | AUGUGLIARO V, BELLARDITA M, LODDO V, et al. Overview on oxidation mechanisms of organic compounds by TiO2 in heterogeneous photocatalysis[J]. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2012, 13(3): 224-245. |
6 | GNANAM S, RAJENDRAN V. Facile sol-gel preparation of Cd-doped cerium oxide (CeO2) nanoparticles and their photocatalytic activities[J]. Journal of Alloys and Compounds, 2018, 735: 1854-1862. |
7 | 翟英娇, 李金华, 陈新影, 等. 镉掺杂氧化锌纳米花的制备及其光催化活性[J]. 中国光学, 2014, 7(1): 124-130. |
ZHAI Y J, LI J H, CHEN X Y, et al. Synthesis and characterization of Cd-doped ZnO nanoflowers and its photocatalytic activity [J]. Chinese Optics, 2014, 7(1): 124-130. | |
8 | JABEEN U, SHAH S M, KHAN S U. Photo catalytic degradation of alizarin red S using ZnS and cadmium doped ZnS nanoparticles under unfiltered sunlight[J]. Surfaces and Interfaces, 2017, 6: 40-49. |
9 | 郑秀君, 李锦州, 李刚, 等. 尖晶石型(Zn1-xCdx)2SnO4粉体的制备与光催化性能[J]. 分子催化, 2008, 22(1): 65-69. |
ZHENG X J, LI J Z, LI G, et al. Preparation and photocatalytic performance of spinel type (Zn1-xCdx)2SnO4 powders[J]. Journal of Molecular Catalysis (China), 2008, 22(1):65-69. | |
10 | ZHAO X X, QIN Z B, LI Y H, et al. New Cd(II) and Zn(II) coordination polymers showing luminescent sensing for Fe(III) and photocatalytic degrading methylene blue[J]. Polyhedron, 2018, 153: 197-204. |
11 | CAI S L, LU L, WU W P, et al. A new mixed ligand based Cd(II) 2D coordination polymer with functional sites: photoluminescence and photocatalytic properties[J]. Inorganica Chimica Acta, 2019, 484:291-296. |
12 | YI X H, WANG F X, DU X D, et al. Highly efficient photocatalytic Cr(VI) reduction and organic pollutants degradation of two new bifunctional 2D Cd/Co-based MOFs[J]. Polyhedron, 2018, 152: 216-224. |
13 | BHARTI D B, BHARTI A V. Photocatalytic degradation of alizarin red dye under visible light using ZnO & CdO nanomaterial[J]. Optik, 2018, 160: 371-379. |
14 | KUMAR P S, SELVAKUMAR M, BABU S G, et al. CdO nanospheres: facile synthesis and bandgap modification for the superior photocatalytic activity[J]. Materials Letters, 2015, 151: 45-48. |
15 | RANE Y N, SHENDE D A, RAGHUWANSHI M G, et al. Visible-light assisted CdO nanowires photocatalyst for toxic dye degradation studies[J]. Optik, 2019, 179: 535-544. |
16 | SARAVANAKUMAR K, MUTHURAJ V, JEYARAJ M. The design of novel visible light driven Ag/CdO as smart nanocomposite for photodegradation of different dye contaminants[J]. Spectrochimica Acta Part A: Molecular & Biomolecular Spectroscopy, 2017, 188:291. |
17 | MAHENDIRAN M, MATHEN J J, RACIK M, et al. Investigation of structural, optical and electrical properties of transition metal oxide semiconductor CdO-ZnO nanocomposite and its effective role in the removal of water contaminants[J]. Journal of Physics and Chemistry of Solids, 2019, 126: 322-334. |
18 | REDDY C V, BABU B, SHIM J. Synthesis, optical properties and efficient photocatalytic activity of CdO/ZnO hybrid nanocomposite[J]. Journal of Physics and Chemistry of Solids, 2018, 112: 20-28. |
19 | MARGAN P, HAGHIGHI M. Sono-coprecipitation synthesis and physicochemical characterization of CdO-ZnO nanophotocatalyst for removal of acid orange 7 from wastewater[J]. Ultrasonics Sonochemistry, 2018, 40: 323-332. |
20 | SARAVANAKUMAR K, MUTHUPOONGODI S, MUTHURAJ V. A novel n-CeO2/n-CdO heterojunction nanocomposite for enhanced photodegradation of organic pollutants under visible light irradiation[J]. Journal of Rare Earths, 2019, 37: 853-860. |
21 | DHATSHANAMURTHI P, SUBASH B, SHANTHI M. Investigation on UV-A light photocatalytic degradation of an azo dye in the presence of CdO/TiO2 coupled semiconductor[J]. Materials Science in Semiconductor Processing, 2015, 35: 22-29. |
22 | RAKIBUDDIN M, ANANTHAKRISHNAN R. Fabrication of graphene aerosol hybridized coordination polymer derived CdO/SnO2 heteronanostructure with improved visible light photocatalytic performance[J]. Solar Energy Materials and Solar Cells, 2017, 162: 62-71. |
23 | ZEID E F A, IBRAHEM I A, ALI A M, et al. The effect of CdO content on the crystal structure, surface morphology, optical properties and photocatalytic efficiency of p-NiO/n-CdO nanocomposite[J]. Results in Physics, 2019, 12: 562-570. |
24 | BALAMURUGAN S, BALU A R, SRIVIND J, et al. CdO-Al2O3-A composite material with enhanced photocatalytic activity against the degradation of MY dye[J]. Vacuum, 2019, 159: 9-16. |
25 | KAVAKEBI M, JAMALI-SHEINI F. Ultrasonic synthesis of Zn-doped CdO nanostructures and their optoelectronic properties[J]. Transactions of Nonferrous Metals Society of China, 2018, 28(11): 2255-2264. |
26 | MAHMOUD M S, AHMED E, FARGHALI A A, et al. Influence of Mn, Cu, and Cd-doping for titanium oxide nanotubes on the photocatalytic activity toward water splitting under visible light irradiation[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 554: 100-109. |
27 | SAHA M, GHOSH S, DE S K. Nanoscale kirkendall effect driven Au decorated CdS/CdO colloidal nanocomposites for efficient hydrogen evolution, photocatalytic dye degradation and Cr(Ⅵ) reduction[J]. Catalysis Today, 2018. DOI. org/10.1016/j.cattod.2018.11.027. |
28 | AGOPCAN B, AKYUZ D, KARACA F, et al. A new sulfur source for the preparation of efficient Cd(1-x)ZnxS photocatalyst for hydrogen evolution reaction[J]. International Journal of Hydrogen Energy, 2018, 43(17): 8206-8220. |
29 | GHOLIPOUR M R, NGUYEN C C, BELAND F, et al. Hollow microspheres consisting of uniform ZnxCd1-xS nanoparticles with noble-metal-free co-catalysts for hydrogen evolution with high quantum efficiency under visible light[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2018, 358: 1-9. |
30 | ZUBAIR M, SVENUM I H, RØNNING M, et al. Facile synthesis approach for core-shell TiO2-CdS nanoparticles for enhanced photocatalytic H2 generation from water[J]. Catalysis Today, 2019, 328: 15-20. |
31 | WANG S, ZHU B, LIU M, et al. Direct Z-scheme ZnO/CdS hierarchical photocatalyst for enhanced photocatalytic H2-production activity[J]. Applied Catalysis B: Environmental, 2019, 243: 19-26. |
32 | QIAN X, ZHANG J, GUO Z, et al. Facile ultrasound-driven formation and deposition of few-layered MoS2 nanosheets on CdS for highly enhanced photocatalytic hydrogen evolution[J]. Applied Surface Science, 2019, 481: 795-801. |
33 |
YE L Q, MA Z Y, DENG Y, et al. Robust and efficient photocatalytic hydrogen generation of ReS2/CdS and mechanistic study by on-line mass spectrometry and in situ infrared spectroscopy[J]. Applied Catalysis B: Environmental, 2019. DOI: https://doi.org/10.1016/j.apcatb.2019.117897.
DOI |
34 | ZHANG Y, JIN Z, YUAN H, et al. Well-regulated nickel nanoparticles functional modified ZIF-67 (Co) derived Co3O4/CdS pn heterojunction for efficient photocatalytic hydrogen evolution[J]. Applied Surface Science, 2018, 462: 213-225. |
35 | LI Q, SHI T, LI X, et al. Remarkable positive effect of Cd(OH)2 on CdS semiconductor for visible-light photocatalytic H2 production[J]. Applied Catalysis B: Environmental, 2018, 229: 8-14. |
36 | LOU Z, ZHU M, YANG X, et al. Continual injection of photoinduced electrons stabilizing surface plasmon resonance of non-elemental-metal plasmonic photocatalyst CdS/WO3-x for efficient hydrogen generation[J]. Applied Catalysis B: Environmental, 2018, 226: 10-15. |
37 | 许迪, 高爱梅, 邓文礼. 簇形和花形CdS纳米结构的自组装及光催化性能[J]. 物理化学学报, 2016, 24(7): 1219-1224. |
XU D, GAO A M, DENG W L. Self-assembly and photocatalytic properties of clustered and flowerlike CdS nanostructures[J]. Acta physico-Chimica Sinica, 2016, 24(7):1219-1224. | |
38 | BILLAKANTI S, KRISHNAMURTHI M. Facile preparation of surfactant or support material free CdS nanoparticles with enhanced photocatalytic activity[J]. Journal of Environmental Chemical Engineering, 2018, 6(1): 1250-1256. |
39 | WANG S, LI J, ZHOU X, et al. Facile preparation of 2D sandwich-like CdS nanoparticles/nitrogen-doped reduced graphene oxide hybrid nanosheets with enhanced photoelectrochemical properties[J]. Journal of Materials Chemistry A, 2014, 2(46): 19815-19821. |
40 | YANG W, LIU Y, HU Y, et al. Microwave-assisted synthesis of porous CdO-CdS core-shell nanoboxes with enhanced visible-light-driven photocatalytic reduction of Cr(VI)[J]. Journal of Materials Chemistry, 2012, 22(28): 13895-13898. |
41 | ZHANG N, YANG M Q, TANG Z R, et al. CdS-graphene nanocomposites as visible light photocatalyst for redox reactions in water: a green route for selective transformation and environmental remediation[J]. Journal of Catalysis, 2013, 303(Complete): 60-69. |
42 | LIU S, ZHANG N, TANG Z R, et al. Synthesis of one-dimensional CdS@TiO2 core-shell nanocomposites photocatalyst for selective redox: the dual role of TiO2 shell[J]. ACS Applied Materials & Interfaces, 2012, 4(11): 6378-6385. |
43 | WU Y, YE X, ZHANG S, et al. Photocatalytic synthesis of Schiff base compounds in the coupled system of aromatic alcohols and nitrobenzene using CdXZn1-XS photocatalysts[J]. Journal of Catalysis, 2018, 359: 151-160. |
44 | ZHANG L, NIU C G, LIANG C, et al. One-step in situ synthesis of CdS/SnO2 heterostructure with excellent photocatalytic performance for Cr(Ⅵ) reduction and tetracycline degradation[J]. Chemical Engineering Journal, 2018, 352: 863-875. |
45 | 杜欢, 王晟, 刘恋恋, 等. 复合半导体光催化剂 p-CoO/n-CdS的制备, 表征及光催化性能[J]. 物理化学学报, 2010, 26(10): 2726-2732. |
DU H, WANG S, LIU L L, et al. Preparation, characterization and photocatalytic property of p-CoO/n-CdS compound semiconductor photocatalyst[J]. Acta physico-Chimica Sinica, 2010, 26(10): 2726-2732. | |
46 | SONG Y, LI N, CHEN D, et al. 3D ordered MoP inverse opals deposited with CdS quantum dots for enhanced visible light photocatalytic activity[J]. Applied Catalysis B: Environmental, 2018, 238: 255-262. |
47 | LI G, WANG B, ZHANG J, et al. Rational construction of a direct Z-scheme g-C3N4/CdS photocatalyst with enhanced visible light photocatalytic activity and degradation of erythromycin and tetracycline[J]. Applied Surface Science, 2019, 478: 1056-1064. |
48 | HU J, YU C, ZHAI C, et al. 2D/1D heterostructure of g-C3N4 nanosheets/CdS nanowires as effective photo-activated support for photoelectrocatalytic oxidation of methanol[J]. Catalysis Today, 2018, 315: 36-45. |
49 | CHEN P, CHEN L, ZENG Y, et al. Three-dimension hierarchical heterostructure of CdWO4 microrods decorated with Bi2WO6 nanoplates for high-selectivity photocatalytic benzene hydroxylation to phenol[J]. Applied Catalysis B: Environmental, 2018, 234: 311-317. |
50 | 彭炜东. 农田土壤镉污染现状与修复技术[J]. 云南化工, 2019(3):88-89. |
PENG W D. Present situation and remediation tcchnology of cadmium pollution in farmland soil and remediation technology[J]. Yunnan Chemical technology, 2019(3):88-89. |
[1] | ZHANG Mingyan, LIU Yan, ZHANG Xueting, LIU Yake, LI Congju, ZHANG Xiuling. Research progress of non-noble metal bifunctional catalysts in zinc-air batteries [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 276-286. |
[2] | SHI Yongxing, LIN Gang, SUN Xiaohang, JIANG Weigeng, QIAO Dawei, YAN Binhang. Research progress on active sites in Cu-based catalysts for CO2 hydrogenation to methanol [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 287-298. |
[3] | XIE Luyao, CHEN Songzhe, WANG Laijun, ZHANG Ping. Platinum-based catalysts for SO2 depolarized electrolysis [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 299-309. |
[4] | YANG Xiazhen, PENG Yifan, LIU Huazhang, HUO Chao. Regulation of active phase of fused iron catalyst and its catalytic performance of Fischer-Tropsch synthesis [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 310-318. |
[5] | WANG Lele, YANG Wanrong, YAO Yan, LIU Tao, HE Chuan, LIU Xiao, SU Sheng, KONG Fanhai, ZHU Canghai, XIANG Jun. Influence of spent SCR catalyst blending on the characteristics and deNO x performance for new SCR catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 489-497. |
[6] | DENG Liping, SHI Haoyu, LIU Xiaolong, CHEN Yaoji, YAN Jingying. Non-noble metal modified vanadium titanium-based catalyst for NH3-SCR denitrification simultaneous control VOCs [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 542-548. |
[7] | CHENG Tao, CUI Ruili, SONG Junnan, ZHANG Tianqi, ZHANG Yunhe, LIANG Shijie, PU Shi. Analysis of impurity deposition and pressure drop increase mechanisms in residue hydrotreating unit [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4616-4627. |
[8] | WANG Peng, SHI Huibing, ZHAO Deming, FENG Baolin, CHEN Qian, YANG Da. Recent advances on transition metal catalyzed carbonylation of chlorinated compounds [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4649-4666. |
[9] | GAO Yanjing. Analysis of international research trend of single-atom catalysis technology [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4667-4676. |
[10] | ZHANG Qi, ZHAO Hong, RONG Junfeng. Research progress of anti-toxicity electrocatalysts for oxygen reduction reaction in PEMFC [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4677-4691. |
[11] | GE Quanqian, XU Mai, LIANG Xian, WANG Fengwu. Research progress on the application of MOFs in photoelectrocatalysis [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4692-4705. |
[12] | WANG Weitao, BAO Tingyu, JIANG Xulu, HE Zhenhong, WANG Kuan, YANG Yang, LIU Zhaotie. Oxidation of benzene to phenol over aldehyde-ketone resin based metal-free catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4706-4715. |
[13] | GE Yafen, SUN Yu, XIAO Peng, LIU Qi, LIU Bo, SUN Chengying, GONG Yanjun. Research progress of zeolite for VOCs removal [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4716-4730. |
[14] | WANG Chen, BAI Haoliang, KANG Xue. Performance study of high power UV-LED heat dissipation and nano-TiO2 photocatalytic acid red 26 coupling system [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4905-4916. |
[15] | SHAO Zhiguo, REN Wen, XU Shipei, NIE Fan, XU Yu, LIU Longjie, XIE Shuixiang, LI Xingchun, WANG Qingji, XIE Jiacai. Influence of final temperature on the distribution and characteristics of oil-based drilling cuttings pyrolysis products [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4929-4938. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |