Chemical Industry and Engineering Progress ›› 2019, Vol. 38 ›› Issue (08): 3525-3533.DOI: 10.16085/j.issn.1000-6613.2018-2049
• Chemical processes and equipment • Previous Articles Next Articles
Jianbao YUAN1(),Zheng WANG1(),Yifan XU1,Yanxia YANG1,Xiaoping JIA2,Fang WANG2
Received:
2018-10-16
Online:
2019-08-05
Published:
2019-08-05
Contact:
Zheng WANG
袁健宝1(),王政1(),徐一凡1,杨燕霞1,贾小平2,王芳2
通讯作者:
王政
作者简介:
袁健宝(1994—),男,硕士研究生,研究方向为过程系统工程。E-mail:基金资助:
CLC Number:
Jianbao YUAN,Zheng WANG,Yifan XU,Yanxia YANG,Xiaoping JIA,Fang WANG. Risk propagation path of cascading fault in chemical process based on edge load distribution in complex network[J]. Chemical Industry and Engineering Progress, 2019, 38(08): 3525-3533.
袁健宝,王政,徐一凡,杨燕霞,贾小平,王芳. 基于复杂网络边负载分配理论的化工过程级联故障风险传播路径[J]. 化工进展, 2019, 38(08): 3525-3533.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2018-2049
变量名 | 意义 | 变量名 | 意义 |
---|---|---|---|
1 | 天然气入口流量 | 16 | 变换塔气体出口温度 |
2 | 软质水入口流量 | 17 | 气液分离器 |
3 | 蒸汽阀门 | 18 | 甲烷化炉 |
4 | 蒸汽流量 | 19 | 氨压缩机 |
5 | 一段转化炉温度 | 20 | 合成塔液位 |
6 | 一段转化炉流量 | 21 | 合成塔温度 |
7 | 二段转化炉流量 | 22 | 合成塔压力 |
8 | 一段转化炉压力 | 23 | 反应物流量 |
9 | 二段转化炉温度 | 24 | 液氨贮槽 |
10 | 二段转化炉压力 | 25 | 锅炉水预热器 |
11 | 工艺空气压缩机流量 | 26 | 锅炉水入口温度 |
12 | 一段转化炉进口压力 | 27 | 低变炉入口温度 |
13 | 压缩机出口压力 | 28 | 低变炉出口成分 |
14 | 二段转化炉出口压力 | 29 | 天然气阀门 |
15 | 变换塔冷却器温度 | 30 | 空气阀门 |
变量名 | 意义 | 变量名 | 意义 |
---|---|---|---|
1 | 天然气入口流量 | 16 | 变换塔气体出口温度 |
2 | 软质水入口流量 | 17 | 气液分离器 |
3 | 蒸汽阀门 | 18 | 甲烷化炉 |
4 | 蒸汽流量 | 19 | 氨压缩机 |
5 | 一段转化炉温度 | 20 | 合成塔液位 |
6 | 一段转化炉流量 | 21 | 合成塔温度 |
7 | 二段转化炉流量 | 22 | 合成塔压力 |
8 | 一段转化炉压力 | 23 | 反应物流量 |
9 | 二段转化炉温度 | 24 | 液氨贮槽 |
10 | 二段转化炉压力 | 25 | 锅炉水预热器 |
11 | 工艺空气压缩机流量 | 26 | 锅炉水入口温度 |
12 | 一段转化炉进口压力 | 27 | 低变炉入口温度 |
13 | 压缩机出口压力 | 28 | 低变炉出口成分 |
14 | 二段转化炉出口压力 | 29 | 天然气阀门 |
15 | 变换塔冷却器温度 | 30 | 空气阀门 |
节点vi | 重要度Ci | 节点vi | 重要度Ci |
---|---|---|---|
v 1 | 0.2708 | v 16 | 0.3027 |
v 2 | 0.1261 | v 17 | 0.2885 |
v 3 | 0.1261 | v 18 | 0.1706 |
v 4 | 0.3123 | v 19 | 0.4765 |
v 5 | 0.2556 | v 20 | 0.4239 |
v 6 | 0.4874 | v 21 | 0.5070 |
v 7 | 0.5319 | v 22 | 0.2909 |
v 8 | 0.1342 | v 23 | 0.5402 |
v 9 | 0.3859 | v 24 | 0.2309 |
v 10 | 0.2898 | v 25 | 0.0846 |
v 11 | 0.2937 | v 26 | 0.0754 |
v 12 | 0.1242 | v 27 | 0.1795 |
v 13 | 0.2118 | v 28 | 0.5156 |
v 14 | 0.2990 | v 29 | 0.1026 |
v 15 | 0.1008 | v 30 | 0.1093 |
节点vi | 重要度Ci | 节点vi | 重要度Ci |
---|---|---|---|
v 1 | 0.2708 | v 16 | 0.3027 |
v 2 | 0.1261 | v 17 | 0.2885 |
v 3 | 0.1261 | v 18 | 0.1706 |
v 4 | 0.3123 | v 19 | 0.4765 |
v 5 | 0.2556 | v 20 | 0.4239 |
v 6 | 0.4874 | v 21 | 0.5070 |
v 7 | 0.5319 | v 22 | 0.2909 |
v 8 | 0.1342 | v 23 | 0.5402 |
v 9 | 0.3859 | v 24 | 0.2309 |
v 10 | 0.2898 | v 25 | 0.0846 |
v 11 | 0.2937 | v 26 | 0.0754 |
v 12 | 0.1242 | v 27 | 0.1795 |
v 13 | 0.2118 | v 28 | 0.5156 |
v 14 | 0.2990 | v 29 | 0.1026 |
v 15 | 0.1008 | v 30 | 0.1093 |
路径 | 初始负载Li | 负载容量Ci | 路径故障概率P(Li ) |
---|---|---|---|
1 | 18 | 19.08 | 0.3396 |
2 | 60 | 63.60 | 0.3145 |
3 | 91 | 96.46 | 0.2861 |
4 | 72 | 76.32 | 0.1544 |
路径 | 初始负载Li | 负载容量Ci | 路径故障概率P(Li ) |
---|---|---|---|
1 | 18 | 19.08 | 0.3396 |
2 | 60 | 63.60 | 0.3145 |
3 | 91 | 96.46 | 0.2861 |
4 | 72 | 76.32 | 0.1544 |
路径 | 初始负载Li | 负载容量Ci | 路径故障概率P(Li ) |
---|---|---|---|
1 | 18 | 19.08 | 0.3396 |
2 | 60 | 63.60 | 0.3145 |
3 | 91 | 96.46 | 0.2861 |
4 | 84 | 89.04 | 0.2064 |
路径 | 初始负载Li | 负载容量Ci | 路径故障概率P(Li ) |
---|---|---|---|
1 | 18 | 19.08 | 0.3396 |
2 | 60 | 63.60 | 0.3145 |
3 | 91 | 96.46 | 0.2861 |
4 | 84 | 89.04 | 0.2064 |
节点 | 名称 | 符号 | 节点 | 名称 | 符号 |
---|---|---|---|---|---|
1 | A进料流量 | F1 | 18 | 汽提塔温度 | T18 |
2 | D进料流量 | F2 | 19 | 汽提塔流量 | F19 |
3 | E进料流量 | F3 | 20 | 压缩机功率 | J20 |
4 | ABC总进料流量 | F4 | 21 | 反应器冷却水出口温度 | T21 |
5 | 压缩机出口再循环流量 | F5 | 22 | 冷凝器冷却水出口温度 | T22 |
6 | 反应器进料总流量 | F6 | 23 | D进料流量控制阀 | V23 |
7 | 反应器压力 | P7 | 24 | E进料流量控制阀 | V24 |
8 | 反应器液位 | L8 | 25 | A进料流量控制阀 | V25 |
9 | 反应器温度 | T9 | 26 | ABC总进料流量控制阀 | V26 |
10 | 排放速度 | F10 | 27 | 压缩机再循环阀 | V27 |
11 | 汽液分离器温度 | T11 | 28 | 排放阀 | V28 |
12 | 汽液分离器液位 | L12 | 29 | 汽液分离器底部出口阀 | V29 |
13 | 汽液分离器压力 | P13 | 30 | 汽提塔产品出口阀 | V30 |
14 | 汽液分离器底部出口流量 | F14 | 31 | 汽提塔水流阀 | V31 |
15 | 汽提塔液位 | L15 | 32 | 反应器冷却水流阀 | V32 |
16 | 汽提塔压力 | P16 | 33 | 冷凝器冷却水流阀 | V33 |
17 | 汽提塔塔底流量 | F17 |
节点 | 名称 | 符号 | 节点 | 名称 | 符号 |
---|---|---|---|---|---|
1 | A进料流量 | F1 | 18 | 汽提塔温度 | T18 |
2 | D进料流量 | F2 | 19 | 汽提塔流量 | F19 |
3 | E进料流量 | F3 | 20 | 压缩机功率 | J20 |
4 | ABC总进料流量 | F4 | 21 | 反应器冷却水出口温度 | T21 |
5 | 压缩机出口再循环流量 | F5 | 22 | 冷凝器冷却水出口温度 | T22 |
6 | 反应器进料总流量 | F6 | 23 | D进料流量控制阀 | V23 |
7 | 反应器压力 | P7 | 24 | E进料流量控制阀 | V24 |
8 | 反应器液位 | L8 | 25 | A进料流量控制阀 | V25 |
9 | 反应器温度 | T9 | 26 | ABC总进料流量控制阀 | V26 |
10 | 排放速度 | F10 | 27 | 压缩机再循环阀 | V27 |
11 | 汽液分离器温度 | T11 | 28 | 排放阀 | V28 |
12 | 汽液分离器液位 | L12 | 29 | 汽液分离器底部出口阀 | V29 |
13 | 汽液分离器压力 | P13 | 30 | 汽提塔产品出口阀 | V30 |
14 | 汽液分离器底部出口流量 | F14 | 31 | 汽提塔水流阀 | V31 |
15 | 汽提塔液位 | L15 | 32 | 反应器冷却水流阀 | V32 |
16 | 汽提塔压力 | P16 | 33 | 冷凝器冷却水流阀 | V33 |
17 | 汽提塔塔底流量 | F17 |
节点vi | 重要度Ci | 节点vi | 重要度Ci |
---|---|---|---|
v 1 | 0.1929 | v 18 | 0.1532 |
v 2 | 0.2763 | v 19 | 0.1061 |
v 3 | 0.2763 | v 20 | 0.0615 |
v 4 | 0.1323 | v 21 | 0.1134 |
v 5 | 0.4770 | v 22 | 0.1909 |
v 6 | 0.8332 | v 23 | 0.0327 |
v 7 | 0.3994 | v 24 | 0.0327 |
v 8 | 0.3679 | v 25 | 0.0327 |
v 9 | 0.4914 | v 26 | 0.0265 |
v 10 | 0.0243 | v 27 | 0.0887 |
v 11 | 0.1558 | v 28 | 0.0960 |
v 12 | 0.2004 | v 29 | 0.1657 |
v 13 | 0.2809 | v 30 | 0.0468 |
v 14 | 0.2386 | v 31 | 0.0649 |
v 15 | 0.3538 | v 32 | 0.1134 |
v 16 | 0.5254 | v 33 | 0.1013 |
v 17 | 0.1619 |
节点vi | 重要度Ci | 节点vi | 重要度Ci |
---|---|---|---|
v 1 | 0.1929 | v 18 | 0.1532 |
v 2 | 0.2763 | v 19 | 0.1061 |
v 3 | 0.2763 | v 20 | 0.0615 |
v 4 | 0.1323 | v 21 | 0.1134 |
v 5 | 0.4770 | v 22 | 0.1909 |
v 6 | 0.8332 | v 23 | 0.0327 |
v 7 | 0.3994 | v 24 | 0.0327 |
v 8 | 0.3679 | v 25 | 0.0327 |
v 9 | 0.4914 | v 26 | 0.0265 |
v 10 | 0.0243 | v 27 | 0.0887 |
v 11 | 0.1558 | v 28 | 0.0960 |
v 12 | 0.2004 | v 29 | 0.1657 |
v 13 | 0.2809 | v 30 | 0.0468 |
v 14 | 0.2386 | v 31 | 0.0649 |
v 15 | 0.3538 | v 32 | 0.1134 |
v 16 | 0.5254 | v 33 | 0.1013 |
v 17 | 0.1619 |
路径 | 初始负载Li | 负载容量Ci | 路径故障概率P(Li ) |
---|---|---|---|
1 | 105 | 139.13 | 0.25 |
2 | 36 | 36.16 | 0.0136 |
路径 | 初始负载Li | 负载容量Ci | 路径故障概率P(Li ) |
---|---|---|---|
1 | 105 | 139.13 | 0.25 |
2 | 36 | 36.16 | 0.0136 |
路径 | 初始负载Li | 负载容量Ci | 路径故障概率P(Li ) |
---|---|---|---|
1 | 150 | 159 | 0.3454 |
2 | 105 | 111.3 | 0.25 |
3 | 42 | 44.52 | 0.2233 |
4 | 10 | 10.06 | 0.2008 |
路径 | 初始负载Li | 负载容量Ci | 路径故障概率P(Li ) |
---|---|---|---|
1 | 150 | 159 | 0.3454 |
2 | 105 | 111.3 | 0.25 |
3 | 42 | 44.52 | 0.2233 |
4 | 10 | 10.06 | 0.2008 |
1 | 王政, 孙锦程, 王迎春, 等 . 基于复杂网络理论的符号有向图(SDG)化工故障诊断[J]. 化工进展, 2016, 35(5): 1344-1352. |
WANG Z , SUN J C , WANG Y C , et al . Research on chemical process signed directed graph(SDG) fault diagnosis based on complex network[J]. Chemical Industry and Engineering Progress, 2016, 35(5): 1344-1352. | |
2 | 陈雨, 韩永明, 王尊, 等 . 基于数据复杂网络理论的系统故障检测方法[J].化工学报, 2014, 65(11): 4503-4508. |
CHEN Y , HAN Y M , WANG Z , et al .System fault detection based on data-driven and complex networks theory[J]. CIESC Journal, 2014, 65(11): 4503-4508. | |
3 | 耿志强, 张玉婷, 韩永明 . 基于AHP的贝叶斯网络故障诊断方法研究[J].北京化工大学学报(自然科学版), 2017, 44(5): 99-104. |
GENG Z Q , ZHANG Y T , HAN Y M . A fault diagnosis method for a Bayesian network based on AHP[J].Journal of Beijing University of Chemical Technology ( Natural Science), 2017, 44(5): 99-104. | |
4 | 池红卫, 张世英, 张鹏飞 . 基于信息融合策略的化工过程故障智能诊断系统的研究[J]. 化工进展, 2004, 23(2): 202-204. |
CHI H W , ZHANG S Y , ZHANG P F . Research on synthetic intelligent diagnosis system of chemical engineering based on multi -sensor information fusion policy[J]. Chemical Industry and Engineering Progress, 2004, 23(2): 202-204. | |
5 | 王再英, 白华宁 . 基于相关系数的过程系统故障检测与诊断方法[J]. 化工学报, 2013, 64(12): 4621-4627. |
WANG Z Y , BAI H N . Process system fault detection and diagnosis based on correlation[J]. CIESC Journal, 2013, 64(12): 4621-4627. | |
6 | 郭金玉, 王鑫, 李元 . 基于加权差分主元分析的化工过程故障检测[J]. 高校化学工程学报, 2018(1): 186-196. |
GUO J Y , WANG X , LI Y . Fault detection in chemical processes using weighted differential principal component analysis[J]. Journal of Chemical Engineering of Chinese Universities, 2018(1): 186-196. | |
7 | 石宇, 邱彤, 陈丙珍 . 用于化工过程的SDG故障分析方法[J]. 化工进展, 2006, 25(12): 1484-1488. |
SHI Y , QIU T , CHEN B Z . Fault analysis using process signed directed graph model[J]. Chemical Industry and Engineering Progress, 2006, 25(12): 1484-1488. | |
8 | 宋泓阳, 孙晓岩, 项曙光 . 人工神经网络在化工过程中的应用进展[J]. 化工进展, 2016, 35(12): 3755-3762. |
SONG H Y , SUN X Y , XIANG S G . Progress on the application of artificial neural network in chemical industry[J]. Chemical Industry and Engineering Progress, 2016, 35(12): 3755-3762. | |
9 | 刘兰英 .模糊多级融合技术在化工故障诊断中的应用[J]. 无线互联科技, 2016(6): 137-139. |
LIU L Y . Application of fuzzy multilevel fusion to chemical fault diagnosis[J]. Wireless Internet Technology, 2016(6): 137-139. | |
10 | MOTTER A E , LAI Y C . Cascade-based attacks on complex networks[J]. Physical Review E: Statistical Nonlinear & Soft Matter Physics, 2002, 66(2):065102. |
11 | MOTTER A E . Cascade control and defense in complex networks[J]. Physical Review Letters, 2004, 93(9):098701. |
12 | 史苇杭, 林楠 . 社会网络中基于核函数的信息传播模型[J]. 计算机应用研究, 2016, 33(9): 2735-2737. |
SHI W H , LIN N . Kernel function based information diffusion model in social networks[J]. Application Research of Computers, 2016, 33(9): 2735-2737. | |
13 | 陆晓静, 宋玉蓉 . 基于边移除的智能电网级联故障鲁棒性分析[J]. 计算机工程, 2018, 44(1): 292-298. |
LU X J , SONG Y R . Analysis of robustness for cascading failure in smart grid based on edge remove[J]. Computer Engineering, 2018, 44(1): 292-298. | |
14 | 丁琳, 刘莹慧 . 拓扑对复杂通信网络级联故障传播的影响[J]. 南华大学学报(自然科学版), 2016, 30(4): 82-87. |
DING N , LIU Y H . Impact of Topology on the propagation of cascading failure in complex communication networks[J]. Journal of University of South China (Science and Technology), 2016, 30(4): 82-87. | |
15 | LI Q , LV Y B . Urban rail transit comprehensive performance evaluation research based on improved BSC[C]//International Conference on Electronics, Electrical Engineering and Information Science, 2016: 833-840. |
16 | CRUCITTI P , LATORA V , MARCHIORI M . Model for cascading failures in complex networks[J]. Physical Review E: Statistical Nonlinear & Soft Matter Physics, 2004, 69(4 Pt 2):045104. |
17 | BAO Z J , CAO Y J , DING L J , et al . Dynamics of load entropy during cascading failure propagation in scale-free networks[J]. Physics Letters A, 2008, 372(36):5778-5782. |
18 | LEHMANN J , BERNASCONI J . Stochastic load-redistribution model for cascading failure propagation[J]. Physical Review E: Statistical Nonlinear & Soft Matter Physics, 2010, 81(3Pt1):031129. |
19 | WANG J W , RONG L L . Cascading failures in scale-free networks with a breakdown probability[J]. Physica A: Statistical Mechanics & Its Applications, 2009, 388(7):1289-1298. |
20 | SUN H J , ZHAO H , WU J J . A robust matching model of capacity to defense cascading failure on complex networks[J]. Physica A: Statistical Mechanics & Its Applications, 2008, 387(25):6431-6435. |
21 | WANG J W , RONG L L . Edge-based-attack induced cascading failures on scale-free networks[J]. Physica A: Statistical Mechanics & Its Applications, 2009, 388(8):1731-1737. |
22 | DORIGO M , MANIEZZO V , COLORNI A . Ant system optimization by a colony of cooperating agents[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 1996, 26(1):29-41. |
23 | 周漩, 张凤鸣, 李克武, 等 . 利用重要度评价矩阵确定复杂网络关键节点[J]. 物理学报, 2012, 61(5): 1-7. |
ZHOU X , ZHANG F M , LI K W , et al . Find vital node by node importance evaluation matrix in complex networks[J]. Acta Physics Sinica, 2012, 61(5): 1-7. | |
24 | 李树栋 . 复杂网络级联动力学行为机制研究[D]. 北京: 北京邮电大学, 2012. |
LI S D . Research on the mechanism of cascading dynamics and behaviors of complex networks[D]. Beijing: Beijing University of Posts and Telecommunications, 2012. | |
25 | MIRZASOLEIMAN B , BABAEI M , JALILI M , et al . Cascading failures in weighted networks[J]. Physical Review E: Statistical Nonlonear & Soft Matter Physics, 2011, 84(2):046114. |
26 | NING L , XIONG W . SDG-Based HAZOP and fault diagnosis analysis to the inversion of synthetic ammonia[J]. Tsinghua Science & Technology, 2007, 12(1): 30-37. |
27 | 李强, 张述伟, 廖新文, 等 . 布朗流程合成氨装置一段转化炉故障原因分析与对策[J]. 大氮肥, 2010, 33(2): 73-78. |
LI Q , ZHANG S W , LIAO X W , et al . Failure analysis and counter-measures of primary reeormerin ammonia plant of brown process technology[J]. Large Scale Nitrogenous Fertilizer Industry, 2010, 33(2): 73-78. | |
28 | 马志刚, 靳明程, 陈衍涛, 等 . HAZOP研究与故障树分析在合成氨装置危险辨识中的应用[J]. 中国安全生产科学技术, 2012, 8(10): 85-90. |
MA Z G, JIN M C , CHEN Y T , et al . Application of HAZOP and fault tree analysis (FTA) in hazard identification of ammonia synthesis plant[J]. Journal of Safety Science and Technology, 2012, 8(10): 85-90. | |
29 | 姜英, 王政, 秦艳, 等 . 基于复杂网络的化工过程层次符号有向图模型建立及关键节点识别[J]. 化工进展, 2018, 37(2): 444-451. |
JIANG Y , WANG Z , QIN Y , et al . AHP-SDG model establishment and key node identification of chemical process system based on complex network[J]. Chemical Industry and Engineering Progress, 2018, 37(2): 444-451. |
[1] | ZHU Jiaxing, HAO Lin, LIU Guozhao, WEI Hongyuan. Research progress and prospect on inherent safety assessment methods for chemical processes [J]. Chemical Industry and Engineering Progress, 2022, 41(8): 4009-4024. |
[2] | LI Zhibin, TANG Hui, LUO Dawei, YING Qiao. Progress in chemical recycling of waste PET and preparation of unsaturated polyester resins [J]. Chemical Industry and Engineering Progress, 2022, 41(6): 3279-3292. |
[3] | LI Xintong, CHEN Zhibing, WEI Zhiqiang, LI Sutong, CHEN Xu, SONG Kai. Convolution neural network with attention mechanism of input data for quality prediction of fluorine chemical products [J]. Chemical Industry and Engineering Progress, 2022, 41(2): 593-600. |
[4] | TAN Xiao, QI Suitao, ZHOU Yiming, SHI Libin, CHENG Guangxu, YI Chunhai, YANG Bolun. Direct catalytic reduction of NO by bimetallic ferromanganese catalyst under non-thermal plasma [J]. Chemical Industry and Engineering Progress, 2022, 41(11): 5850-5857. |
[5] | SUN Peijie, WANG Linping, XU Lejin. Advances in the treatment of cyanide in coking wastewater [J]. Chemical Industry and Engineering Progress, 2021, 40(S1): 386-396. |
[6] | YAO Yuman, LUO Wenjia, DAI Yiyang. Research progress of data-driven methods in fault diagnosis of chemical process [J]. Chemical Industry and Engineering Progress, 2021, 40(4): 1755-1764. |
[7] | LI Xiang, WANG Xueqian, LI Pengfei, WANG Langlang, NING Ping, MA Yixing, CAO Rui, ZHONG Lei. Progress on characteristic components analysis of blast furnace gas and its influence on desulfurization process [J]. Chemical Industry and Engineering Progress, 2021, 40(12): 6629-6639. |
[8] | Zhiyun ZOU, Wenchao ZHU, Yingli LIU, Lei MENG, Ning GUO, Meng YU. Discussion on the development trend of small scale special fine chemical process automation and informatization [J]. Chemical Industry and Engineering Progress, 2020, 39(S2): 269-275. |
[9] | Xueliang YIN, Heli MA, Changwei GONG, Chengwu DU, Tingquan HAN. Promoting law and mechanism of TiO2 addition on sintering of CaAl4O7 refractory [J]. Chemical Industry and Engineering Progress, 2020, 39(S1): 200-205. |
[10] | Xinyu MENG, Jie XU, Jie WAN, Yanjun LIU, Xiaoli WANG, Jun ZHANG, Feng ZHENG, Jianfei KAN, Gongde WU. Research and industrialization progress in synthesis of glycerol carbonate [J]. Chemical Industry and Engineering Progress, 2020, 39(9): 3739-3749. |
[11] | Likun ZHOU, Qingfeng GE, Houkai TENG. Progress in preparation of biobased compounds from energy plant Jerusalem artichoke [J]. Chemical Industry and Engineering Progress, 2020, 39(7): 2612-2623. |
[12] | Ronghui ZHU,Fengyu GAO,Xiaoning TANG,Yangyang GUO,Yang LI. Synthesis of amorphous MnOx/SiO2 catalyst and the mechanismfor low-temperature catalytic oxidation of formaldehyde [J]. Chemical Industry and Engineering Progress, 2019, 38(12): 5402-5409. |
[13] | Yunqing DONG, Zheng WANG, Yifan XU, Yanxia YANG, Xiaoping JIA, Fang WANG. Heat exchanger network bypass position determination based on complex network control theory [J]. Chemical Industry and Engineering Progress, 2019, 38(07): 3046-3055. |
[14] | DENG Qijiu, FENG Shuaishuai, TIAN Congcong, HUI Peng, YAN Yinglin, YANG Rong. Research progress on the electrochemical storage mechanisms of metalorganic frameworks in secondary batteries [J]. Chemical Industry and Engineering Progress, 2019, 38(06): 2674-2681. |
[15] | LIU Yangyu, JIA Hongwei, PAN Yongtai, ZHENG Shuilin, SUN Zhiming, LI Mingzhe. Reaction products and kinetic process for the calcination of opoka with ammonium sulfate [J]. Chemical Industry and Engineering Progress, 2018, 37(12): 4543-4550. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |