Chemical Industry and Engineering Progress ›› 2018, Vol. 37 ›› Issue (S1): 133-140.DOI: 10.16085/j.issn.1000-6613.2018-0729

Previous Articles     Next Articles

Solid phase regeneration of spent LiFePO4 cathode materials by carbothermal reduction method

CHEN Yongzhen1,2,3, LI Hualing1,2,3, SONG Wenji1,2,3, FENG Ziping1,2,3   

  1. 1 Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, Guangdong, China;
    2 Key Laboratory of Renewable Energy, Chinese Academy of Sciences, Guangzhou 510640, Guangdong, China;
    3 Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, Guangdong, China
  • Received:2018-04-10 Revised:2018-05-15 Online:2018-12-13 Published:2018-11-30

废旧磷酸铁锂材料碳热还原固相再生方法

陈永珍1,2,3, 黎华玲1,2,3, 宋文吉1,2,3, 冯自平1,2,3   

  1. 1 中国科学院广州能源研究所, 广东 广州 510640;
    2 中国科学院可再生能源重点实验室, 广东 广州 510640;
    3 广东省新能源和可再生能源研究开发与应用重点实验室, 广东 广州 510640
  • 通讯作者: 宋文吉,研究员,研究方向为大规模储能技术。
  • 作者简介:陈永珍(1985-),女,硕士,工程师,研究方向为储能材料。E-mail:chenyz@ms.giec.ac.cn。
  • 基金资助:
    广东省科技计划(2015B050501008)及广东省新能源和可再生能源研究开发与应用重点实验室(y807ji1001)项目。

Abstract: The binder of the scrap electrode was removed by heat treatment and the spent LiFePO4 was oxidized to Li3Fe2(PO4)3 and Fe2O3 at the same time. The Li3Fe2(PO4)3 and Fe2O3 were used as starting materials to regenerate LiFePO4 by carbothermal reduction method with glucose, citric acid monohydrate and polyethylene glycol as reducing agent respectively. The regeneration reactions occurred at 650℃ for 16h, 20h and 24h, respectively. The results showed that the pure phase regenerated LiFePO4 material was obtained by the three reductant systems. When the glucose worked as reducing agent in regeneration reactions for 16h, 20h and 24h, the initial specific discharge capacities of the regenerated materials were 118.49mA·h/g, 118.38mA·h/g, 123.77mA·h/g, respectively. After 100 cycles, the capacities retention rates were 88.40%, 80.07% and 72.56%, respectively. The effect of reducing agent on the performance of regeneration materials was significant. Both the specific discharge-discharge capacity and cycle performance of regeneration materials were optimal, when the glucose worked as reducing agent. The regeneration materials with polyethylene glycol reductant system showed the worst electrochemical performance. This research provided an effective route for the regeneration of the spent LiFePO4 cathode materials in lithium-ion batteries.

Key words: spent Li-ion battery, lithium iron phosphate, recovery, regeneration, carbothermal reduction route

摘要: 采用热处理方法将回收的正极片除去黏结剂,同时将LiFePO4氧化为Li3Fe2(PO43及Fe2O3并作为再生反应原料,分别以葡萄糖、一水合柠檬酸、聚乙二醇为还原剂,650℃高温反应16h、20h、24h碳热还原再生LiFePO4。测试结果表明,3个还原剂体系均能获得再生LiFePO4材料。以葡萄糖为还原剂,高温反应16h、20h、24h,放电比容量分别为118.49mA·h/g、118.38mA·h/g、123.77mA·h/g;100次循环后,容量保持率分别为88.40%、80.07%、72.56%。还原剂对再生材料性能影响显著,以葡萄糖为还原剂,再生材料的容量特性及循环性能均最优,一水合柠檬酸还原剂体系次之,聚乙二醇还原剂体系电化学性能最差。研究结果为大规模废旧LiFePO4材料再生提供一种新的途径。

关键词: 废旧电池, 磷酸铁锂, 回收, 再生, 碳热还原法

CLC Number: 

京ICP备12046843号-2;京公网安备 11010102001994号
Copyright © Chemical Industry and Engineering Progress, All Rights Reserved.
E-mail: hgjz@cip.com.cn
Powered by Beijing Magtech Co. Ltd