Chemical Industry and Engineering Progress ›› 2019, Vol. 38 ›› Issue (07): 3274-3284.DOI: 10.16085/j.issn.1000-6613.2018-1967
• Materials science and technology • Previous Articles Next Articles
Lifu NIE1,2,3(),Zhe XU1,2,3,Shanming KE1,2,3,Xierong ZENG1,2,3,Peng LIN1,2,3()
Received:
2018-09-29
Online:
2019-07-05
Published:
2019-07-05
Contact:
Peng LIN
聂利富1,2,3(),徐喆1,2,3,柯善明1,2,3,曾燮榕1,2,3,林鹏1,2,3()
通讯作者:
林鹏
作者简介:
聂利富(1993—),男,硕士研究生,研究方向为光电催化。E-mail:<email>nielifu@email.szu.edu.cn</email>。
基金资助:
CLC Number:
Lifu NIE, Zhe XU, Shanming KE, Xierong ZENG, Peng LIN. Research progress of the modification of TiO2 by Au nanoparticles for photoelectrocatalytic applications[J]. Chemical Industry and Engineering Progress, 2019, 38(07): 3274-3284.
聂利富, 徐喆, 柯善明, 曾燮榕, 林鹏. Au对TiO2光电催化材料的改性策略研究进展[J]. 化工进展, 2019, 38(07): 3274-3284.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2018-1967
1 | LUOJie, CHENJiaoyan, WANGHaiyan, et al. Ligand-exchange assisted preparation of plasmonic Au/TiO2 nanotube arrays photoanodes for visible-light-driven photoelectrochemical water splitting[J]. Journal of Power Sources, 2016, 303: 287-293. |
2 | WULing, LIFang, XUYuanyuan, et al. Plasmon-induced photoelectrocatalytic activity of Au nanoparticles enhanced TiO2 nanotube arrays electrodes for environmental remediation [J]. Applied Catalysis B: Environmental, 2015, 164: 217-224. |
3 | JingxiangLOW, CHENGBei, YUJiaguo. Surface modification and enhanced photocatalytic CO2 reduction performance of TiO2: a review [J]. Applied Surface Science, 2017, 392: 658-686. |
4 | 刘洋, 邹斌, 钱鲲,等. Au/TiO2纳米复合物增强可植入式葡萄糖传感器[J]. 苏州科技学院学报(自然科学版), 2016, 33(4): 48-51. |
LIUYang, ZOUBin, QIANKun, et al. An Au/TiO2 nanocomposite enhanced biosensor for embedding glucose monitoring[J]. Journal of Suzhou University of Science and Technology (Natural Science), 2016, 33(4): 48-51. | |
5 | 霍小鹤,刘培培,刘小强,等. 以金纳米颗粒-二氧化钛纳米线阵列为支架的电化学免疫传感的构建及其应用[J]. 化学研究, 2017, 28(1): 113-119. |
HUOXiaohe, LIUPeipei, LIUXiaoqiang, et al. Construction of an electrochemical immunosensor based on Au nanoparticles-TiO2 nanowire arrays and its application[J]. Chemical Research, 2017, 28(1): 113-119. | |
6 | QIUPengxiang, XUChenmin, ZHOUNing, et al. Metal-free black phosphorus nanosheets-decorated graphitic carbon nitride nanosheets with C-P bonds for excellent photocatalytic nitrogen fixation[J]. Applied Catalysis B: Environmental, 2018, 221: 27-35. |
7 | LIUDetao, LIShibin, ZHANGPeng, et al. Efficient planar heterojunction perovskite solar cells with Li-doped compact TiO2 layer[J]. Nano Energy, 2017, 31: 462-468. |
8 | KANGYuyang, YANGYongqiang, YINLichang, et al. Selective breaking of hydrogen bonds of layered carbon nitride for visible light photocatalysis [J]. Advanced Materials, 2016, 28(30): 6471-6477. |
9 | LIHao, LIJie, AIZhihui, et al. Oxygen vacancy-mediated photocatalysis of BiOCl: reactivity, selectivity, and perspectives [J]. Angewandte Chemie: International Edition, 2018, 57(1): 122-138. |
10 | ZENGXiangkang, WANGZhouyou, WANGGen, et al. Highly dispersed TiO2 nanocrystals and WO3 nanorods on reduced graphene oxide: Z-scheme photocatalysis system for accelerated photocatalytic water disinfection [J]. Applied Catalysis B: Environmental, 2017, 218: 163-173. |
11 | 翟宏菊齐兵,王立晶,等. Au-TiO2纳米复合材料的合成及其应用研究进展[J]. 化工新型材料, 2014, 42(9): 188-190. |
ZHAIHongju, QIBing, WANGLijing, alet . Research on synthesis and application in catalysis and detection of Au-TiO2 nanocomposites[J]. New Chemical Materials, 2014, 42(9): 188-190. | |
12 | KlanceKELLY, EduardoCORONADO, ZHAOLinlin, et al. The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment [J]. Journal of Physical Chemistry B, 2003, 107(3): 668-677. |
13 | CésarCLAVERO. Plasmon-induced hot-electron generation at nanoparticle/metal-oxide interfaces for photovoltaic and photocatalytic devices [J]. Nature Photonics, 2014, 8(2): 95-103. |
14 | ZHANGJianming, JINXin, PabloiMORALES-GUZMAN, et al. Engineering the absorption and field enhancement properties of Au-TiO2 nanohybrids via whispering gallery mode resonances for photocatalytic water splitting [J]. ACS Nano, 2016, 10(4): 4496-4503. |
15 | 倪冰楠, 陆婷, 刘心娟,等. 纳米Au /TiO2复合物光催化降解亚甲基蓝 [J]. 环境工程学报, 2014, 8(12): 5372-5376. |
NIBingnan, LUTing, LIUXinjuan, et al. UV photocatalytic reduction of methylene blue by nano Au / TiO2 composites [J]. Chinese Journal of Environmental Engineering, 2014, 8(12): 5372-5376. | |
16 | WANGJiale, RomuloANDO, PedroCAMARGO. Controlling the selectivity of the surface plasmon resonance mediated oxidation of p-aminothiophenol on Au nanoparticles by charge transfer from UV-excited TiO2 [J]. Angewandte Chemie: International Edition, 2015, 54(23): 6909-6912. |
17 | 韩铁虎. Au/TiO2纳米复合材料光催化性能研究[D]. 杭州: 浙江理工大学, 2016. |
HANTiehu. The study on photocatalytic activities of Au-TiO2 nanocomposites[D]. Hangzhou: Zhejiang Sci-Tech University, 2016. | |
18 | CAIJingsheng, HUANGJianying , LAIYuekun. 3D Au-decorated BiMoO6 nanosheet/TiO2 nanotube array heterostructure with enhanced UV and visible-light photocatalytic activity [J]. Journal of Materials Chemistry A, 2017, 5(31): 16412-16421. |
19 | XINGXiaofang, FUHungsung, MIAOJianwei, et al. Metal-cluster-decorated TiO2 nanotube arrays: a composite heterostructure toward versatile photocatalytic and photoelectrochemical applications [J]. Small, 2015, 11(5): 554-567. |
20 | NhattruongNGUYEN, MarcoALTOMARE, JeongeunYOO, et al. Efficient photocatalytic H2 evolution: controlled dewetting dealloying to fabricate site selective high activity nanoporous Au particles on highly ordered TiO2 nanotube arrays [J]. Advanced Materials, 2015, 27(20): 3208-3215. |
21 | 尹云超. TiO2纳米管阵列改性及其光电催化性能研究 [D]. 西安: 西北大学, 2017. |
YINYunchao. Photoelecttrocatalytic performance research of modified TiO2 nanotube array [D]. Xi’an: Northweast University, 2017. | |
22 | MarcelloMARELLI, ClaudioEVANGELISTI, DIAMANTI Maria Vittoria, et al. TiO2 nanotubes arrays loaded with ligand-free Au nanoparticles: enhancement in photocatalytic activity[J]. ACS Applied Materials & Interfaces, 2016, 8(45): 31051-31058. |
23 | SUFengli, WANGTuo, LÜ Rui, et al. Dendritic Au/TiO2 nanorod arrays for visible-light driven photoelectrochemical water splitting [J]. Nanoscale, 2013, 5(19): 9001-9009. |
24 | LUOJie, LIDeliang, YANGYan, et al. Preparation of Au/reduced graphene oxide/hydrogenated TiO2 nanotube arrays ternary composites for visible-light-driven photoelectrochemical water splitting [J]. Journal of Alloys and Compounds, 2016, 661: 380-388. |
25 | WANGWeikang, XUDifa, CHENGBei, et al. Hybrid carbon @TiO2 hollow spheres with enhanced photocatalytic CO2 reduction activity [J]. Journal of Materials Chemisctry A, 2017, 5(10): 5020-5029. |
26 | PANGXinchang, ZHAOLei, HANWei, et al. A general and robust strategy for the synthesis of nearly monodisperse colloidal nanocrystals [J]. Nature Nanotechnology, 2013, 8(6): 426-431. |
27 | 姚翠萍, 王佳壮, 王晶,等. Au@TiO2纳米核壳与HMME结合体的制备及其光动力疗效初探 [J]. 光谱学与光谱分析, 2017, 37(12): 3670-3676. |
YAOCuiping, WANGJiazhuang, WANGJing, et al. Preparation of Au@TiO2-HMME and its photodynamic efficiency [J]. Spectroscopy and Spectral Analysis, 2017, 37(12): 3670-3676. | |
28 | JamesGOEBL, Ji BongJOO, MichaelDAHL, et al. Synthesis of tailored Au@TiO2 core-shell nanoparticles for photocatalytic reforming of ethanol [J]. Catalysis Today, 2014, 225: 90-95. |
29 | CaothangDINH, HoangYEN, FreddyKLEITZ, et al. Three-dimensional ordered assembly of thin-shell Au/TiO2 hollow nanospheres for enhanced visible-light driven photocatalysis [J]. Angewandte Chemie: International Edition, 2014, 53(26): 6618-6623. |
30 | ZHENGDajiang, PANGXinchang, WANGMengye, et al. Unconventional route to hairy plasmonic/semiconductor core/shell nanoparticles with precisely controlled dimensions and their use in solar energy conversion [J]. Chemistry of Materials, 2015, 27(15): 5271-5278. |
31 | 董任峰. 催化型微纳马达的制备与性能[D]. 广州: 华南理工大学, 2016. |
DONGRenfeng. Catalytic micro/nanomotors: fabrication and performance[D]. Guangzhou: South China University of Technology, 2016. | |
32 | DONGRenfeng, ZHANGQilu, GAOWei, et al. Highly efficient light-driven TiO2-Au Janus micromotors [J]. ACS Nano, 2016, 10(1): 839-844. |
33 | BumjinJANG, HONGAyoung, KANGHaeun, et al. Multiwavelength light-responsive Au/B-TiO2 Janus micromotors[J]. ACS Nano, 2017, 11(6): 6146-6154. |
34 | VarunSRIDHAR, Byung-WookPARK, MetinSITTI. Light-driven Janus hollow mesoporous TiO2–Au microswimmers[J]. Advanced Functional Materials. 2018, 28(25): 1-8. |
35 | WUYefei, DONGRenfeng, ZHANGQilu, et al. Dye-enhanced self-electrophoretic propulsion of light-driven TiO2–Au Janus micromotors[J]. Nano-Micro Lett, 2017, 9(3): 1-12. |
36 | WUBinghui, LIUDeyu, SyedMUBEEN, et al. Anisotropic growth of TiO2 onto gold nanorods for plasmon enhanced hydrogen production from water reduction [J]. Journal of American Chemical Society, 2016, 138(14): 1114-1117. |
37 | 孙玉泉. 哑铃状Au棒/TiO2的制备及其可见光催化分解水研究[J]. 辽宁化工, 2017, 46(9): 868-869. |
SUNYuquan. Synthesis of dumbbell-shaped Au-TiO2 hybrids and their application in photocatalytic water reduction reaction[J]. Liaoning Chemical Industry, 2017, 46(9): 868-869. | |
38 | LIUXueqin, JamesIOCOZZZIA, WANGYang, et al. Noble metal-metal oxide nanohybrids with tailored nanostructures for efficient solar energy conversion, photocatalysis and environmental remediation [J]. Energy & Environmental Science, 2017, 10(2): 402-434. |
39 | WANGChanglong, DidierASTRUC. Nanogold plasmonic photocatalysis for organic synthesis and clean energy conversion [J]. Chemical Society Reviews, 2014, 43(20): 7188-7216. |
40 | 冯聪, 余志超, 王新强,等.金纳米粒子的尺寸和含量对Au/TiO2纤维的紫外和可见光的光催化性能优化研究[C].//中国化学会. 中国化学会第30届学术年会摘要集-第二十七分会: 光化学. 大连: 中国化学会. 2016: 34. |
FENGCong, YUZhichao, WANGXinqiang, et al. Enhanced photocatalytic performance of Au/TiO2 nanofibers by precisely manipulating the dosage and size of Au nanoparticles under ultraviolet and visible light[C].//Chinese Chemical Society. Abstract of the 30th Academic Annual Conference of Chinese Chemical Society-chapter 27: photochemistry. Dalian: Chinese Chemical Society. 2016: 34. | |
41 | Seon MiYOO, SherbahadurRAWAL, JieunLEE. Size-dependence of plasmonic Au nanoparticles in photocatalytic behavior of Au/TiO2 and Au@SiO2/TiO2 [J]. Applied Catalysis A: General, 2015, 499: 47-54. |
42 | KunihiroYAMADA, KenMIYAJIMA, MafuneFUMITAKA. Thermionic emission of electrons from gold nanoparticles by nanosecond pulse-laser excitation of interband [J]. Journal of Physical Chemistry C, 2007, 111(30): 11246-11251. |
43 | StephanLINK, MostafaEL-SAYED. Size and temperature dependence of the plasmon absorption of colloidal gold nanoparticles [J]. Journal of Physical Chemistry B, 1999, 103(21): 4212-4217. |
44 | SandipanBERA, Ji EunLEE, RAWAL Sher Bahadur, et al. Size-dependent plasmonic effects of Au and Au@SiO2 nanoparticles in photocatalytic CO2 conversion reaction of Pt/TiO2 [J]. Applied Catalysis B: Environmental, 2016, 199: 55-63. |
45 | PhillipCHRISTOPHER, XINHongliang, AndiappanMARIMUTHU, et al. Singular characteristics and unique chemical bond activation mechanisms of photocatalytic reactions on plasmonic nanostructures [J]. Nature Materials, 2012, 11(12): 1044-1050. |
46 | ZHANGXingguang, KEXuebin, ZHUHuaiyong. Zeolite-supported gold nanoparticles for selective photooxidation of aromatic alcohols under visible-light irradiation [J]. Chemistry:A European Journal, 2012, 18(26): 8048-8056. |
47 | JinyoungCHOI, YounghoonSUNG, HakjongCHOI, et al. Fabrication of Au nanoparticle-decorated TiO2 nanotube arrays for stable photoelectrochemical water splitting by two-step anodization [J]. Ceramics International, 2017, 43(16): 14063-14067. |
48 | 王雷阳, 菅傲群, 桑胜波,等. Au/TiO2薄膜的制备及等离子体光催化性能研究 [J]. 化工新型材料, 2018, 46(4): 91-93. |
WANGLeiyang, JIANAoqun, SANGShengbo, et al. Preparation and plasmonic photocatalytic property of Au/TiO2 thin film [J]. New Chemical Materials, 2018, 46(4): 91-93. | |
49 | 孔少奇, 宋选民, 孙泽东,等. 磁控溅射制备的Au-TiO2纳米棒阵列的光降解研究 [J]. 稀有金属材料与工程, 2018, 47(4): 1113-1118. |
KONGShaoqi, SONGXuanmin, SUNZedong,et al. Well-aligned Au/TiO2 nanorods arrays for the photodegradation of MB by magnetron sputtering[J]. Rare Metal Materials and Engineering, 2018, 47(4): 1113-1118. | |
50 | ShikharMISRA, LILeigang, JIANJie, et al. Tailorable Au nanoparticles embedded in epitaxial TiO2 thin films for tunable optical properties [J]. ACS Applied & Materials Interfaces, 2018, 10(38): 32895-32902. |
51 | TakehitoYOSHIDA, TeiWATANABE, FumitoKIUCHI, et al. Pulsed-laser-deposited TiO2 nanocrystalline films supporting Au nanoparticles for visible-light-operating plasmonic photocatalysts[J]. Applied Physics A: Materials Science & Processing, 2016, 122(5): 510. |
52 | 高溢, 刘佳雯, 李中华. Au/ TiO2纳米光催化剂的制备及光催化性能研究 [J]. 化学工程师, 2016 (2): 1-3, 29. |
GAOYi, LIUJiawen, LIZhonghua. Preparation and photocatalytic properties of Au/TiO2 nano-photocatalysts[J]. Chemical Engineer, 2016(2): 1-3, 29. | |
53 | MohamadmohsenMOMENI, YousefGHAYEB. Fabrication, characterization and photocatalytic properties of Au/TiO2-WO3 nanotubular composite synthesized by photo-assisted deposition and electrochemical anodizing methods [J]. Journal of Molecular Catalysis A: Chemical, 2016, 417: 107-115. |
54 | BIANZhenfeng, TakashiTACHIKAWA, ZHANGPeng, et al. Au/TiO2 superstructure-based plasmonic photocatalysts exhibiting efficient charge separation and unprecedented activity [J]. Journal of American Chemical Society, 2014, 136(1): 458-465. |
55 | LIYongkun, YUHongmei, ZHANGChangkun, et al. Enhancement of photoelectrochemical response by Au modified in TiO2 nanorods [J]. International Journal of Hydrogen Energy, 2013, 38(29): 13023-13030. |
56 | YUNJuyoung, SunhyeHWANG, JyongsikJANG. Fabrication of Au@Ag core/shell nanoparticles decorated TiO2 hollow structure for efficient light-harvesting in dye-sensitized solar cells [J]. ACS Applied Materials & Interfaces, 2015, 7(3): 2055-2063. |
57 | 祁洪飞, 刘大博, 戴松喦, 等. Au/TiO2阵列材料的制备及其光催化性能研究 [J]. 贵金属, 2017, 38(s1): 116-119. |
QIHongfei, LIUDabo, DAISongyan , et al. Preparation and photocatalysis performance of Au/TiO2 array films [J]. Precious Metals, 2017, 38(s1): 116-119. | |
58 | ZHANGXing, LIUYang, ShuittongLEE, et al. Coupling surface plasmon resonance of gold nanoparticles with slow-photon-effect of TiO2 photonic crystals for synergistically enhanced photoelectrochemical water splitting [J]. Energy & Environmental Science, 2014, 7(4): 1409-1419. |
[1] | ZHANG Mingyan, LIU Yan, ZHANG Xueting, LIU Yake, LI Congju, ZHANG Xiuling. Research progress of non-noble metal bifunctional catalysts in zinc-air batteries [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 276-286. |
[2] | HU Xi, WANG Mingshan, LI Enzhi, HUANG Siming, CHEN Junchen, GUO Bingshu, YU Bo, MA Zhiyuan, LI Xing. Research progress on preparation and sodium storage properties of tungsten disulfide composites [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 344-355. |
[3] | LI Jitong, WANG Gang, XIONG Yaxuan, XU Qian. Energy and exergy analysis of single-effect absorption refrigeration system with different refrigerants [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 104-112. |
[4] | ZHANG Ruijie, LIU Zhilin, WANG Junwen, ZHANG Wei, HAN Deqiu, LI Ting, ZOU Xiong. On-line dynamic simulation and optimization of water-cooled cascade refrigeration system [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 124-132. |
[5] | SHAO Zhiguo, REN Wen, XU Shipei, NIE Fan, XU Yu, LIU Longjie, XIE Shuixiang, LI Xingchun, WANG Qingji, XIE Jiacai. Influence of final temperature on the distribution and characteristics of oil-based drilling cuttings pyrolysis products [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4929-4938. |
[6] | GAO Cong, CHEN Chenghu, CHEN Xiulai, LIU Liming. Progress and challenges of engineering microorganisms to produce biobased monomers [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4123-4135. |
[7] | HU Yafei, FENG Ziping, TIAN Jiayao, SONG Wenji. Waste heat recovery performance of an air-source gas engine-driven heat pump system in multi-heating operation modes [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4204-4211. |
[8] | WANG Jiansheng, ZHANG Huipeng, LIU Xueling, FU Yuguo, ZHU Jianxiao. Analysis of flow and heat transfer characteristics in porous media reservoir [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4212-4220. |
[9] | WANG Shuaiqing, YANG Siwen, LI Na, SUN Zhanying, AN Haoran. Research progress on element doped biomass carbon materials for electrochemical energy storage [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4296-4306. |
[10] | YE Zhendong, LIU Han, LYU Jing, ZHANG Yaning, LIU Hongzhi. Optimization of thermochemical energy storage reactor based on calcium and magnesium binary salt hydrates [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4307-4314. |
[11] | TANG Lei, ZENG Desen, LING Ziye, ZHANG Zhengguo, FANG Xiaoming. Research progress of phase change materials and their application systems for cool storage [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4322-4339. |
[12] | JIANG Jing, CHEN Xiaoyu, ZHANG Ruiyan, SHENG Guangyao. Research progress of manganese-loaded biochar preparation and its application in environmental remediation [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4385-4397. |
[13] | YANG Pengwei, YU Linzhu, WANG Fangfang, JIANG Haoxuan, ZHAO Guangjin, LI Qi, DU Mingzhe, MA Shuangchen. Application prospect, challenge and development of ammonia energy storage in new power system [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4432-4446. |
[14] | LI Yanling, ZHUO Zhen, CHI Liang, CHEN Xi, SUN Tanglei, LIU Peng, LEI Tingzhou. Research progress on preparation and application of nitrogen-doped biochar [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3720-3735. |
[15] | ZHANG Kai, LYU Qiunan, LI Gang, LI Xiaosen, MO Jiamei. Morphology and occurrence characteristics of methane hydrates in the mud of the South China Sea [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3865-3874. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |