Chemical Industry and Engineering Progress ›› 2019, Vol. 38 ›› Issue (05): 2380-2388.DOI: 10.16085/j.issn.1000-6613.2018-1879
• Biochemical and pharmaceutical engineering • Previous Articles Next Articles
Yan HUANG1(),Hailong SUN2(),Zichao MENG1,Zhongli TANG1,Jingtao WANG1()
Received:
2018-09-18
Revised:
2018-11-18
Online:
2019-05-05
Published:
2019-05-05
Contact:
Hailong SUN,Jingtao WANG
通讯作者:
孙海龙,王靖涛
作者简介:
<named-content content-type="corresp-name">黄炎</named-content>(1993—),男,硕士研究生,研究方向为结晶。E-mail:<email>hyahut@163.com</email>。
基金资助:
CLC Number:
Yan HUANG, Hailong SUN, Zichao MENG, Zhongli TANG, Jingtao WANG. Progress in antisolvent crystallization in pharmaceutical field[J]. Chemical Industry and Engineering Progress, 2019, 38(05): 2380-2388.
黄炎, 孙海龙, 孟子超, 唐忠利, 王靖涛. 溶析结晶在医药领域的研究进展[J]. 化工进展, 2019, 38(05): 2380-2388.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2018-1879
1 | 丁绪淮, 谈遒 . 工业结晶[M]. 北京: 化学工业出版社, 1985: 294. |
DING X H , TAN Q . Industrial crystallization[M]. Beijing: Chemical Industry Press, 1985:294. | |
2 | 龚俊波 . 工业结晶科学与技术专辑[J]. 化学工业与工程, 2018, 35(3): 1. |
GONG J B . Industrial crystallization science and technology[J]. Chemical Industry and Engineering, 2018, 35(3): 1. | |
3 | 王静康//时钧, 汪家鼎, 余国琮, 等. . 结晶[M]. |
化学工程手册2版. 北京: 化学工业出版社, 1996:10-11. | |
WANG J K //SHI J , WANG J D , YU G C , et al. . Crystallization[M]. | |
Chemical engineering manual 2nd ed. Beijing: Chemical Industry Press, 1996:10-11. | |
4 | THORAT A A , DALVI S V . Liquid antisolvent precipitation and stabilization of nanoparticles of poorly water soluble drugs in aqueous suspensions: recent developments and future perspective[J]. Chemical Engineering Journal, 2012, 181-182:1-34. |
5 | MULLER R H , KECK C M . Twenty years of drug nanocrystals: where are we, and where do we go[J]. European Journal of Pharmaceutics and Biopharmaceutics, 2012, 80(1): 1-3. |
6 | KURUP M , R A R . Antisolvent crystallization a novel approach to bioavailability enhancement[J]. European Journal of Biomedical and Pharmaceutical Sciences, 2016, 3(3): 230-234. |
7 | MULLIN J W . Crystallization[M]. 4th. Woburn: Butterworth-Heinemann, 2001: 294. |
8 | WANG Z R , ZHOU G Y , DONG J J , et al . Measurement and correlation of the solubility of antipyrine in ten pure and water + ethanol mixed solvents at temperature from (288.15 to 328.15) K[J]. Journal of Molecular Liquids, 2018,268: 256-265. |
9 | LI K L , WU S G , XU S J , et al . Oiling out and polymorphism control of pyraclostrobin in cooling crystallization[J]. Industrial & Engineering Chemistry Research, 2016,55: 11631-11637. |
10 | LONG B , XIA Y , DENG Z , et al . Understanding the enhanced solubility of 1,3-benzenedicarboxylic acid in polar binary solvents of (acetone + water) at various temperatures[J]. The Journal of Chemical Themodynamics, 2017,105: 105-111. |
11 | LI S , JIANG L , QIU J , et al . Solubility and solution thermodynamics of the δ form of l‑citrulline in water + ethanol binary solvent mixtures[J]. Journal of Chemical & Engineering Data, 2016,61: 264-271. |
12 | ZHANG Q , HU Y , YANG Y , et al . Thermodynamic models for determination of the solubility of the the (1∶1) complex of (urea + l‑malic acid) in (methanol+acetonitrile) binary solvent mixtures binary solvent mixtures[J]. Journal of Chemical & Engineering Data, 2015,60: 1608-1613. |
13 | WANG J , XU A , XU R . Determination and correlation of terephthaldialdehyde solubility in (ethanol, isopropanol, ethyl acetate, isopentanol)+N,N-dimethylformamide mixed solvents at temperatures from 273.15K to 318.15K[J]. The Journal of Chemical Themodynamics, 2017,105: 327-336. |
14 | EGHRARY S H , ZARGHAMI R , MARTINEZ F , et al . Solubility of 2-butyl-3-benzofuranyl 4-(2-(diethylamino)ethoxy)-3,5-diiodophenyl ketone hydrochloride (amiodarone HCl) in ethanol + water and N-methyl-2-pyrrolidone + water mixtures at various temperatures[J]. Journal of Chemical & Engineering Data, 2012,57: 1544-1550. |
15 | CRESTANI C E , BERNARDO A , COSTA C B B , et al . Fructose solubility in mixed (ethanol + water) solvent: experimental data and comparison among different thermodynamic models[J]. Journal of Chemical & Engineering Data, 2013,58(11): 3039-3045. |
16 | LI X , YIN Q , ZHANG M , et al . Process design for antisolvent crystallization of erythromycin ethylsuccinate in oiling-out system[J]. Industrial & Engineering Chemistry Research, 2016,55(27): 7484-7492. |
17 | KUDO S , TAKIYAMA H . Solubility determination for carbamazepine and saccharin in methanol/water mixed solvent: basic data for design of cocrystal production by antisolvent crystallization[J]. Journal of Chemical & Engineering Data, 2018, 63: 451-458. |
18 | GRANBERG R A , DUCREUX C , GRACIN S , et al . Primary nucleation of paracetamol in acetone-water mixtures[J]. Chemical Engineering Science, 2001, 56(7): 2305-2313. |
19 | LINDENBERG C , VICUM L , et al . Antisolvent precipitation of PDI 747: kinetics of particle formation and growth[J]. Crystal Growth & Design, 2007, 7(9): 1653-1661. |
20 | LUO Y , WU G , SUN B . Antisolvent crystallization of biapenem: estimation of growth and nucleation kinetics[J]. Journal of Chemical & Engineering Data, 2013, 58(3): 588-597. |
21 | NONOYAMA N , HANAKI K , YABUKI Y , et al . Constant supersaturation control of antisolvent-addition batch crystallization[J]. Organic Process Research & Development, 2006,10(4): 727-732. |
22 | TRIFKOVIC M , SHEIKHZADEH M , ROHANI S . Kinetics estimation and single and multi-objective optimization of a seeded, anti-solvent, isothermal batch crystallizer[J]. Industrial & Engineering Chemistry Research, 2018, 47: 1586-1595. |
23 | GARG M , ROY M, CHOKSHI P , et al . Process development in the QbD paradigm: mechanistic modeling of antisolvent crystallization for production of pharmaceuticals[J]. Crystal Growth & Design, 2018, 18(6): 3352-3359. |
24 | SCHALL J M , MANDUR J S , BRAATZ R D , et al . Nucleation and growth kinetics for combined cooling and antisolvent crystallization in a mixed-suspension, mixed-product removal system: estimating solvent dependency[J]. Crystal Growth & Design, 2018,18: 1560-1570. |
25 | HU J , NG W K, DONG Y , et al . Continuous and scalable process for water-redispersible nanoformulation of poorly aqueous soluble APIs by antisolvent precipitation and spray-drying[J]. International Journal of Pharmaceutics, 2011, 404(1/2): 198-204. |
26 | DOUROUMIS D , SCHELER S , FAHR A . Using a modified shepards method for optimization of a nanoparticulate cyclosporine a formulation prepared by a static mixer technique[J]. Journal of Pharmaceutical Sciences, 2008, 97(2): 919-930. |
27 | HU T , CHIOU H , CHAN H K , et al . Preparation of inhalable salbutamol sulphate using reactive high gravity controlled precipitation[J]. Journal of Pharmaceutical Sciences, 2008, 97(2): 944-949. |
28 | JOHNSON B K , PRUD'HOMME R K . Chemical processing and micromixing in confined impinging jets[J]. AIChE Journal, 2003, 49(9): 2264-2282. |
29 | LIU Y , CHENG C , PRUD HOMME R K , et al . Mixing in a multi-inlet vortex mixer (MIVM) for flash nano-precipitation[J]. Chemical Engineering Science, 2008, 63(11): 2829-2842. |
30 | DEMELLO A J . Control and detection of chemical reactions in microfluidic systems[J]. Nature, 2006, 442(7101): 394-402. |
31 | PANAGIOTOU T , MESITE S V , FISHER R J . Production of norfloxacin nanosuspensions using microfluidics reaction technology through solvent/antisolvent crystallization[J]. Industrial & Engineering Chemistry Research, 2009, 48(4): 1761-1771. |
32 | WANG J , ZHANG Q , ZHOU Y , et al . Microfluidic synthesis of amorphous cefuroxime axetil nanoparticles with size-dependent and enhanced dissolution rate[J]. Chemical Engineering Journal, 2010, 162(2): 844-851. |
33 | LIU Z , HUANG Y , JIN Y , et al . Mixing intensification by chaotic advection inside droplets for controlled nanoparticle preparation[J]. Chemical Engineering Science, 2010, 9(4): 773-786. |
34 | FERN J , OHSAKI S , WATANO S , et al . Continuous synthesis of nano-drug particles by antisolvent crystallization using a porous hollow-fiber membrane module[J]. International Journal of Pharmaceutical, 2018, 543(1/2): 139-150. |
35 | OTHMAN R , VLADISAVLJEVI G T , SIMONE E , et al . Preparation of microcrystals of piroxicam monohydrate by antisolvent precipitation via microfabricated metallic membranes with ordered pore arrays[J]. Crystal Growth & Design, 2017, 17(12): 6692-6702. |
36 | TIERNEY T B , RASMUSON K C , HUDSON S P , et al . Size and shape control of micron-sized salicylic acid crystals during antisolvent crystallization[J]. Organic Process Research & Development, 2017, 21(11): 1732-1740. |
37 | JIANG S , HORST J H TER , JANSENS P J . Concomitant polymorphism of ο-aminobenzoic acid in antisolvent crystallization[J]. Crystal Growth & Design, 2008, 1(8): 37-43. |
38 | BHAMIDI V , LEE S H, HE G , et al . Antisolvent crystallization and polymorph screening of glycine in microfluidic channels using hydrodynamic focusing[J]. Crystal Growth & Design, 2015, 15(7): 3299-3306. |
39 | FERGUSON S , MORRIS G , HAO H , Characterization of the anti-solvent batch, plug flow and MSMPR crystallization of benzoic acid [J]. Chemical Engineering Science, 2013, 104: 44-54. |
40 | NAGY Z K , FUJIWARA M , BRAATZ R D . Modelling and control of combined cooling and antisolvent crystallization processes[J]. Journal of Process Control, 2008, 18(9): 856-864. |
41 | RAWLINGS J B , MILLER S M , WITKOWSKI W R , et al . Model identification and control of solution crystallization processes: a review[J]. Industrial & Engineering Chemistry Research, 1993, 32(7): 1275-1296. |
42 | YANG Y , NAGY Z K . Model-based systematic design and analysis approach for unseeded combined cooling and antisolvent crystallization (CCAC) systems[J]. Crystal Growth & Design, 2014, 14(2): 687-698. |
43 | RIDDER B J , MAJUMDER A , NAGY Z K , et al . Population balance model-based multiobjective optimization of a multisegment multiaddition (MSMA) continuous plug-flow antisolvent crystallizer [J]. Industrial & Engineering Chemistry Research, 2014, 53: 4387-4397. |
44 | GYULAI O , KOVACS A , SOVANY T , et al . Optimization of the critical parameters of the spherical agglomeration crystallization method by the application of the quality by design approach[J]. Materials (Basel), 2018, 11(4): 1-16. |
45 | WANG J , LAKERVELD R . Integrated solvent and process design for continuous crystallization and solvent recycling using PC-SAFT[J]. AIChE Journal, 2018, 64(4): 1205-1216. |
46 | PATHAK P , MEZIANI M J , DESAI T , et al . Formation and stabilization of ibuprofen nanoparticles in supercritical fluid processing[J]. The Journal of Supercritical Fluids, 2006, 37(3): 279-286. |
47 | ESFANDIARI N . Production of micro and nano particles of pharmaceutical by supercritical carbon dioxide[J]. The Journal of Supercritical Fluids, 2015, 100: 129-141. |
48 | FONTANA F , FIGUEIREDO P , ZHANG P , et al . Production of pure drug nanocrystals and nano co-crystals by confinement methods[J]. Advanced Drug Delivery Reviews, 2018, 131: 3-21. |
49 | JUNG J , PERRUT M . Particle design using supercritical fluids: literature and patent survey[J]. The Journal of Supercritical Fluids, 2001, 20(3): 179-219. |
50 | STECKEL H , PICHERT L , MULLER B W . Influence of process parameters in the ASES process on particle properties of budesonide for pulmonary delivery[J]. European Journal of Pharmaceutical and Biopharmaceutical, 2004, 57(3): 507-512. |
51 | SINHA B , MULLER R H , MOSCHWITZER J P , et al . Bottom-up approaches for preparing drug nanocrystals: formulations and factors affecting particle size[J]. International Journal of Pharmaceutics, 2013, 453(1): 126-141. |
52 | CIOU J , WANG B , SU C , et al . Measurement of solid solubility of warfarin in supercritical carbon dioxide and recrystallization study using supercritical antisolvent process[J]. Advanced Powder Technology, 2018, 29(3): 479-487. |
53 | MANNA L , BANCHERO M . Solubility of tolbutamide and chlorpropamide in supercritical carbon dioxide[J]. Journal of Chemical & Engineering Data, 2018, 63(5): 1745-1751. |
54 | CAMPARDELLI R , REVERCHON E , MARCO I DE , et al . Dependence of SAS particle morphologies on the ternary phase equilibria[J]. The Journal of Supercritical Fluids, 2017, 130: 273-281. |
55 | ESFANDIARI N , GHOREISHI S M . Optimal thermodynamic conditions for ternary system[J]. Journal of the Taiwan Institute of Chemical Engineers, 2015, 50: 31-36. |
56 | VATANARA A , ROUHOLAMINI NAJAFABADI A , GILANI K , et al . A Plackett-Burman design for screening of the operation variables in the formation of salbutamol sulphate particles by supercritical antisolvent[J]. The Journal of Supercritical Fluids, 2007, 40(1): 111-116. |
57 | MIGUEL F , MARTÍN A , MATTEA F , et al . Precipitation of lutein and co-precipitation of lutein and poly-lactic acid with the supercritical anti-solvent process[J]. Chemical Engineering and Processing, 2008, 47(9): 1594-1602. |
58 | PARK S , YEO S . Recrystallization of caffeine using gas antisolvent process[J]. The Journal of Supercritical Fluids, 2008, 47(1): 85-92. |
59 | JAFARI D , NOWEE S M , NOIE S H , et al . A kinetic modeling of particle formation by gas antisolvent process: precipitation of aspirin[J]. Journal of Dispersion Science and Technology, 2017, 5(38): 677-685. |
60 | ESFANDIARI N , GHOREISHI S M . Kinetic modeling of the gas antisolvent[J]. Chemical Engineering & Technology, 2014, 1(37): 73-80. |
61 | ESFANDIARI N , GHOREISHI S M . Kinetics modeling of ampicillin nanoparticles synthesis via supercritical gas antisolvent process[J]. The Journal of Supercritical Fluids, 2013, 81: 119-127. |
62 | KAWASHIMA Y , NIWA T , HANDA T , et al . Preparation of controlled-release microspheres of ibuprofen with acrylic polymers by a novel quasi-emulsion solvent diffusion method[J]. Journal of Pharmaceutical Sciences, 1989, 78(1): 68-72. |
63 | KOVA I B , VRE ER F, PLANIN EK O , et al . Spherical crystallization of drugs[M]//Advanced topics in crystallization. Yitzhak Mastai, Croatia: IntechOpen, 2012: 1-14. |
64 | TAHARA K , MAHONY M O , MYERSON A S , et al . Continuous spherical crystallization of albuterol sulfate with solvent recycle system[J]. Crystal Growth & Design, 2015, 15(10): 5149-5156. |
65 | JITKAR S , THIPPARABOINA R , CHAVAN R B , et al . Spherical agglomeration of platy crystals: curious case of etodolac[J]. Crystal Growth & Design, 2016, 16(7): 4034-4042. |
66 | ZHOU X , ZHANG Q , XU R , et al . A novel spherulitic self-assembly strategy for organic explosives: modifying the hydrogen bonds by polymeric additives in emulsion crystallization[J]. Crystal Growth & Design, 2018, 18(4): 2417-2423. |
[1] | WANG Shengyan, DENG Shuai, ZHAO Ruikai. Research progress on carbon dioxide capture technology based on electric swing adsorption [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 233-245. |
[2] | GU Yongzheng, ZHANG Yongsheng. Dynamic behavior and kinetic model of Hg0 adsorption by HBr-modified fly ash [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 498-509. |
[3] | WANG Peng, ZHANG Yang, FAN Bingqiang, HE Dengbo, SHEN Changshuai, ZHANG Hedong, ZHENG Shili, ZOU Xing. Process and kinetics of hydrochloric acid leaching of high-carbon ferrochromium [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 510-517. |
[4] | DONG Jiayu, WANG Simin. Experimental on ultrasound enhancement of para-xylene crystallization characteristics and regulation mechanism [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4504-4513. |
[5] | WANG Junjie, PAN Yanqiu, NIU Yabin, YU Lu. Molecular level catalytic reforming model construction and application [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3404-3412. |
[6] | YANG Xuzhao, LI Qing, YUAN Kangkang, ZHANG Yingying, HAN Jingli, WU Shide. Thermodynamic properties of Gemini ionic liquid based deep eutectic solvents [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3123-3129. |
[7] | MA Runmei, YANG Haichao, LI Zhengda, LI Shuangxi, ZHAO Xiang, ZHANG Guoqing. Influence analysis of coating on deformation and frictional wear of mechanical seal end for high-speed bearing cavity [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 1688-1697. |
[8] | GE Weitong, LIAO Yalong, LI Mingyuan, JI Guangxiong, XI Jiajun. Preparation and dechlorination kinetics of Pd-Fe/MWCNTs bimetallic catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 1885-1894. |
[9] | WANG Xiaoyue, ZHANG Weimin, YAO Zhengyang, GUO Xiaohong, LI Congming. Research progress of reverse water gas shift reaction [J]. Chemical Industry and Engineering Progress, 2023, 42(3): 1583-1594. |
[10] | LI Yun, CUI Nan, XIONG Xingxing, HUANG Zhiyuan, WANG Dongliang, XU Dan, LI Jun, LI Zebing. Influence of rare earth element Er(Ⅲ) on performance of short-cut nitrification and its inhibition kinetics [J]. Chemical Industry and Engineering Progress, 2023, 42(3): 1659-1668. |
[11] | SUN Xiao, ZHU Guangtao, PEI Aiguo. Industrialization and research progress of hydrogen liquefier [J]. Chemical Industry and Engineering Progress, 2023, 42(3): 1103-1117. |
[12] | SONG Ye, CHEN Yuzhuo, SONG Yuncai, FENG Jie. Catalyst design and reactor analysis for in-situ purification of organic solid waste syngas [J]. Chemical Industry and Engineering Progress, 2023, 42(3): 1383-1396. |
[13] | WANG Wei, ZHANG Dongxu, LI Zunzhao, WANG Xiaolin, HUANG Qiyu. Research progress on the growth behavior of hydrates in water-in-oil emulsion systems [J]. Chemical Industry and Engineering Progress, 2023, 42(3): 1155-1166. |
[14] | DUAN Yihang, GAO Ningbo, QUAN Cui. Effect of hydrothermal treatment on pyrolysis characteristics and kinetics of oily sludge [J]. Chemical Industry and Engineering Progress, 2023, 42(2): 603-613. |
[15] | KANG Yu, GOU Zenian. Kinetics studies of carbon gas hydrate separation in the presence of amino acids and DTAC [J]. Chemical Industry and Engineering Progress, 2023, 42(10): 5067-5075. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |