Chemical Industry and Engineering Progress ›› 2019, Vol. 38 ›› Issue (07): 3046-3055.DOI: 10.16085/j.issn.1000-6613.2018-1927
• Chemical processes and equipment • Previous Articles Next Articles
Yunqing DONG1(),Zheng WANG1(),Yifan XU1,Yanxia YANG1,Xiaoping JIA2,Fang WANG2
Received:
2018-09-26
Online:
2019-07-05
Published:
2019-07-05
Contact:
Zheng WANG
董云青1(),王政1(),徐一凡1,杨燕霞1,贾小平2,王芳2
通讯作者:
王政
作者简介:
董云青(1993—),男,硕士研究生,研究方向为过程系统工程。E-mail:<email>1730564189@qq.com</email>。
基金资助:
CLC Number:
Yunqing DONG, Zheng WANG, Yifan XU, Yanxia YANG, Xiaoping JIA, Fang WANG. Heat exchanger network bypass position determination based on complex network control theory[J]. Chemical Industry and Engineering Progress, 2019, 38(07): 3046-3055.
董云青, 王政, 徐一凡, 杨燕霞, 贾小平, 王芳. 基于复杂网络控制理论的换热网络旁路位置确定[J]. 化工进展, 2019, 38(07): 3046-3055.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2018-1927
起点 | 终点 | 起点 | 终点 | 起点 | 终点 |
---|---|---|---|---|---|
E2 | E3 | E12 | E13 | E32 | E24 |
E3 | E4 | E13 | E14 | E24 | E25 |
E1 | E5 | E14 | E15 | E25 | E26 |
E5 | E6 | E16 | E17 | E26 | E27 |
E6 | E7 | E17 | E18 | E27 | E28 |
E7 | E8 | E18 | E19 | E28 | E29 |
E20 | E9 | E15 | E21 | E29 | E30 |
E9 | E10 | E21 | E22 | E30 | E31 |
E10 | E11 | E22 | E23 | E31 | E32 |
E19 | E12 |
起点 | 终点 | 起点 | 终点 | 起点 | 终点 |
---|---|---|---|---|---|
E2 | E3 | E12 | E13 | E32 | E24 |
E3 | E4 | E13 | E14 | E24 | E25 |
E1 | E5 | E14 | E15 | E25 | E26 |
E5 | E6 | E16 | E17 | E26 | E27 |
E6 | E7 | E17 | E18 | E27 | E28 |
E7 | E8 | E18 | E19 | E28 | E29 |
E20 | E9 | E15 | E21 | E29 | E30 |
E9 | E10 | E21 | E22 | E30 | E31 |
E10 | E11 | E22 | E23 | E31 | E32 |
E19 | E12 |
节点 | 入度 NR值 | 出度 NR值 | 节点 | 入度 NR值 | 出度 NR值 | 节点 | 入度 NR值 | 出度 NR值 |
---|---|---|---|---|---|---|---|---|
E1 | 0.0059 | 0.0417 | E12 | 0.0237 | 0.017 | E23 | 0.026 | 0.0094 |
E2 | 0.0068 | 0.0147 | E13 | 0.0253 | 0.016 | E24 | 0.0134 | 0.0788 |
E3 | 0.0102 | 0.0105 | E14 | 0.0294 | 0.0148 | E25 | 0.0176 | 0.0827 |
E4 | 0.0167 | 0.0071 | E15 | 0.0409 | 0.016 | E26 | 0.0125 | 0.1002 |
E5 | 0.0068 | 0.0117 | E16 | 0.0059 | 0.0262 | E27 | 0.0101 | 0.0737 |
E6 | 0.1826 | 0.0107 | E17 | 0.0117 | 0.0222 | E28 | 0.0108 | 0.055 |
E7 | 0.1375 | 0.0096 | E18 | 0.0134 | 0.0175 | E29 | 0.0111 | 0.0501 |
E8 | 0.193 | 0.0099 | E19 | 0.021 | 0.0215 | E30 | 0.0119 | 0.0469 |
E9 | 0.0086 | 0.0108 | E20 | 0.0059 | 0.0213 | E31 | 0.0199 | 0.0457 |
E10 | 0.02 | 0.0092 | E21 | 0.0275 | 0.0164 | E32 | 0.029 | 0.1137 |
E11 | 0.0274 | 0.0071 | E22 | 0.0174 | 0.0121 |
节点 | 入度 NR值 | 出度 NR值 | 节点 | 入度 NR值 | 出度 NR值 | 节点 | 入度 NR值 | 出度 NR值 |
---|---|---|---|---|---|---|---|---|
E1 | 0.0059 | 0.0417 | E12 | 0.0237 | 0.017 | E23 | 0.026 | 0.0094 |
E2 | 0.0068 | 0.0147 | E13 | 0.0253 | 0.016 | E24 | 0.0134 | 0.0788 |
E3 | 0.0102 | 0.0105 | E14 | 0.0294 | 0.0148 | E25 | 0.0176 | 0.0827 |
E4 | 0.0167 | 0.0071 | E15 | 0.0409 | 0.016 | E26 | 0.0125 | 0.1002 |
E5 | 0.0068 | 0.0117 | E16 | 0.0059 | 0.0262 | E27 | 0.0101 | 0.0737 |
E6 | 0.1826 | 0.0107 | E17 | 0.0117 | 0.0222 | E28 | 0.0108 | 0.055 |
E7 | 0.1375 | 0.0096 | E18 | 0.0134 | 0.0175 | E29 | 0.0111 | 0.0501 |
E8 | 0.193 | 0.0099 | E19 | 0.021 | 0.0215 | E30 | 0.0119 | 0.0469 |
E9 | 0.0086 | 0.0108 | E20 | 0.0059 | 0.0213 | E31 | 0.0199 | 0.0457 |
E10 | 0.02 | 0.0092 | E21 | 0.0275 | 0.0164 | E32 | 0.029 | 0.1137 |
E11 | 0.0274 | 0.0071 | E22 | 0.0174 | 0.0121 |
路径 | 驱动节点 |
---|---|
E14→E15→E6→E7→E8 | E14 |
E24→E25→E26→E27→E28→E29→E32 | E24 |
路径 | 驱动节点 |
---|---|
E14→E15→E6→E7→E8 | E14 |
E24→E25→E26→E27→E28→E29→E32 | E24 |
起点 | 终点 | 起点 | 终点 | 起点 | 终点 |
---|---|---|---|---|---|
E6 | E1 | E7 | E12 | E22 | E20 |
E12 | E5 | E8 | E13 | E17 | E21 |
E1 | E7 | E18 | E14 | E14 | E22 |
E20 | E8 | E4 | E15 | E15 | E23 |
E21 | E9 | E5 | E16 | E26 | E24 |
E3 | E10 | E16 | E17 | E9 | E25 |
E25 | E11 | E11 | E19 |
起点 | 终点 | 起点 | 终点 | 起点 | 终点 |
---|---|---|---|---|---|
E6 | E1 | E7 | E12 | E22 | E20 |
E12 | E5 | E8 | E13 | E17 | E21 |
E1 | E7 | E18 | E14 | E14 | E22 |
E20 | E8 | E4 | E15 | E15 | E23 |
E21 | E9 | E5 | E16 | E26 | E24 |
E3 | E10 | E16 | E17 | E9 | E25 |
E25 | E11 | E11 | E19 |
节点 | 入度 NR值 | 出度 NR值 | 节点 | 入度 NR值 | 出度NR值 | 节点 | 入度 NR值 | 出度 NR值 |
---|---|---|---|---|---|---|---|---|
E1 | 0.0163 | 0.0629 | E10 | 0.0232 | 0.0223 | E19 | 0.0512 | 0.0223 |
E2 | 0.0163 | 0.0222 | E11 | 0.0288 | 0.0276 | E20 | 0.0687 | 0.0198 |
E3 | 0.0163 | 0.033 | E12 | 0.0297 | 0.0223 | E21 | 0.057 | 0.0474 |
E4 | 0.0093 | 0.0816 | E13 | 0.108 | 0.014 | E22 | 0.0292 | 0.0316 |
E5 | 0.1367 | 0.0656 | E14 | 0.0122 | 0.0502 | E23 | 0.03 | 0.0235 |
E6 | 0.0093 | 0.0687 | E15 | 0.0488 | 0.0388 | E24 | 0.0245 | 0.0223 |
E7 | 0.0186 | 0.0538 | E16 | 0.0488 | 0.0431 | E25 | 0.0305 | 0.0379 |
E8 | 0.0863 | 0.0188 | E17 | 0.0507 | 0.0342 | E26 | 0.0093 | 0.0276 |
E9 | 0.0309 | 0.0336 | E18 | 0.0093 | 0.0748 |
节点 | 入度 NR值 | 出度 NR值 | 节点 | 入度 NR值 | 出度NR值 | 节点 | 入度 NR值 | 出度 NR值 |
---|---|---|---|---|---|---|---|---|
E1 | 0.0163 | 0.0629 | E10 | 0.0232 | 0.0223 | E19 | 0.0512 | 0.0223 |
E2 | 0.0163 | 0.0222 | E11 | 0.0288 | 0.0276 | E20 | 0.0687 | 0.0198 |
E3 | 0.0163 | 0.033 | E12 | 0.0297 | 0.0223 | E21 | 0.057 | 0.0474 |
E4 | 0.0093 | 0.0816 | E13 | 0.108 | 0.014 | E22 | 0.0292 | 0.0316 |
E5 | 0.1367 | 0.0656 | E14 | 0.0122 | 0.0502 | E23 | 0.03 | 0.0235 |
E6 | 0.0093 | 0.0687 | E15 | 0.0488 | 0.0388 | E24 | 0.0245 | 0.0223 |
E7 | 0.0186 | 0.0538 | E16 | 0.0488 | 0.0431 | E25 | 0.0305 | 0.0379 |
E8 | 0.0863 | 0.0188 | E17 | 0.0507 | 0.0342 | E26 | 0.0093 | 0.0276 |
E9 | 0.0309 | 0.0336 | E18 | 0.0093 | 0.0748 |
路径 | 驱动节点 |
---|---|
E6 | E6 |
E18 | E18 |
E4→E1→E5→E21→E20→E8→E13 | E4 |
路径 | 驱动节点 |
---|---|
E6 | E6 |
E18 | E18 |
E4→E1→E5→E21→E20→E8→E13 | E4 |
1 | 霍兆义, 尹洪超, 赵亮, 等. 国内换热网络综合方法研究进展与展望[J]. 化工进展, 2012, 31(4): 726-731. |
HUOZ Y, YINH C, ZHAOL, et al. Process and prospect for the methodology of heat exchanger network synthesis in China[J]. Chemical Industry and Engineering Progress, 2012, 31(4): 726-731. | |
2 | 罗雄麟, 侯本权, 孙琳. 结构可观的换热网络温度测点分析及控制系统设计[J]. 化工学报, 2012, 63(1): 146-156. |
LUOX L, HOUB Q, SUNL. Temperature measuring point analysis and control system design of heat exchange networks based on structural observability[J]. CIESC Journal, 2012, 63(1): 146-156. | |
3 | 李洁, 侯来灵, 李多民. 换热器结垢与清洗[J]. 广东化工, 2009, 36(1): 57-58. |
LIJ, HOUL L, LID M. Fouling and cleaning of heat exchanger[J]. Gugangdong Chemical Industry, 2009, 36(1): 57-58. | |
4 | 侯本权, 孙琳, 罗雄麟. 基于结构可控性分析的换热网络旁路优化设计[J]. 化工学报, 2011, 62(5): 1326-1338. |
HOUB Q, SUNL, LUOX L. Optimal design of bypass location on heat exchanger networks based on structural controllability[J]. CIESC Journal, 2011, 62(5): 1326-1338. | |
5 | ERNSTP, FIEGG, LUOX. Efficient synthesis of large-scale heat exchanger networks using monogenetic algorithm[J]. Heat & Mass Transfer, 2010, 46(10): 1087-1096. |
6 | 倪锦, 崔国民, 姜慧, 等. 换热网络的柔性识别及基于旁路调节的运行优化[J]. 化工进展, 2010, 29(1): 17-24. |
NIJ, CUIG M, JIANGH, et al. Flexibility identification and operation optimization based on by-pass adjustment of heat exchanger networks[J]. Chemical Industry and Engineering Progress, 2010, 29(1): 17-24. | |
7 | HERNÁNDEZS, BALCAZAR-LÓPEZL, SÁNCHEZ-MÁRQUEZJ A, et al. Controllability and operability analysis of heat exchanger networks including bypasses[J]. Chemical & Biochemical Engineering Quarterly, 2010, 24(1): 23-28. |
8 | 孙琳, 侯本权, 罗雄麟. 具有旁路控制的换热网络结构可控性分析[J]. 化工学报, 2012, 63(2): 530-537. |
SUNL, HOUB Q, LUOX L. Structural controllability analysis for heat exchanger networks with bypass control[J]. CIESC Journal, 2012, 63(2): 530-537. | |
9 | 孙琳,罗雄麟. 换热网络控制分析与设计研究进展[J]. 化工进展, 2008, 27(8): 1143-1148. |
SUNL, LUOX L. Advances in analysis and design of heat exchanger networks control[J]. Chemical Industry and Engineering Progress, 2008, 27(8): 1143-1148. | |
10 | 沈颖达, 孙琳, 罗雄麟. 低灵敏度换热网络的旁路优化设计[J]. 西安交通大学学报, 2017, 51(4): 142-148. |
SHENY D, SUNL, LUOX L. Bypass optimal design of heat exchanger networks with low sensitivity[J].Journal of Xi’an Jiaotong University , 2017, 51(4): 142-148. | |
11 | LUOX L, SUNL, ZHANGJ. Optimal design of bypass location on heat exchanger networks[J]. Journal of Chemical Industry & Engineering, 2008, 59(3): 646-652. |
12 | SUNL, LUOX L, HOUB Q, et al. Bypass selection for control of heat exchanger network[J]. Chinese Journal of Chemical Engineering, 2013, 21(3): 276-284. |
13 | GUS, LIUL, DUJ, et al. Active bypass design for optimal operation of heat exchanger networks[C]//6th International Symposium on Advanced Control of Industrial Processes. Taipei, Taiwan: IEEE2017: 55-60. |
14 | JIANGZ Q, ZHOUW X, XUB, et al. Process flow diagram of an ammonia plant as a complex network[J]. AIChE Journal, 2007, 53(2): 423–428. |
15 | CAIE, LIUD, LIANGL, et al. Monitoring of chemical industrial processes using integrated complex network theory with PCA[J]. Chemometrics & Intelligent Laboratory Systems, 2015, 140(27): 22-35. |
16 | 王政, 孙锦程, 刘晓强, 等. 基于复杂网络理论的大型换热网络节点重要性评价[J]. 化工进展, 2017, 36(5): 1581-1588. |
WANGZ, SUNJ C, LIUX Q, et al. Evaluate the node importance for large heat exchanger network based on complex network theory[J]. Chemical Industry and Engineering Progress, 2017, 36(5): 1581-1588. | |
17 | LIUY Y, SLOTINEJ J, BARABÁSIA L. Controllability of complex networks[J]. Nature, 2011, 473(7346): 167-173. |
18 | YUANZ Z, ZHAOC, DIZ R, et al. Exact controllability of complex networks[J]. Nature Communications, 2013, 4(2447): 1-9. |
19 | GAOJ, LIUY Y, D'SOUZAR M, et al. Target control of complex networks [J]. Nature Communications, 2015, 5(5415): 1-8. |
20 | 孙锦程. 基于复杂网络理论的换热网络节点重要性研究[D]. 青岛: 青岛科技大学, 2017. |
SUNJ C. The research of node importance of heat exchanger networks based on complex networks theory[D]. Qingdao: Qingdao University of Science and Technology, 2017. | |
21 | 刘晓强, 王政, 董云青, 等. 基于复杂网络理论的换热网络边重要性排序及其控制驱动边识别[J]. 计算机与应用化学, 2018, 35(4):277-299. |
LIUX Q, WANGZ, DONGY Q, et al. Ordering of the importance of heat exchanger networks based on complex network theory and its control drive moving edge recognition[J]. Computers and Applied Chemistry, 2018, 35(4):277-299. | |
22 | LIZ H. Method for incorporation of controllability in heat exchanger network synthesis by integrating mathematical programming and knowledge engineering[J]. Chinese Journal of Chemical Engineering, 2002, 10(6): 711-716. |
23 | HUSSEINM H, MOSELHYH, ALY S, et al. A new strategy to synthesis an optimum controllable HEN by using fuzzy analogical gates[J]. International Journal of Computer Applications, 2013, 83(3): 41-55. |
24 | 聂森, 王旭文, 汪秉宏. 复杂网络可控性的研究概况[J]. 现代物理知识, 2015,27(4): 9-11. |
NIES, WANGX W, WANGB H. Survey of the controllability of complex networks[J]. Modern Physics, 2015, 27(4): 9-11. | |
25 | SLOTINEJ J E. Applied nonlinear control[M]//LI W. 2nd ed. Beijing: China Machine Press, 2004. |
26 | 尹红丽, 纪志坚, 张嗣瀛. 复杂网络的可控性及算法[J]. 系统科学与数学, 2015, 35(11): 1255-1263. |
YINH L, JIZ J, ZHANGS Y. Controllability and algorithms of complex networks[J]. Journal of Systems Science and Mathematical Sciences, 2015, 35(11): 1255-1263. | |
27 | 王哲. 面向复杂网络可控性的最小驱动点集枚举及优化选取算法研究[D]. 沈阳: 东北大学, 2013. |
WANGZ. Research on the enumeration algorithm and optimal selecting algorithm of the minimum driver node set for complex network controllability[D]. Shenyang: Northeastern University, 2013. | |
28 | 张琨, 李配配, 朱保平, 等. 基于PageRank的有向加权复杂网络节点重要性评估方法[J]. 南京航空航天大学学报, 2013, 45(3): 429-434. |
ZHANGK, LIP P, ZHUB P, et al. Evaluation method for node importance in directed-weighted complex networks based on PageRank[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2013, 45(3): 429-434. | |
29 | BANG-JENSENJ. Digraphs: theory, algorithms and applications[M]//GUTIN G Z. Berlin: Springer Publishing Company, 2010. |
30 | 薛等长. 基于最小路径覆盖的复杂网络目标控制的研究[D]. 西安: 西安电子科技大学, 2015. |
XUED C. Study on complex network target control based on minimum path coverage[D]. Xi’an: Xi’an University of Electronic Science and Technology, 2015. | |
31 | 水春贵. 基于Aspen Tech的分馏塔用能优化及换热网络夹点分析[J]. 中外能源, 2013, 18(11): 88-93. |
SHUIC G. Energy optimization of fractionation tower and pinch analysis of heat exchanger network based on Aspen Tech[J]. Sino Global Energy, 2013, 18(11): 88-93. | |
32 | LIY S, MA D Z, ZHANGH G, et al. Critical nodes identification of power systems based on controllability of complex networks[J]. Applied Sciences, 2015, 5(3): 622-636. |
33 | 罗雄麟, 孙琳. 张俊峰. 换热网络旁路优化设计[J]. 化工学报, 2012, 63(1): 146-156. |
LUOX L, SUNL, ZHANGJ F. Optimal design of bypass location on heat exchanger networks[J]. CIESC Journal, 2012, 63(1): 146-156. |
[1] | ZHU Tianyu, SUN Lin, REN Chao, LUO Xionglin. Sliding window analysis and slow-release margin optimal control for heat exchanger networks based on full cycle sustainable energy saving [J]. Chemical Industry and Engineering Progress, 2023, 42(3): 1195-1205. |
[2] | JIANG Ning, ZHANG Yuanyi, FAN Wei, ZHAO Shichao, XU Xinjie, XU Yingjie. Cleaning decision of heat exchanger network based on intelligent prediction and mechanism [J]. Chemical Industry and Engineering Progress, 2022, 41(4): 1781-1792. |
[3] | XU Yue, CUI Guomin. Analyzing optimization performance of heat exchanger network synthesis based on nodes' adjustment strategy [J]. Chemical Industry and Engineering Progress, 2021, 40(7): 3608-3616. |
[4] | Yingdi SHAO, Jianhang HU, Huili LIU, Zhengda CAI. Energy efficiency analysis of heat exchange network of isobutylene purification unit [J]. Chemical Industry and Engineering Progress, 2020, 39(S2): 57-65. |
[5] | Ning JIANG, Wei FAN, Xiaodong XIE, Fengyuan GUO, Enteng LI, Shichao ZHAO. Comparative study of NSGA-Ⅱ and NSGA-Ⅲ on multi-objective optimization of heat exchanger network [J]. Chemical Industry and Engineering Progress, 2020, 39(7): 2534-2547. |
[6] | Geman SU, Guomin CUI, Yuan XIAO, Qianqian ZHAO. Influence analysis and strategy improvement of heat exchanger generation frequency in heat exchanger networks optimization [J]. Chemical Industry and Engineering Progress, 2020, 39(10): 3879-3891. |
[7] | Chang LIU,Shiyu LI,Xiaolan XIE. Integration of heat storage in batch processes considering additional approach temperature difference for indirect heat transfer [J]. Chemical Industry and Engineering Progress, 2020, 39(1): 72-79. |
[8] | Geman SU,Guomin CUI,Zhongkai BAO,Yuan XIAO,Aowei JIANG. Influence analysis and enhancement strategy of infeasible solutions for heat exchanger network optimization with RWCE [J]. Chemical Industry and Engineering Progress, 2020, 39(1): 14-25. |
[9] | Ning JIANG,Xiaodong XIE,Wei FAN,Yingjie XU. Data-driven optimization retrofit method with fixed topology structure for heat exchanger network [J]. Chemical Industry and Engineering Progress, 2019, 38(10): 4452-4460. |
[10] | Jianbao YUAN,Zheng WANG,Yifan XU,Yanxia YANG,Xiaoping JIA,Fang WANG. Risk propagation path of cascading fault in chemical process based on edge load distribution in complex network [J]. Chemical Industry and Engineering Progress, 2019, 38(08): 3525-3533. |
[11] | Ning JIANG, Fengyuan GUO, Wenqiao HAN, Huajing LIU, Lu LIN. 3E Optimization of heat exchanger network system based on non-counterflow heat transfer [J]. Chemical Industry and Engineering Progress, 2019, 38(02): 761-771. |
[12] | CHEN Guohua, ZOU Mengting. Coupling relationship model of multi-hazard and pattern of chain-cutting disaster mitigation in Chemical Industry Park [J]. Chemical Industry and Engineering Progress, 2018, 37(08): 3271-3279. |
[13] | JIANG Ning, HAN Wenqiao, GUO Fengyuan, XU Yingjie. Optimization of heat exchanger network retrofit based on actual heat load distribution [J]. Chemical Industry and Engineering Progress, 2018, 37(08): 2935-2941. |
[14] | DENG Weidong, CUI Guomin, CHEN Jiaxing, ZHU Yushuang. Heat exchange network optimization by inverse gradient evolution strategy with penalty [J]. Chemical Industry and Engineering Progress, 2018, 37(07): 2500-2509. |
[15] | ZHANG Hongliang, CUI Guomin, ZHU Yushuang, HUANG Xiaohuang. Optimization and analysis of specific heat exchanger network cases [J]. Chemical Industry and Engineering Progress, 2018, 37(05): 1692-1701. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |