Chemical Industry and Engineering Progress ›› 2019, Vol. 38 ›› Issue (10): 4684-4692.DOI: 10.16085/j.issn.1000-6613.2019-0133
• Materials science and technology • Previous Articles Next Articles
Liyao FANG(),Hui LÜ,Jiabei FU,Haoran ZUO,Huiqing LIU,Guiping CAO()
Received:
2019-01-21
Online:
2019-10-05
Published:
2019-10-05
Contact:
Guiping CAO
通讯作者:
曹贵平
作者简介:
方丽瑶(1993—),女,硕士研究生,研究方向为正渗透膜改性。E-mail:基金资助:
CLC Number:
Liyao FANG,Hui LÜ,Jiabei FU,Haoran ZUO,Huiqing LIU,Guiping CAO. Preparation and characterization of sodium polystyrene sulfonate particle doped FO membranes[J]. Chemical Industry and Engineering Progress, 2019, 38(10): 4684-4692.
方丽瑶,吕慧,付佳蓓,左浩然,刘慧清,曹贵平. 聚苯乙烯磺酸钠掺杂正渗透膜的制备及其性能[J]. 化工进展, 2019, 38(10): 4684-4692.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2019-0133
粒子名称 | 第一步投料 | 第二步投料 | ||||
---|---|---|---|---|---|---|
St/g | NaSS/g | DVB/g | St/g | NaSS/g | DVB/g | |
PSS1 | 12.8 | 0.11 | 0.45 | 2.56 | 0.42 | 0.09 |
PSS2 | 12.8 | 0.11 | 0.45 | 2.56 | 0.63 | 0.09 |
PSS3 | 12.8 | 0.11 | 0.45 | 2.56 | 0.84 | 0.09 |
粒子名称 | 第一步投料 | 第二步投料 | ||||
---|---|---|---|---|---|---|
St/g | NaSS/g | DVB/g | St/g | NaSS/g | DVB/g | |
PSS1 | 12.8 | 0.11 | 0.45 | 2.56 | 0.42 | 0.09 |
PSS2 | 12.8 | 0.11 | 0.45 | 2.56 | 0.63 | 0.09 |
PSS3 | 12.8 | 0.11 | 0.45 | 2.56 | 0.84 | 0.09 |
正渗透膜名称 | 支撑层名称 | PSS质量 分数/ % | PSF溶液质量分数/ % |
---|---|---|---|
PSF-T | PSF-S | 0 | 100 |
PSS1_2.5T | PSS1_2.5S | 2.5 | 97.5 |
PSS1_5.0T | PSS1_5.0S | 5.0 | 95.0 |
PSS2_2.5 T | PSS2_2.5S | 2.5 | 97.5 |
PSS2_5.0 T | PSS2_5.0S | 5.0 | 95.0 |
PSS3_2.5 T | PSS3_2.5S | 2.5 | 97.5 |
PSS3_5.0 T | PSS3_5.0S | 5.0 | 95.0 |
正渗透膜名称 | 支撑层名称 | PSS质量 分数/ % | PSF溶液质量分数/ % |
---|---|---|---|
PSF-T | PSF-S | 0 | 100 |
PSS1_2.5T | PSS1_2.5S | 2.5 | 97.5 |
PSS1_5.0T | PSS1_5.0S | 5.0 | 95.0 |
PSS2_2.5 T | PSS2_2.5S | 2.5 | 97.5 |
PSS2_5.0 T | PSS2_5.0S | 5.0 | 95.0 |
PSS3_2.5 T | PSS3_2.5S | 2.5 | 97.5 |
PSS3_5.0 T | PSS3_5.0S | 5.0 | 95.0 |
PSS | Dn/nm | Dw/nm | PDI |
---|---|---|---|
PSS1 | 115.19 | 117.54 | 1.0204 |
PSS2 | 117.78 | 120.21 | 1.0207 |
PSS3 | 114.85 | 117.10 | 1.0198 |
PSS | Dn/nm | Dw/nm | PDI |
---|---|---|---|
PSS1 | 115.19 | 117.54 | 1.0204 |
PSS2 | 117.78 | 120.21 | 1.0207 |
PSS3 | 114.85 | 117.10 | 1.0198 |
PSS | |||||
---|---|---|---|---|---|
PSS1a | 96.27 | 2.52 | 0.59 | 0.61 | 0.22 |
PSS1t | 92.60 | 3.43 | 2.29 | 1.68 | 0.88 |
PSS2a | 94.14 | 3.87 | 0.89 | 1.10 | 0.34 |
PSS2t | 89.64 | 4.81 | 3.20 | 2.35 | 1.26 |
PSS3a | 92.61 | 4.82 | 1.09 | 1.48 | 0.42 |
PSS3t | 87.05 | 6.01 | 4.00 | 2.94 | 1.59 |
PSS | |||||
---|---|---|---|---|---|
PSS1a | 96.27 | 2.52 | 0.59 | 0.61 | 0.22 |
PSS1t | 92.60 | 3.43 | 2.29 | 1.68 | 0.88 |
PSS2a | 94.14 | 3.87 | 0.89 | 1.10 | 0.34 |
PSS2t | 89.64 | 4.81 | 3.20 | 2.35 | 1.26 |
PSS3a | 92.61 | 4.82 | 1.09 | 1.48 | 0.42 |
PSS3t | 87.05 | 6.01 | 4.00 | 2.94 | 1.59 |
膜名称 | AL-FS | AL-DS | ||||
---|---|---|---|---|---|---|
Jv /L·m–2 ·h–1 | Js /g·m–2 ·h–1 | Js·Jv-1 /g·L-1 | Jv /L·m–2 ·h–1 | Js /g·m–2 ·h–1 | Js·Jv-1 /g·L-1 | |
PSF-T | 9.6 | 5.5 | 0.58 | 22.0 | 12.7 | 0.58 |
PSS1_2.5T | 26.4 | 4.0 | 0.15 | 48.6 | 10.7 | 0.22 |
PSS1_5.0T | 14.3 | 17.2 | 1.20 | 30.5 | 27.4 | 0.90 |
PSS2_2.5 T | 30.6 | 18.7 | 0.61 | 61.1 | 18.8 | 0.31 |
PSS2_5.0 T | 16.8 | 22.2 | 1.32 | 31.7 | 32.5 | 1.02 |
PSS3_2.5 T | 25.3 | 14.7 | 0.58 | 50.6 | 22.3 | 0.44 |
PSS3_5.0 T | 17.1 | 24.7 | 1.44 | 32.0 | 32.8 | 1.03 |
膜名称 | AL-FS | AL-DS | ||||
---|---|---|---|---|---|---|
Jv /L·m–2 ·h–1 | Js /g·m–2 ·h–1 | Js·Jv-1 /g·L-1 | Jv /L·m–2 ·h–1 | Js /g·m–2 ·h–1 | Js·Jv-1 /g·L-1 | |
PSF-T | 9.6 | 5.5 | 0.58 | 22.0 | 12.7 | 0.58 |
PSS1_2.5T | 26.4 | 4.0 | 0.15 | 48.6 | 10.7 | 0.22 |
PSS1_5.0T | 14.3 | 17.2 | 1.20 | 30.5 | 27.4 | 0.90 |
PSS2_2.5 T | 30.6 | 18.7 | 0.61 | 61.1 | 18.8 | 0.31 |
PSS2_5.0 T | 16.8 | 22.2 | 1.32 | 31.7 | 32.5 | 1.02 |
PSS3_2.5 T | 25.3 | 14.7 | 0.58 | 50.6 | 22.3 | 0.44 |
PSS3_5.0 T | 17.1 | 24.7 | 1.44 | 32.0 | 32.8 | 1.03 |
支撑层掺杂的粒子种类 | 孔隙率ε /% | 水接触角 / (°) | 盐截留率R /% |
---|---|---|---|
PSF | 82.18 | 71 | 98.2 |
PSS1 | 89.10 | 70 | 98.8 |
PSS2 | 90.25 | 68 | 93.2 |
PSS3 | 90.82 | 65 | 87.2 |
支撑层掺杂的粒子种类 | 孔隙率ε /% | 水接触角 / (°) | 盐截留率R /% |
---|---|---|---|
PSF | 82.18 | 71 | 98.2 |
PSS1 | 89.10 | 70 | 98.8 |
PSS2 | 90.25 | 68 | 93.2 |
PSS3 | 90.82 | 65 | 87.2 |
1 | 李刚, 李雪梅, 王铎, 等. 正渗透膜技术及其应用[J]. 化工进展, 2010, 29(8): 1388-1398. |
LIGang, LIXuemei, WANGDuo, et al. Forward osmosis membranes and applications [J]. Chemical Industry and Engineering Progress, 2010, 29(8): 1388-1398. | |
2 | CHEKLIL, PHUNTSHOS, KIMJ E, et al. A comprehensive review of hybrid forward osmosis systems: performance, applications and future prospects [J]. Journal of Membrane Science,2016, 497: 430–449. |
3 | KIMB, GWAKG, HONGS. Review on methodology for determining forward osmosis (FO) membrane characteristics: water permeability (A), solute permeability (B), and structural parameter (S) [J]. Desalination, 2017, 422: 5-16. |
4 | LIM S, PARKM J, PHUNTSHOS, et al. Dual-layered nanocomposite substrate membrane based on polysulfone/graphene oxide for mitigating internal concentration polarization in forward osmosis [J]. Polymer, 2017, 110: 36-48. |
5 | TIANE, WANGX Z, ZHAOY T, et al. Middle support layer formation and structure in relation to performance of three-tier thin film composite forward osmosis membrane [J]. Desalination, 2017, 421: 190-201 |
6 | CATHT Y, CHILDRESSA E, ELIMELECHM. Forward osmosis: principles, applications, and recent developments [J]. Journal of Membrane Science, 2006, 281(1): 70-87. |
7 | GRAYG T, MCCUTCHEONJ R , ELIMELECHM. Internal concentration polarization in forward osmosis: role of membrane orientation [J]. Desalination, 2006, 197(1/3): 1-8. |
8 | GAOY B, WANGY N, LIW Y, et al. Characterization of internal and external concentration polarizations during forward osmosis processes [J]. Desalination, 2014, 338(1): 65-73. |
9 | YASUKAWAM, MISHIMAS, SHIBUYAM, et al. Preparation of a forward osmosis membrane using a highly porous polyketone microfiltration membrane as a novel support [J]. Journal of Membrane Science, 2015, 487: 51-59. |
10 | HEIKKINENJ, KYLLONENH, JARVELAE, et al. Ultrasound-assisted forward osmosis for mitigating internal concentration polarization [J]. Journal of Membrane Science, 2017, 528: 147-154. |
11 | HUANGY, JINGH Y, YUP, et al. Polyamide thin-film composite membrane based on nano-silica modified polysulfone microporous support layer for forward osmosis [J]. Desalination & Water Treatment, 2015, 57(43): 20177-20187. |
12 | OBAIDM, GHOURIZ K, FADALIO A, et al. Amorphous SiO2 NP-incorporated poly(vinylidene fluoride) electrospun nanofiber membrane for high flux forward osmosis desalination [J]. ACS Applied Materials & Interfaces, 2016, 8(7): 4561-4574. |
13 | SERGIOS M, CARLAM P E, JOSEL F, et al. Thin-film composite forward osmosis membranes based on polysulfone supports blended with nanostructured carbon materials [J]. Journal of Membrane Science, 2016, 520: 326-336. |
14 | 胡念, 左浩然, 付佳蓓, 等. 石墨烯掺杂聚砜基正渗透膜的结构和性能[J]. 化工进展, 2017, 36(12): 4524-4532. |
HUNian, ZUOHaoran, FUJiabei, et al. Structure and performance of forward osmosis membranes based on polysulfone substrates incorporated with graphene [J]. Chemical Industry and Engineering Progress, 2017, 36(12): 4524-4532. | |
15 | LIUX , NG H Y. Fabrication of layered silica-polysulfone mixed matrix substrate membrane for enhancing performance of thin-film composite forward osmosis membrane [J]. Journal of Membrane Science, 2015, 481: 148-163. |
16 | TIANM, WANGY N, WANGR, et al. Synthesis and characterization of thin film nanocomposite forward osmosis membranes supported by silica nanoparticle incorporated nanofibrous substrate [J]. Desalination, 2016, 401: 142-150. |
17 | EMADZADEHD, LAU W J, ISMAILA F. Synthesis of thin film nanocomposite forward osmosis membrane with enhancement in water flux without sacrificing salt rejection [J]. Desalination, 2013, 330(12): 90-99. |
18 | EMADZADEHD, LAU W J, MATSUURAT, et al. A novel thin film composite forward osmosis membrane prepared from PSf-TiO2 nanocomposite substrate for water desalination [J]. Chemical Engineering Journal, 2014, 237(2): 70-80. |
19 | HANG, CHUNGT S, TORIIDAM, et al. Thin-film composite forward osmosis membranes with novel hydrophilic supports for desalination [J]. Journal of Membrane Science, 2012, 423/424(51): 543-555. |
20 | WANGK Y, CHUNGT S, AMY G. Developing thin-film-composite forward osmosis membranes on the PES/SPSf substrate through interfacial polymerization [J]. AIChE Journal, 2012, 58(3): 770-781. |
21 | WIDJOJON, CHUNGT S, WEBERM, et al. A sulfonated polyphenylenesulfone (sPPSU) as the supporting substrate in thin film composite (TFC) membranes with enhanced performance for forward osmosis (FO) [J]. Chemical Engineering Journal, 2013, 220(11): 15-23. |
22 | ZENGF, SUNZ W, WUS Z, et al. Preparation of highly charged, monodisperse nanospheres [J]. Macromolecular Chemistry & Physics, 2015, 203(4): 673-677. |
23 | ZUOH R, FUJ B, CAOG P, et al. The effects of surface-charged submicron polystyrene particles on the structure and performance of PSF forward osmosis membrane [J]. Applied Surface Science, 2017, 436: 1181-1192. |
24 | ZUOH R, LUH, CAOG P, et al. Ion exchange resin blended membrane: enhanced water transfer and retained salt rejection for forward osmosis [J]. Desalination, 2017, 421: 12-22. |
25 | SAENZJ M , ASUAJ M. Dispersion polymerization in polar solvents [J]. Journal of Polymer Science Part A: Polymer Chemistry, 1995, 33(9): 1511-1521 |
26 | BABUS H, JETHMALANIJ M , FORDW T. Synthesis of crosslinked poly(styrene-co-sodium styrenesulfonate) latexes [J]. Journal of Polymer Science Part A: Polymer Chemistry, 2010, 32(8): 1431-1435. |
27 | 邓康为, 陈龙, 潘丹, 等. 苯乙烯-苯乙烯磺酸钠共聚物的制备及其流变性能[J]. 功能高分子学报, 2017, 30(1): 83-90. |
DENGKangwei, CHENLong, PANDan, et al. Preparation and rheological properties of styrene and sodium styrene sulfonate copolymer [J]. Journal of Founctional Polymers, 2017, 30(1): 83-90. | |
28 | LIJ F, XUZ L, YANGH, et al. Effect of TiO2 nanoparticles on the surface morphology and performance of microporous PES membrane [J]. Applied Surface Science, 2009, 255(9): 4725-4732. |
29 | ZHAOS, YANW T, SHIM Q, et al. Improving permeability and antifouling performance of polyethersulfone ultrafiltration membrane by incorporation of ZnO-DMF dispersion containing nano-ZnO and polyvinylpyrrolidone [J]. Journal of Membrane Science, 2015, 478: 105-116. |
30 | SHENJ N, RUANH M, WUL G, et al. Preparation and characterization of PES-SiO2 organic-inorganic composite ultrafiltration membrane for raw water pretreatment [J]. Chemical Engineering Journal, 2011, 168(3): 1272-1278. |
31 | WUH, TANGB , WUP. Development of novel SiO2-GO nanohybrid/polysulfone membrane with enhanced performance [J]. Journal of Membrane Science, 2014, 451(1): 94-102. |
32 | GARCIA-IVARSJ, IBORRA-CLARM I, ALCAINA-MIRANDAM I, et al. Comparison between hydrophilic and hydrophobic metal nanoparticles on the phase separation phenomena during formation of asymmetric polyethersulphone membranes [J]. Journal of Membrane Science, 2015, 493(1): 709-722. |
33 | BARRYE, MABRIDES P, JAEGERH M, et al. Ion transport controlled by nanoparticle-functionalized membranes [J]. Nature Communications, 2014, 5(5): 5847. |
34 | AHMADA L, MAJIDM A, OOI B S. Functionalized PSf/SiO2 nanocomposite membrane for oil-in-water emulsion separation [J]. Desalination, 2011, 268(1): 266-269. |
35 | VATANPOURV, MASAWNIS S, RAJABIL. Boehmite nanoparticles as a new nanofiller for preparation of antifouling mixed matrix membranes [J]. Journal of Membrane Science, 2012, 401/402: 132-143. |
36 | TIRAFRRIA, YIP N Y, PHILLIPW A, et al. Relating performance of thin-film composite forward osmosis membranes to support layer formation and structure [J]. Journal of Membrane Science, 2011, 367(1): 340-352. |
37 | WEIJ, QIUC Q, TANGC Y, et al. Synthesis and characterization of flat-sheet thin film composite forward osmosis membranes [J]. Journal of Membrane Science2011, 372: 292-302. |
38 | SHENL, BIANX, LUX, et al. Preparation and characterization of ZnO/polyethersulfone (PES) hybrid membranes [J]. Desalination, 2012, 293(293): 21-29. |
39 | GHOSHA K , HOEKE M V. Impacts of support membrane structure and chemistry on polyamide-polysulfone interfacial composite membranes [J]. Journal of Membrane Science, 2009, 336(1): 140-148. |
[1] | ZHANG Zuoqun, GAO Yang, BAI Chaojie, XUE Lixin. Thin-film nanocomposite (TFN) mixed matrix reverse osmosis (MMRO) membranes from secondary interface polymerization containing in situ grown ZIF-8 nano-particles [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 364-373. |
[2] | ZHANG Jie, BAI Zhongbo, FENG Baoxin, PENG Xiaolin, REN Weiwei, ZHANG Jingli, LIU Eryong. Effect of PEG and its compound additives on post-treatment of electrolytic copper foils [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 374-381. |
[3] | LIU Yang, WANG Yungang, XIU Haoran, ZOU Li, BAI Yanyuan. Optimal carbonization process of walnut shell based on dynamic analysis [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 94-103. |
[4] | WANG Shangbin, OU Hongxiang, XUE Honglai, CAO Haizhen, WANG Junqi, BI Haipu. Effect of xanthan gum and nano silica on the properties of fluorine-free surfactant mixed solution foam [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4856-4862. |
[5] | LI Xuejia, LI Peng, LI Zhixia, JIN Dunshang, GUO Qiang, SONG Xufeng, SONG Peng, PENG Yuelian. Experimental comparation on anti-scaling and anti-wetting ability of hydrophilic and hydrophobic modified membranes [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4458-4464. |
[6] | ZHANG Chao, YANG Peng, LIU Guanglin, ZHAO Wei, YANG Xufei, ZHANG Wei, YU Bo. Influence of surface microstructure on arrayed microjet flow boiling heat transfer [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4193-4203. |
[7] | LI Haidong, YANG Yuankun, GUO Shushu, WANG Benjin, YUE Tingting, FU Kaibin, WANG Zhe, HE Shouqin, YAO Jun, CHEN Shu. Effect of carbonization and calcination temperature on As(Ⅲ) removal performance of plant-based Fe-C microelectrolytic materials [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3652-3663. |
[8] | ZHANG Kai, LYU Qiunan, LI Gang, LI Xiaosen, MO Jiamei. Morphology and occurrence characteristics of methane hydrates in the mud of the South China Sea [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3865-3874. |
[9] | CHEN Xiangli, LI Qianqian, ZHANG Tian, LI Biao, LI Kangkang. Research progress on self-healing oil/water separation membranes [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3600-3610. |
[10] | XIE Zhiwei, WU Zhangyong, ZHU Qichen, JIANG Jiajun, LIANG Tianxiang, LIU Zhenyang. Viscosity properties and magnetoviscous effects of Ni0.5Zn0.5Fe2O4 vegetable oil-based magnetic fluid [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3623-3633. |
[11] | DONG Xiaoshan, WANG Jian, LIN Fawei, YAN Beibei, CHEN Guanyi. Exsolved metal nanoparticles on perovskite oxides: exsolution, driving force and control strategy [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3049-3065. |
[12] | XU Guobin, LIU Honghao, LI Jie, GUO Jiaqi, WANG Qi. Preparation and properties of ZnO QDs water-based inkjet fluorescent ink [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3114-3122. |
[13] | CHEN Yixin, ZHEN Yaoyao, CHEN Ruihao, WU Jiwei, PAN Limei, YAO Chong, LUO Jie, LU Chunshan, FENG Feng, WANG Qingtao, ZHANG Qunfeng, LI Xiaonian. Preparation of platinum based nanocatalysts and their recent progress in hydrogenation [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 2904-2915. |
[14] | REN Zhongyuan, HE Jinlong, YUAN Qing. Research progress on intercrystalline defects control and remediation technologies for zeolite membranes [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2454-2463. |
[15] | LIU Yulong, YAO Junhu, SHU Chuangchuang, SHE Yuehui. Biosynthesis and EOR application of magnetic Fe3O4 NPs [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2464-2474. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |