Chemical Industry and Engineering Progress ›› 2019, Vol. 38 ›› Issue (06): 2682-2696.DOI: 10.16085/j.issn.1000-6613.2018-1817
• Energy processes and technology • Previous Articles Next Articles
Yuchuan CHEN1(),Bohui SHI1(),Wenqing LI2,Fangfei HUANG3(),Xiaofang LÜ4,Yang LIU1,Haihao WU1,Jing GONG1
Received:
2018-09-10
Online:
2019-06-05
Published:
2019-06-05
Contact:
Bohui SHI,Fangfei HUANG
陈玉川1(),史博会1(),李文庆2,黄芳飞3(),吕晓方4,柳扬1,吴海浩1,宫敬1
通讯作者:
史博会,黄芳飞
作者简介:
陈玉川(1993—),男,博士研究生,研究方向为天然气水合物浆液多相流及深海油气流动安全保障。E-mail:<email>jshzcyc@163.com</email>。
基金资助:
CLC Number:
Yuchuan CHEN, Bohui SHI, Wenqing LI, Fangfei HUANG, Xiaofang LÜ, Yang LIU, Haihao WU, Jing GONG. Progress of the non-Newtonian properties of hydrate slurry and viscosity model[J]. Chemical Industry and Engineering Progress, 2019, 38(06): 2682-2696.
陈玉川, 史博会, 李文庆, 黄芳飞, 吕晓方, 柳扬, 吴海浩, 宫敬. 水合物浆液非牛顿特性与黏度模型研究进展[J]. 化工进展, 2019, 38(06): 2682-2696.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2018-1817
研究者 | 流变仪类型 | 夹具类型 | 所测参数 | 温控范围/℃ | 最高承受压力 /MPa |
---|---|---|---|---|---|
Zylyftari等[ | ARES-G2(控应变) | 同轴圆筒 (外筒直径34mm; 内筒直径32mm; 内筒高度33.5mm) | 黏度 | -40~180 | 0.1 |
Ahuja等[ | AR 2000ex(控应力) | 同轴圆筒/叶片式搅拌桨 | 黏度、储能模量、 耗能模量、柔量、屈服应力 | -20~150 | 0.1 |
Webb等[ | AR-G2(控应力/应变) | 同轴圆筒 (外筒直径28mm; 内筒直径26mm) | 黏度、屈服应力 | -25~150 | 13.78 |
Qin等[ | DHR(控应力) | 叶片式搅拌桨 | 黏度、屈服应力 | -10~150 | 13.8 |
Leopercio等[ | DHR-3(控应力) | 平板 | 储能模量、耗能模量、 屈服应变 | -10~150 | 0.1 |
研究者 | 流变仪类型 | 夹具类型 | 所测参数 | 温控范围/℃ | 最高承受压力 /MPa |
---|---|---|---|---|---|
Zylyftari等[ | ARES-G2(控应变) | 同轴圆筒 (外筒直径34mm; 内筒直径32mm; 内筒高度33.5mm) | 黏度 | -40~180 | 0.1 |
Ahuja等[ | AR 2000ex(控应力) | 同轴圆筒/叶片式搅拌桨 | 黏度、储能模量、 耗能模量、柔量、屈服应力 | -20~150 | 0.1 |
Webb等[ | AR-G2(控应力/应变) | 同轴圆筒 (外筒直径28mm; 内筒直径26mm) | 黏度、屈服应力 | -25~150 | 13.78 |
Qin等[ | DHR(控应力) | 叶片式搅拌桨 | 黏度、屈服应力 | -10~150 | 13.8 |
Leopercio等[ | DHR-3(控应力) | 平板 | 储能模量、耗能模量、 屈服应变 | -10~150 | 0.1 |
研究者 | 生成水合物 | 油相 | 表面活性剂 | 含水率/% | 初始压力 /MPa | 温度/℃ | 剪切率 /s-1 |
---|---|---|---|---|---|---|---|
Ahuja等[ | 环戊烷水合物 | 煤油+聚三氟氯乙烯树脂+环戊烷 | Span 80 | 40 | 0.1 | -5~-10 | 100 |
Zylyftari等[ | 环戊烷水合物 | 环戊烷+异辛烷+轻矿物油+ 聚三氟氯乙烯树脂 | Span 80 | 40 | 0.1 | -7 | 100 |
Zylyftari等[ | 环戊烷水合物 | 轻矿物油+聚三氟氯乙烯树脂+ 环戊烷 | Span 80 | 40 | 0.1 | -13 | 100 |
Zylyftari等[ | 环戊烷水合物 | 环戊烷+异辛烷+轻矿物油+ 聚三氟氯乙烯树脂 | Span 80 | 40 | 0.1 | -3.6 | 100 |
Ahuja等[ | 环戊烷水合物 | 轻矿物油+聚三氟氯乙烯树脂+ 环戊烷 | Span 80 | 16~24 | 0.1 | -2 | 100 |
Karanjkar等[ | 环戊烷水合物 | 轻矿物油+聚三氟氯乙烯树脂+ 环戊烷 | Span 80 | 10~45 | 0.1 | -2 | 10 |
Webb等[ | 甲烷水合物 | 西非原油 | — | 0~50 | 13.8 | 0 | 100 |
Webb等[ | 甲烷水合物 | 矿物油70t | 二-乙基己基琥珀酸酯 磺酸钠+Span 80 | 10~40 | 10.335 | 0 | 100 |
Qin等[ | 甲烷水合物 | 原油 | — | 5~30 | 10 | 1 | 43.5 |
Zylyftari等[ | 丙烷水合物 | 矿物油+聚三氟氯乙烯树脂 +环戊烷 | Span 80 | 40 | 0.4 | -10~0.5 | 50 |
Webb等[ | 甲烷水合物 | 十二烷 | 二-乙基己基琥珀酸酯磺酸钠 | 5~30 | 10.39 | 0 | 100 |
Majid等[ | 甲烷水合物 | 矿物油350t | 二-乙基己基琥珀酸酯 磺酸钠+Span 80 | 0~30 | 10.35 | 1 | 50rad/s |
Rensing等[ | 甲烷水合物 | 西非原油 | — | 25/30 | 10.35 | 0 | 100 |
研究者 | 生成水合物 | 油相 | 表面活性剂 | 含水率/% | 初始压力 /MPa | 温度/℃ | 剪切率 /s-1 |
---|---|---|---|---|---|---|---|
Ahuja等[ | 环戊烷水合物 | 煤油+聚三氟氯乙烯树脂+环戊烷 | Span 80 | 40 | 0.1 | -5~-10 | 100 |
Zylyftari等[ | 环戊烷水合物 | 环戊烷+异辛烷+轻矿物油+ 聚三氟氯乙烯树脂 | Span 80 | 40 | 0.1 | -7 | 100 |
Zylyftari等[ | 环戊烷水合物 | 轻矿物油+聚三氟氯乙烯树脂+ 环戊烷 | Span 80 | 40 | 0.1 | -13 | 100 |
Zylyftari等[ | 环戊烷水合物 | 环戊烷+异辛烷+轻矿物油+ 聚三氟氯乙烯树脂 | Span 80 | 40 | 0.1 | -3.6 | 100 |
Ahuja等[ | 环戊烷水合物 | 轻矿物油+聚三氟氯乙烯树脂+ 环戊烷 | Span 80 | 16~24 | 0.1 | -2 | 100 |
Karanjkar等[ | 环戊烷水合物 | 轻矿物油+聚三氟氯乙烯树脂+ 环戊烷 | Span 80 | 10~45 | 0.1 | -2 | 10 |
Webb等[ | 甲烷水合物 | 西非原油 | — | 0~50 | 13.8 | 0 | 100 |
Webb等[ | 甲烷水合物 | 矿物油70t | 二-乙基己基琥珀酸酯 磺酸钠+Span 80 | 10~40 | 10.335 | 0 | 100 |
Qin等[ | 甲烷水合物 | 原油 | — | 5~30 | 10 | 1 | 43.5 |
Zylyftari等[ | 丙烷水合物 | 矿物油+聚三氟氯乙烯树脂 +环戊烷 | Span 80 | 40 | 0.4 | -10~0.5 | 50 |
Webb等[ | 甲烷水合物 | 十二烷 | 二-乙基己基琥珀酸酯磺酸钠 | 5~30 | 10.39 | 0 | 100 |
Majid等[ | 甲烷水合物 | 矿物油350t | 二-乙基己基琥珀酸酯 磺酸钠+Span 80 | 0~30 | 10.35 | 1 | 50rad/s |
Rensing等[ | 甲烷水合物 | 西非原油 | — | 25/30 | 10.35 | 0 | 100 |
研究者 | 实验装置 | 生成水合物 | 测量方法 | 含水率/% | 实验温度/K | 初始压力/MPa | 屈服应力/Pa |
---|---|---|---|---|---|---|---|
Ahuja等[ | 常压流变仪 | 环戊烷水合物 | 最大弹性应力 | 40 | 266.15 | 0.1 | 4~1105 |
Zylyftari等[ | 常压流变仪 | 环戊烷水合物 | 剪切应力扫描 | 40 | 266.15 | 0.1 | 0~145 |
Ahuja等[ | 常压流变仪 | 环戊烷水合物 | 连续应力震荡扫描 | 18 | 271.15 | 0.1 | 281±138 |
震荡应力阶跃扫描 | 212±38 | ||||||
最大弹性应力 | 270±162 | ||||||
蠕变 | 187.5±12.5 | ||||||
剪切速率扫描 | 162 | ||||||
Webb等[ | 高压流变仪 | 甲烷水合物 | 剪切应力扫描 | 10 | 273.15 | 10.4 | 3 |
20 | 273.15 | 10.4 | 11 | ||||
30 | 273.15 | 10.4 | 18 | ||||
40 | 273.15 | 10.4 | 21 | ||||
30 | 277.15 | 10.4 | 110 | ||||
30 | 279.15 | 10.4 | 30 | ||||
30 | 273.15 | 5.2 | 380 | ||||
30 | 273.15 | 6.9 | 75 | ||||
30 | 273.15 | 8.3 | 65 | ||||
Qin等[ | 高压流变仪 | 甲烷水合物 | 剪切应力扫描 | 5 | 278.15 | 10 | 3 |
10 | 278.15 | 10 | 11 | ||||
20 | 278.15 | 10 | 19 | ||||
30 | 278.15 | 10 | 25 | ||||
Webb等[ | 高压流变仪 | 甲烷水合物 | 剪切应力扫描 | 5~30 | 273.15 | 10.4 | 1~20 |
研究者 | 实验装置 | 生成水合物 | 测量方法 | 含水率/% | 实验温度/K | 初始压力/MPa | 屈服应力/Pa |
---|---|---|---|---|---|---|---|
Ahuja等[ | 常压流变仪 | 环戊烷水合物 | 最大弹性应力 | 40 | 266.15 | 0.1 | 4~1105 |
Zylyftari等[ | 常压流变仪 | 环戊烷水合物 | 剪切应力扫描 | 40 | 266.15 | 0.1 | 0~145 |
Ahuja等[ | 常压流变仪 | 环戊烷水合物 | 连续应力震荡扫描 | 18 | 271.15 | 0.1 | 281±138 |
震荡应力阶跃扫描 | 212±38 | ||||||
最大弹性应力 | 270±162 | ||||||
蠕变 | 187.5±12.5 | ||||||
剪切速率扫描 | 162 | ||||||
Webb等[ | 高压流变仪 | 甲烷水合物 | 剪切应力扫描 | 10 | 273.15 | 10.4 | 3 |
20 | 273.15 | 10.4 | 11 | ||||
30 | 273.15 | 10.4 | 18 | ||||
40 | 273.15 | 10.4 | 21 | ||||
30 | 277.15 | 10.4 | 110 | ||||
30 | 279.15 | 10.4 | 30 | ||||
30 | 273.15 | 5.2 | 380 | ||||
30 | 273.15 | 6.9 | 75 | ||||
30 | 273.15 | 8.3 | 65 | ||||
Qin等[ | 高压流变仪 | 甲烷水合物 | 剪切应力扫描 | 5 | 278.15 | 10 | 3 |
10 | 278.15 | 10 | 11 | ||||
20 | 278.15 | 10 | 19 | ||||
30 | 278.15 | 10 | 25 | ||||
Webb等[ | 高压流变仪 | 甲烷水合物 | 剪切应力扫描 | 5~30 | 273.15 | 10.4 | 1~20 |
1 | 谢彬,张爱霞,段梦兰 . 中国南海深水油气田开发工程模式及平台选型[J]. 石油学报,2007,28(1):115-118. |
XIE B , ZHANG A X , DUAN M L . Engineering mode and platform selection for deepwater oilfield development in South China Sea[J]. Acta Petrolei Sinica,2007,28(1):115-118. | |
2 | SLOAN E D ,KOH C A . Clathrate hydrates of natural gases[M]. 3rd ed. New York: CRC Press,2007. |
3 | SLOAN E D ,KOH C A,SUM A K . Natural gas hydrates in flow assurance[M]. Burlington:Gulf Professional Publishing,2010. |
4 | 闫柯乐,邹兵,姜素霞,等 . 水合物浆液流动与流变特性研究进展[J]. 化工进展,2015,34(7):1817-1825. |
YAN K L , ZHOU B , JIANG S X ,et al . Review on flow characteristics and rheological properties of hydrate slurry[J]. Chemical Industry and Engineering Progress,2015,34(7):1817-1825. | |
5 | 王书淼,吴明,王国付,等 . 管内天然气水合物抑制剂的应用研究[J]. 油气储运,2006,25(2):43-46. |
WANG S M , WU M , WANG G F ,et al . Application research of natural gas hydrate inhibitor in pipelines[J]. Oil & Gas Storage and Transportation,2006,25(2):43-46. | |
6 | 丁麟,史博会,吕晓方,等 . 天然气水合物的生成对浆液流动稳定性影响综述[J]. 化工进展,2016,35(10):3118-3128. |
DING L , SHI B H , LÜ X F ,et al . Investigation on the effects of natural gas hydrate formation on slurry flow stability[J]. Chemical Industry and Engineering Progress,2016,35(10):3118-3128. | |
7 | SUN M W , FIROOZABADI A . New surfactant for hydrate anti-agglomeration in hydrocarbon flowlines and seabed oil capture[J]. Journal of Colloid and Interface Science,2013,402:312-319. |
8 | HUO Z , FREER E , LAMAR M ,et al . Hydrate plug prevention by anti-agglomeration[J]. Chemical Engineering Science,2001,56(17):4979-4991. |
9 | MAXIMILIAN A , KARIN N , AXEL S . Grafted polymers as gas hydrate inhibitors:US6867262[P]. 2005-03-15. |
10 | KELLAND M A , SVARTAAS T M , OVSTHUS J ,et al . Studies on some zwitterionic surfactant gas hydrate anti-agglomerants[J]. Chemical Engineering Science,2006,61(12):4048-4059. |
11 | KELLAND M A , SVARTAAS T M , OVSTHUS J ,et al . Studies on some alkylamide surfactant gas hydrate anti-agglomerants[J]. Chemical Engineering Science,2006,61(13):4290-4298. |
12 | KELLAND M A , SVARTAAS T M , ANDERSEN L D . Gas hydrate anti-agglomerant properties of polypropoxylates and some other demulsifiers[J]. Journal of Petroleum Science and Engineering,2009,64(1/2/3/4):1-10. |
13 | PENG B Z , CHEN J , SUN C Y ,et al . Flow characteristics and morphology of hydrate slurry formed from (natural gas + diesel oil/condensate oil + water) system containing anti-agglomerant[J]. Chemical Engineering Science,2012,84:333-344. |
14 | LI X , NEGADI L , FIROOZABADI A . Anti-agglomeration in cyclopentane hydrates from bio- and co-surfactants[J]. Energy & Fuels,2010,24(9):4937-4943. |
15 | YAN K L , SUN C Y , CHEN J ,et al . Flow characteristics and rheological properties of natural gas hydrate slurry with presence of anti-agglomerant in a flow loop apparatus[J]. Chemical Engineering Science,2014,106:99-108. |
16 | CHEN J , SUN C Y , PENG B Z ,et al . Screening and compounding of gas hydrate anti-agglomerants from commercial additives through morphology observation[J]. Energy & Fuels,2013,27(5):2488-2496. |
17 | WANG W C , FAN S S , LIANG D Q , et al . A model for estimating flow assurance of hydrate slurry in pipelines[J]. Journal of Energy Chemistry,2010,19(4):380-384. |
18 | DELAHAYE A , FOURNAISON L , MARINHAS S , et al . Rheological study of CO2 hydrate slurry in a dynamic loop applied to secondary refrigeration[J]. Chemical Engineering Science,2008,63(13):3551−3559. |
19 | DELAHAYE A , FOURNAISON L , JERBI S , et al . Rheological properties of CO2 hydrate slurry flow in the presence of additives[J]. Industrial & Engineering Chemistry Research,2011,50(13):8344−8353. |
20 | FIDEL-DUFOUR A , GRUY F , HERRI J M . Rheology of methane hydrate slurries during their crystallization in a water in dodecane emulsion under flowing[J]. Chemical Engineering Science,2006,61(2):505-515. |
21 | SUZUKI H , ITOTAGAWA T , INDARTONO Y S ,et al . Rheological characteristics of trimethylolethane hydrate slurry treated with drag-reducing surfactants[J]. Rheologica Acta,2006,46(2):287-295. |
22 | AKHFASH M , BOXALL J A , AMAN Z M ,et al . Hydrate formation and particle distributions in gas-water systems[J]. Chemical Engineering Science,2013,104:177-188. |
23 | AMAN Z , AKHFASH M , JOHNS M ,et al . Methane hydrate bed formation in a visual autoclave: cold restart and Reynolds number dependence[J]. Journal of Chemical & Engineering Data,2015,60(2):409-417. |
24 | AKHFASH M , AMAN Z M , DU J W ,et al . Microscale detection of hydrate blockage onset in high-pressure gas-water systems[J]. Energy & Fuels,2017,3(5):4875-4885. |
25 | AHUJA A , ZYLYFTARI G , MORRIS J F . Calorimetric and rheological studies on cyclopentane hydrate-forming water-in-kerosene emulsions[J]. Journal of Chemical and Engineering Data,2015,60(2):362-368. |
26 | ZYLYFTARI G , AHUJA A , MORRIS J F . Modeling oilfield emulsions: comparison of cyclopentane hydrate and ice[J]. Energy & Fuels,2015,29(10):6286-6295. |
27 | SILVA P H D L , NACCACHE M F , MENDES P R D S ,et al . Rheology of tetrahydrofuran hydrate slurries[J]. Energy & Fuels,2017,31(12):14385-14392 |
28 | SHI B H , CHAI S , WANG L Y ,et al . Viscosity investigation of natural gas hydrate slurries with anti-agglomerants additives[J]. Fuel,2016,185:323-338. |
29 | SHI B H , CHAI S , DING L ,et al . An investigation on gas hydrate formation and slurry viscosity in the presence of wax crystals[J]. AIChE Journal,2018,64(9):3229-3553. |
30 | 史博会,柴帅,柳杨,等 . 含蜡晶天然气水合物浆液黏度的影响因素[J]. 天然气工业,2017,37(5):97-105. |
SHI B H , CHAI S , LIU Y ,et al . Factors influencing the viscosity of natural gas hydrate slurry with wax crystal[J]. Natural Gas Industry,2017,37(5):97-105. | |
31 | 柴帅 . 水合物浆液流变特性实验研究[D].北京:中国石油大学(北京),2017. |
CHAI S . Experimental study on rheological properties of hydrates slurry[D]. Beijing:China University of Petroleum(Beijing),2017. | |
32 | 王麟雁 . 水合物浆液黏度特性实验研究[D].北京:中国石油大学(北京),2015. |
WANG L Y . Experimental study on viscosity properties of hydrate slurry[D]. Beijing:China University of Petroleum(Beijing),2015. | |
33 | 刘慧姝 . 高压系统浆体流变特性实验研究[D].北京:中国石油大学(北京),2014. |
LIU H S . Experimental high pressure rheology measurement of hydrate nature gas hydrate slurry[D]. Beijing:China University of Petroleum(Beijing),2014. | |
34 | MEMON A ,NG H J . Effectiveness of low-dosage hydrate inhibitors and their rheological behavior for gas condensate/water systems[J]. Journal of Chemical and Engineering Data,2015,60(2):293-298. |
35 | WEBB E B ,KOH C A, LIBERATORE M W . High pressure rheology of hydrate slurries formed from water-in-mineral oil emulsions[J]. Industrial and Engineering Chemistry Research,2014,53(17):6998-7007. |
36 | WEBB E B , RENSING P J ,KOH C A,et al . High-pressure rheology of hydrate slurries formed from water-in-oil emulsions[J]. Energy & Fuels,2012,26(6):3504-3509. |
37 | QIN Y H , AMAN Z M , PICKERING P F ,et al . High pressure rheological measurements of gas hydrate-in-oil slurries[J]. Journal of Non-Newtonian Fluid Mechanics,2017,248:40-49. |
38 | ZYLYFTARI G ,LEE J W, MORRIS J F . Salt effects on thermodynamic and rheological properties of hydrate forming emulsions[J]. Chemical Engineering Science,2013,95(3):148-160. |
39 | ZYLYFTARI G , AHUJA A , MORRIS J F . Nucleation of cyclopentane hydrate by ice studied by morphology and rheology[J]. Chemical Engineering Science,2014,116:497-507. |
40 | AHUJA A , ZYLIYFTARI G , MORRIS J F . Yield stress measurements of cyclopentane hydrate slurry[J]. Journal of Non-Newtonian Fluid Mechanics,2015,220:116-125. |
41 | KARANJKAR P U , AHUJA A , ZYLYFTARI G , et al . Rheology of cyclopentane hydrate slurry in a model oil-continuous emulsion[J]. Rheologica Acta,2016,55(3):1-9. |
42 | WEBB E B ,KOH C A, LIBERATORE M W . Rheological properties of methane hydrate slurries formed from AOT + water + oil microemulsions[J]. Langmuir the ACS Journal of Surfaces & Colloids,2013,29(35):10997-11004. |
43 | MAJID A , WU D T ,KOH C A . New in-situ measurements of the viscosity of gas clathrate hydrate slurries formed from model water-in-oil emulsions[J]. Langmuir,2017,33(42):11436-11445. |
44 | WEBB E B , RENSING P J ,KOH C A,et al . High pressure rheometer for in situ formation and characterization of methane hydrates[J]. Review of Scientific Instruments,2012,83(1):353. |
45 | LEOPERCIO B C , MENDES P R D S , FULLER G G . The growth kinetics and mechanics of hydrate films by interfacial rheology[J]. Langmuir,2016,32(17):4203-4209. |
46 | CHARIN R M ,SUM A K . Steady-state and transient studies of gas hydrates formation in non-emulsifying oil systems[J]. Energy & Fuels,2017,31(3):2548−2556. |
47 | AHUJA A . Hydrate forming emulsion: rheology and morphology analysis for flow assurance[D]. New York:The City University of New York,2015. |
48 | MAJID A A A . An investigation on the viscosity and transportability of methane hydrate slurries using a high pressure rheometer and flowloop[D]. Golden,Colorado:Colorado School of Mines,2015. |
49 | RENSING P J , LIBERATORE M W , TONMUKAYAKUL N , et al . In situ formation and evolution of gas hydrates in water-in-oil emulsions using pressure rheometry[C]// AIP Conference Proceedings,2008,1027(1):869-871. |
50 | PANDEY G , LINGA P , SANGWAI J S . High pressure rheology of gas hydrate formed from multiphase systems using modified couette rheometer[J]. Review of Scientific Instruments,2017,88(2):1-10. |
51 | AHUJA A , IQBAL A , IQBAL M ,et al . Rheology of hydrate-forming emulsions stabilized by surfactant and hydrophobic silica nanoparticles[J]. Energy & Fuels,2018,32(5):5877−5884. |
52 | SANDOVAL G A B , SOARES E J , THOMPSON R L ,et al . Analysis of CO2 hydrates in crude oils from a rheological point of view[J]. Energy & Fuels,2018,32(3):2733-2741. |
53 | RAMAN A K Y , KOTEESWARAN S , VENKATARAMANI D ,et al . A comparison of the rheological behavior of hydrate forming emulsions stabilized using either solid particles or a surfactant[J]. Fuel,2016,179:141-149. |
54 | BARNES H A . Thixotropy-a review[J]. Journal of Non-Newtonian Fluid Mechanics. 1997,70(1/2):1-33. |
55 | 滕厚兴,张劲军 . 含蜡原油触变模型研究现状[J]. 油气储运,2013,32(9):923-938. |
TENG H X , ZHANG J J . Review of thixotropy model of waxy crude oil[J]. Oil & Gas Storage and Transportation,2013,32(9):923-938. | |
56 | RENSING P J , LIBERATORE M W , SUMUM A K ,et al . Viscosity and yield stresses of ice slurries formed in water-in-oil emulsions[J]. Journal of Non-Newtonian Fluid Mechanics,2011,166(14):859-866. |
57 | 丁垚 . 水合物悬浮液流变性研究[D]. 2010,北京:中国石油大学(北京). |
DING Y . Study on the rheological properties of hydrate suspensions[D]. Beijing:China University of Petroleum(Beijing),2010. | |
58 | 雍宇 . 含蜡体系水合物生成及浆液流动实验研究[D]. 北京:中国石油大学(北京), 2018. |
YONG Y . Experimental study on hydrate formation and slurry flow in waxy systems[D]. Beijing:China University of Petroleum(Beijing),2018. | |
59 | WEBB E B . Rheology of methane hydrate slurries formed from water-in-oil emulsions[D]. Golden,Colorado:Colorado School of Mines,2014. |
60 | KRIEGER I M , DOUGHERTY T J . A mechanism for non-Newtonian flow in suspensions of rigid spheres[J]. Transactions of the Society of Rheology, 2000,3(1):137-152. |
61 | MOONEY M . The viscosity of a concentrated suspension of spherical particles[J]. Journal of Colloid Science,1951,6(2):162-170. |
62 | ROSCOE R . The viscosity of suspensions of rigid spheres[J]. British Journal of Applied Physics,1952,3(8):267. |
63 | BRINKMAN H C . The viscosity of concentrated suspensions and solutions[J]. Journal of Chemical Physics,2004,20(4):571-571. |
64 | CAMARGO R , PALERMO T . Rheological properties of hydrate suspensions in an asphaltenic crude oil[C]// 4th International Conference on Gas Hydrates,Yokohama,Japan,2002. |
65 | MAJID A A A , WU D T ,KOH C A . A perspective on rheological studies of gas hydrate slurry properties[J]. Engineering,2018,4(3):321-329. |
66 | SUDDUTH R D . A generalized model to predict the viscosity of solutions with suspended particles. III. Effects of particle interaction and particle size distribution[J]. Journal of Applied Polymer Science,2010,50(1):123-147. |
67 | KRIEGER I M , DOUGHERTY T J . A mechanism for non-Newtonian flow in suspension of rigid spheres[J]. Journal of Rheology, 1959, 3(1):137-152. |
68 | MORADPOUR H , CHAPOY A , TOHIDI B . Bimodal model for predicting the emulsion-hydrate mixture viscosity in high water cut systems[J]. Fuel,2011,90(11):3343-3351. |
[1] | ZHANG Jie, BAI Zhongbo, FENG Baoxin, PENG Xiaolin, REN Weiwei, ZHANG Jingli, LIU Eryong. Effect of PEG and its compound additives on post-treatment of electrolytic copper foils [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 374-381. |
[2] | DONG Jiayu, WANG Simin. Experimental on ultrasound enhancement of para-xylene crystallization characteristics and regulation mechanism [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4504-4513. |
[3] | WANG Jinhang, HE Yong, SHI Lingli, LONG Zhen, LIANG Deqing. Progress of gas hydrate anti-agglomerants [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4587-4602. |
[4] | LI You, WU Yue, ZHONG Yu, LIN Qixuan, REN Junli. Pretreatment of wheat straw with acidic molten salt hydrate for xylose production and its effect on enzymatic hydrolysis efficiency [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4974-4983. |
[5] | YIN Xinyu, PI Pihui, WEN Xiufang, QIAN Yu. Application of special wettability materials for anti-hydrate-nucleation and anti-hydrate-adhesion in oil and gas pipelines [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4076-4092. |
[6] | ZHANG Kai, LYU Qiunan, LI Gang, LI Xiaosen, MO Jiamei. Morphology and occurrence characteristics of methane hydrates in the mud of the South China Sea [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3865-3874. |
[7] | CHEN Weiyang, SONG Xin, YIN Yaran, ZHANG Xianming, ZHU Chunying, FU Taotao, MA Youguang. Effect of liquid viscosity on bubble interface in the rectangular microchannel [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3468-3477. |
[8] | XIE Zhiwei, WU Zhangyong, ZHU Qichen, JIANG Jiajun, LIANG Tianxiang, LIU Zhenyang. Viscosity properties and magnetoviscous effects of Ni0.5Zn0.5Fe2O4 vegetable oil-based magnetic fluid [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3623-3633. |
[9] | SUN Zhengnan, LI Hongjing, JING Guolin, ZHANG Funing, YAN Biao, LIU Xiaoyan. Application of EVA and its modified polymer in crude oil pour point depressant field [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 2987-2998. |
[10] | YANG Yang, SUN Zhigao, LI Cuimin, LI Juan, HUANG Haifeng. Promotion on the formation of HCFC-141b hydrate under static conditions by surfactant OP-13 [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 2854-2859. |
[11] | LIU Jia, LIANG Deqing, LI Junhui, LIN Decai, WU Siting, LU Fuqin. A review of flow assurance studies on hydrate slurry in oil-water system [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 1739-1759. |
[12] | LI Guangwen, HUA Qucheng, HUANG Zuoxin, DA Zhijian. Progress on polymethacrylate as viscosity index improvers for lube oil [J]. Chemical Industry and Engineering Progress, 2023, 42(3): 1562-1571. |
[13] | WANG Wei, ZHANG Dongxu, LI Zunzhao, WANG Xiaolin, HUANG Qiyu. Research progress on the growth behavior of hydrates in water-in-oil emulsion systems [J]. Chemical Industry and Engineering Progress, 2023, 42(3): 1155-1166. |
[14] | YANG Juanjuan, HE Lin, HE Changqing, LI Xingang, SUI Hong. Treatment of oily sludge through multiphase compound conditioning and demulsification separation process [J]. Chemical Industry and Engineering Progress, 2023, 42(2): 614-623. |
[15] | YUE Zihan, LONG Zhen, ZHOU Xuebing, ZANG Xiaoya, LIANG Deqing. State of the art on hydrogen storage of sⅡ clathrate hydrate [J]. Chemical Industry and Engineering Progress, 2023, 42(10): 5121-5134. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |