[1] JHA M K, KUMAR A, JHA A K, et al. Recovery of lithium and cobalt from waste lithium ion batteries of mobile phone[J]. Waste Management, 2013, 33(9):1890-1897.
[2] JOULIE M, LAUCOURNET R, BILLY E. Hydrometallurgical process for the recovery of high value metals from spent lithium nickel cobalt aluminum oxide based lithium-ion batteries[J]. Journal of Power Sources, 2014, 247(3):551-555.
[3] SONG D W, WANG X Q, NIE H H, et al. Heat treatment of LiCoO2 recovered from cathode scraps with solvent method[J]. Journal of Power Sources, 2014, 249:137-141.
[4] KANG J, SOHN J, CHANG H,et al. Preparation of cobalt oxide from concentrated cathode material of spent lithium ion batteries by hydrometallurgical method[J]. Advanced Powder Technology, 2010, 21(2):175-179.
[5] NAYAKA G P, MANJANNA J, PAI K V, et al. Recovery of valuable metal ions from the spent lithium-ion battery using aqueous mixture of mild organic acids as alternative to mineral acids[J]. Hydrometallurgy, 2015, 151:73-77.
[6] ZHENG R J, ZHAO L, WANG W H, et al. Optimized Li and Fe recovery from spent lithium-ion batteries via solution-precipitation method[J]. RSC Advances, 2016, 6(49):43613-43625.
[7] SHIN E J, KIM S, NOH J K, et al. A green recycling process designed for LiFePO4 cathode materials for Li-ion batteries[J]. Journal of Materials Chemistry A, 2015, 3:11493-11502.
[8] BIN D C, SUN Y H, LI S, et al. A novel process to recycle spent LiFePO4 for synthesizing LiFePO4/C hierarchical microflowers[J]. Electrochimica Acta, 2016, 190:134.
[9] ZHENG Y, QIAN K., LUO D, et al. Influence of over-discharge on the lifetime and performance of LiFePO4/graphite batteries[J]. RSC Advances, 2016, 6(36):30474-30483.
[10] SHU J, SHUI M, XU D, et al. A comparative study of overdischarge behaviors of cathode materials for lithium-ion batteries[J]. Journal of Solid State Electrochemistry, 2012, 16(2):819-824.
[11] KLETT M, ZAVALIS T G, KJELL M H, et al. Altered electrode degradation with temperature in LiFePO4/mesocarbon microbead graphite cells diagnosed with impedance spectroscopy[J]. Electrochimica Acta, 2014, 141(28):173-181.
[12] CHEN J P, LI Q W, SONG J S, et al. Environmentally friendly recycling and effective repairing of cathode powders from spent LiFePO4 batteries[J]. Green Chemistry, 2016, 18(8):2500-2506.
[13] 李肖肖, 王楠, 郭盛昌, 等. 废旧动力锂离子电池回收的研究进展[J]. 电池, 2017, 47(1):52-55.
[14] 杨秋菊, 赵世超, 王楠, 等. 废旧动力锂离子电池中磷酸铁锂的再生[J]. 电池, 2014, 44(1):60-62.
[15] KIM H S, SHIN E J. Re-synthesis and electrochemical characteristics of LiFePO4 cathode materials recycled from scrap electrodes[J]. Bulletin of the Korean Chemical Society, 2013, 34(3):851-855.
[16] 卞都成, 刘树林, 孙永辉, 等. 废旧LiFePO4正极材料的循环利用及电化学性能[J]. 硅酸盐学报, 2015, 43(11):1511-1516.
[17] LI X L, ZHANG J, SONG D W, et al. Direct regeneration of recycled cathode material mixture from scrapped LiFePO4 batteries[J]. Journal of Power Sources, 2017, 345:78-84.
[18] SONG X, HU T, LIANG C,et al. Direct regeneration of cathode materials from spent lithium iron phosphate batteries using a solid phase sintering method[J]. RSC Advances, 2017, 7(8):4783-4790.
[19] 陈赟华, 杨勇. 一氧化碳还原法制备磷酸铁锂——反应机理和动力学[J]. 电化学, 2008, 14(4):388-393. |