Chemical Industry and Engineering Progress ›› 2025, Vol. 44 ›› Issue (11): 6449-6465.DOI: 10.16085/j.issn.1000-6613.2025-0588
• Materials science and technology • Previous Articles
LIU Jialing1(
), ZHANG Hong2, ZHANG Zhiming3, DONG Shuliang1(
), AN Libao1(
)
Received:2025-04-18
Revised:2025-06-25
Online:2025-12-08
Published:2025-11-25
Contact:
DONG Shuliang, AN Libao
刘珈伶1(
), 张红2, 张志明3, 董树亮1(
), 安立宝1(
)
通讯作者:
董树亮,安立宝
作者简介:刘珈伶(2000—),女,硕士研究生,研究方向为固态储氢材料。E-mail:15530356211@163.com。
基金资助:CLC Number:
LIU Jialing, ZHANG Hong, ZHANG Zhiming, DONG Shuliang, AN Libao. Research progress on doped carbon nanotubes for solid-state hydrogen storage[J]. Chemical Industry and Engineering Progress, 2025, 44(11): 6449-6465.
刘珈伶, 张红, 张志明, 董树亮, 安立宝. 应用于固态储氢领域的掺杂碳纳米管材料研究进展[J]. 化工进展, 2025, 44(11): 6449-6465.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2025-0588
| 项目 | 物理吸附 | 化学吸附 | 溢出机制 | Kubas相互作用 |
|---|---|---|---|---|
| 吸附焓/kJ·mol-1 | -10~-4 | -200~-100 | -50~-15 | -70~-20 |
| 结合能/eV | -0.3~-0.04 | -4~-2 | -1.5~-0.2 | -0.8~-0.1 |
| 可逆性 | 强 | 弱 | 中 | 中 |
| 典型掺杂元素 | B和N等非金属元素 | Li、Fe和Ni等金属元素 | Ni、Pd和Pt等金属元素 | V、Pt和Os等过渡金属元素 |
| 优点 | 充放氢速率高、循环寿命长 | 吸附力强、储氢容量高 | 常温储氢容量较高、工作温度范围适中 | 储氢容量高、快速动力学 |
| 缺点 | 吸附力弱、储氢容量低 | 解吸能耗大、动力学性缓慢 | 容易形成金属团簇、扩散效率及容量提升有限 | 过渡金属容易形成团簇或氧化失活 |
| 适用场景 | 低温储氢以及频繁充放氢 | 高温供氢以及固定式储氢 | 近室温储氢以及容量和动力学平衡储氢 | 近室温高密度储氢以及可逆快速储氢 |
| 项目 | 物理吸附 | 化学吸附 | 溢出机制 | Kubas相互作用 |
|---|---|---|---|---|
| 吸附焓/kJ·mol-1 | -10~-4 | -200~-100 | -50~-15 | -70~-20 |
| 结合能/eV | -0.3~-0.04 | -4~-2 | -1.5~-0.2 | -0.8~-0.1 |
| 可逆性 | 强 | 弱 | 中 | 中 |
| 典型掺杂元素 | B和N等非金属元素 | Li、Fe和Ni等金属元素 | Ni、Pd和Pt等金属元素 | V、Pt和Os等过渡金属元素 |
| 优点 | 充放氢速率高、循环寿命长 | 吸附力强、储氢容量高 | 常温储氢容量较高、工作温度范围适中 | 储氢容量高、快速动力学 |
| 缺点 | 吸附力弱、储氢容量低 | 解吸能耗大、动力学性缓慢 | 容易形成金属团簇、扩散效率及容量提升有限 | 过渡金属容易形成团簇或氧化失活 |
| 适用场景 | 低温储氢以及频繁充放氢 | 高温供氢以及固定式储氢 | 近室温储氢以及容量和动力学平衡储氢 | 近室温高密度储氢以及可逆快速储氢 |
| 方法 | 比表面积 | 缺陷程度 | 金属分散性 | 掺杂均匀性 | 产率 | 成本 | 工作压力/torr | 工作温度/℃ | 优点 | 缺点 |
|---|---|---|---|---|---|---|---|---|---|---|
| 电弧放电法 | 低 | 低 | 中低 | 中低 | 低 | 中 | 50~760 | >1200 | 产物结构完整度较高,反应时间短 | 难以规模化生产,杂质多 |
| 激光烧蚀法 | 中低 | 中低 | 中高 | 中 | 低 | 高 | 100~760 | >1200 | 纯度高,可实现纳米级结构调控 | 难以规模化生产,设备昂贵 |
| 化学气相沉积法 | 高 | 高 | 高 | 高 | 高 | 高 | 1~760 | 500~1200 | 高质量掺杂碳纳米管,微观形貌能精准调控,适合工业化生产 | 工艺复杂,杂质多 |
| 催化热解法 | 中高 | 中高 | 低 | 中低 | 中 | 低 | 100~760 | 300~1200 | 成本低,规模化生产 | 需特定反应制备前体 |
| 高能球磨法 | 中 | 高 | 中 | 中 | 中 | 低 | 真空或1~1520 | -196~200 | 操作简单,绿色环保 | 结构断裂及破坏多 |
| 方法 | 比表面积 | 缺陷程度 | 金属分散性 | 掺杂均匀性 | 产率 | 成本 | 工作压力/torr | 工作温度/℃ | 优点 | 缺点 |
|---|---|---|---|---|---|---|---|---|---|---|
| 电弧放电法 | 低 | 低 | 中低 | 中低 | 低 | 中 | 50~760 | >1200 | 产物结构完整度较高,反应时间短 | 难以规模化生产,杂质多 |
| 激光烧蚀法 | 中低 | 中低 | 中高 | 中 | 低 | 高 | 100~760 | >1200 | 纯度高,可实现纳米级结构调控 | 难以规模化生产,设备昂贵 |
| 化学气相沉积法 | 高 | 高 | 高 | 高 | 高 | 高 | 1~760 | 500~1200 | 高质量掺杂碳纳米管,微观形貌能精准调控,适合工业化生产 | 工艺复杂,杂质多 |
| 催化热解法 | 中高 | 中高 | 低 | 中低 | 中 | 低 | 100~760 | 300~1200 | 成本低,规模化生产 | 需特定反应制备前体 |
| 高能球磨法 | 中 | 高 | 中 | 中 | 中 | 低 | 真空或1~1520 | -196~200 | 操作简单,绿色环保 | 结构断裂及破坏多 |
| 掺杂碳纳米管种类 | 压力/bar | 温度/K | 储氢容量(质量分数)/% | 参考文献 |
|---|---|---|---|---|
| Li-CNT | 1.01325 | 653 | 20 | [ |
| Li-CNT | 21 | 278 | 1.33 | [ |
| B-CNT | 16 | 273 | 0.497 | [ |
| B-CNT | 10 | 77 | 2.47 | [ |
| N-CNT | 7 | 77 | 1.21 | [ |
| N-CNT | 1 | 77 | 0.21 | [ |
| N-CNT | 19 | 298 | 0.17 | [ |
| N-CNT | 100 | 298 | 2 | [ |
| Si-CNT | 100 | 298 | 2.5 | [ |
| K-CNT | 1.01325 | 298 | 14 | [ |
| K-CNT | 1.01325 | 298 | 1.8 | [ |
| Ti-CNT | 20 | 298 | 1.88 | [ |
| V-CNT | 20 | 298 | 0.69 | [ |
| Fe-CNT | 10 | 298 | 1.53 | [ |
| Fe-CNT | 50 | 298 | 6.92 | [ |
| Fe-CNT | — | — | 4.5 | [ |
| Co-CNT | 21 | 278 | 1.06 | [ |
| Ni-CNT | 20 | 298 | 0.298 | [ |
| Ni-CNT | — | — | 2.91 | [ |
| Ru-CNT | 9.2 | 298 | 2.73 | [ |
| Pd-CNT | 20 | 298 | 0.66 | [ |
| Os-CNT | — | — | 5 | [ |
| Os-CNT | 10.1325 | 298.15 | 2.53 | [ |
| Ir-CNT | 9.2 | 298 | 2.71 | [ |
| Pt-CNT | 78 | 125 | 3.03 | [ |
| Pt-CNT | 9.2 | 298 | 3.4 | [ |
| Au-CNT | — | — | 5.049 | [ |
| ZnO-CNT | 50 | 298 | 2.7091 | [ |
| B/N-CNT | 16 | 77 | 1.96 | [ |
| B/N-CNT | 16 | 303 | 0.35 | [ |
| B/Os-CNT | 1.01325 | 298.15 | 1.95 | [ |
| N/Ni/Pd-CNT | 24 | 298 | 3.5 | [ |
| La2O3/N-CNT | 18 | 373 | 7.4 | [ |
| PLLA/N-CNT | 18 | 373 | 6.2 | [ |
| 掺杂碳纳米管种类 | 压力/bar | 温度/K | 储氢容量(质量分数)/% | 参考文献 |
|---|---|---|---|---|
| Li-CNT | 1.01325 | 653 | 20 | [ |
| Li-CNT | 21 | 278 | 1.33 | [ |
| B-CNT | 16 | 273 | 0.497 | [ |
| B-CNT | 10 | 77 | 2.47 | [ |
| N-CNT | 7 | 77 | 1.21 | [ |
| N-CNT | 1 | 77 | 0.21 | [ |
| N-CNT | 19 | 298 | 0.17 | [ |
| N-CNT | 100 | 298 | 2 | [ |
| Si-CNT | 100 | 298 | 2.5 | [ |
| K-CNT | 1.01325 | 298 | 14 | [ |
| K-CNT | 1.01325 | 298 | 1.8 | [ |
| Ti-CNT | 20 | 298 | 1.88 | [ |
| V-CNT | 20 | 298 | 0.69 | [ |
| Fe-CNT | 10 | 298 | 1.53 | [ |
| Fe-CNT | 50 | 298 | 6.92 | [ |
| Fe-CNT | — | — | 4.5 | [ |
| Co-CNT | 21 | 278 | 1.06 | [ |
| Ni-CNT | 20 | 298 | 0.298 | [ |
| Ni-CNT | — | — | 2.91 | [ |
| Ru-CNT | 9.2 | 298 | 2.73 | [ |
| Pd-CNT | 20 | 298 | 0.66 | [ |
| Os-CNT | — | — | 5 | [ |
| Os-CNT | 10.1325 | 298.15 | 2.53 | [ |
| Ir-CNT | 9.2 | 298 | 2.71 | [ |
| Pt-CNT | 78 | 125 | 3.03 | [ |
| Pt-CNT | 9.2 | 298 | 3.4 | [ |
| Au-CNT | — | — | 5.049 | [ |
| ZnO-CNT | 50 | 298 | 2.7091 | [ |
| B/N-CNT | 16 | 77 | 1.96 | [ |
| B/N-CNT | 16 | 303 | 0.35 | [ |
| B/Os-CNT | 1.01325 | 298.15 | 1.95 | [ |
| N/Ni/Pd-CNT | 24 | 298 | 3.5 | [ |
| La2O3/N-CNT | 18 | 373 | 7.4 | [ |
| PLLA/N-CNT | 18 | 373 | 6.2 | [ |
| [1] | REDA Bassma, ELZAMAR Amr A, ALFAZZANI Shehab, et al. Green hydrogen as a source of renewable energy: A step towards sustainability, an overview[J]. Environment, Development and Sustainability, 2024. |
| [2] | 黄晟, 杨振丽, 李振宇. 氢产业链发展的路径分析[J]. 化工进展, 2024, 43(2): 882-893. |
| HUANG Sheng, YANG Zhenli, LI Zhenyu. Analysis of optimization path of developing China’s hydrogen industry[J]. Chemical Industry and Engineering Progress, 2024, 43(2): 882-893. | |
| [3] | 王艺强, 刘录强, 张志成, 等. 化学储氢介质实现“西氢东送”的可行性研究[J]. 储能科学与技术, 2024, 13(3): 1050-1058. |
| WANG Yiqiang, LIU Luqiang, ZHANG Zhicheng, et al. Feasibility of “West-to-East Hydrogen Transmission” through chemical hydrogen storage media[J]. Energy Storage Science and Technology, 2024, 13(3): 1050-1058. | |
| [4] | STENINA Irina, YAROSLAVTSEV Andrey. Modern technologies of hydrogen production[J]. Processes, 2023, 11(1): 56. |
| [5] | 范少星, 安立宝, 张志明. 过渡金属化合物催化剂在电解水析氢中的应用进展[J]. 应用化工, 2023, 52(12): 3371-3375. |
| FAN Shaoxing, AN Libao, ZHANG Zhiming. Application progress of transition metal compound catalysts in hydrogen evolution of electrolyzed water[J]. Applied Chemical Industry, 2023, 52(12): 3371-3375. | |
| [6] | 郭宇, 戴耀城, 吴红梅. Pd-ZSM-5复合膜的制备及其氢气分离性能[J]. 南京工业大学学报(自然科学版), 2024, 46(2): 160-169. |
| GUO Yu, DAI Yaocheng, WU Hongmei. Fabrication of Pd-ZSM-5 composite membrane on porous alumina substrate and its hydrogen separation performance[J]. Journal of Nanjing Tech University (Natural Science Edition), 2024, 46(2): 160-169. | |
| [7] | ZHENG Jie, WANG Chengang, ZHOU Hui, et al. Current research trends and perspectives on solid-state nanomaterials in hydrogen storage[J]. Research, 2021, 2021: 3750689. |
| [8] | HWANG Hyun Tae, VARMA Arvind. Hydrogen storage for fuel cell vehicles[J]. Current Opinion in Chemical Engineering, 2014, 5: 42-48. |
| [9] | PATEL S K S, GUPTA R K, ROHIT M V, et al. Recent developments in hydrogen production, storage, and transportation: Challenges, opportunities, and perspectives[J]. Fire, 2024, 7(7): 233. |
| [10] | EBERLE Ulrich, FELDERHOFF Michael, Ferdi SCHÜTH. Chemical and physical solutions for hydrogen storage[J]. Angewandte Chemie International Edition, 2009, 48(36):6608-6630. |
| [11] | CORGNALE Claudio, HARDY Bruce J, TAMBURELLO David A, et al. Acceptability envelope for metal hydride-based hydrogen storage systems[J]. International Journal of Hydrogen Energy, 2012, 37(3): 2812-2824. |
| [12] | EIKENG Erik, MAKHSOOS Ashkan, POLLET Bruno G. Critical and strategic raw materials for electrolysers, fuel cells, metal hydrides and hydrogen separation technologies[J]. International Journal of Hydrogen Energy, 2024, 71: 433-464. |
| [13] | 刘木子, 史柯柯, 赵强, 等. 固体储氢材料的研究进展[J]. 化工进展, 2023, 42(9): 4746-4769. |
| LIU Muzi, SHI Keke, ZHAO Qiang, et al. Research progress of solid hydrogen storage materials[J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4746-4769. | |
| [14] | REZAIE Shima, SMEULDERS David M J, Azahara LUNA-TRIGUERO. Enhanced hydrogen storage in gold-doped carbon nanotubes: A first-principles study[J]. Chemical Engineering Journal, 2023, 476: 146525. |
| [15] | KALIBEK M R, OSPANOVA A D, SULEIMENOVA B, et al. Solid-state hydrogen storage materials[J]. Discover Nano, 2024, 19(1): 195. |
| [16] | RATHER Sami Ullah. Preparation, characterization and hydrogen storage studies of carbon nanotubes and their composites: A review[J]. International Journal of Hydrogen Energy, 2020, 45(7): 4653-4672. |
| [17] | 狄方, 杨浩淋, 邢天宇, 等. 碳纳米材料改性LiFePO4及其电化学性能[J]. 储能科学与技术, 2020, 9(S1): 7-12. |
| DI Fang, YANG Haolin, XING Tianyu, et al. Nanocarbons modified LiFePO4 and its electrochemical performance[J]. Energy Storage Science and Technology, 2020, 9(S1): 7-12. | |
| [18] | DILLON A C, JONES K M, BEKKEDAHL T A, et al. Storage of hydrogen in single-walled carbon nanotubes[J]. Nature, 1997, 386(6623): 377-379. |
| [19] | Jinzhe LYU, KUDIIAROV Viktor, LIDER Andrey. An overview of the recent progress in modifications of carbon nanotubes for hydrogen adsorption[J]. Nanomaterials, 2020, 10(2): 255. |
| [20] | LEELA MOHANA REDDY A, RAMAPRABHU S. Hydrogen adsorption properties of single-walled carbon nanotube-nanocrystalline platinum composites[J]. International Journal of Hydrogen Energy, 2008, 33(3): 1028-1034. |
| [21] | CHEN Liang, XIA Kaisheng, HUANG Lizhen, et al. Facile synthesis and hydrogen storage application of nitrogen-doped carbon nanotubes with bamboo-like structure[J]. International Journal of Hydrogen Energy, 2013, 38(8): 3297-3303. |
| [22] | ZACHARIA R, KIM K Y, FAZLE KIBRIA A K M, et al. Enhancement of hydrogen storage capacity of carbon nanotubes via spill-over from vanadium and palladium nanoparticles[J]. Chemical Physics Letters, 2005, 412(4/5/6): 369-375. |
| [23] | BAGHAI Bita, KETABI Sepideh. Hydrogen storage efficiency of Fe doped carbon nanotubes: Molecular simulation study[J]. RSC Advances, 2024, 14(14): 9763-9780. |
| [24] | RIMZA Tripti, SAHA Sumit, DHAND Chetna, et al. Carbon-based sorbents for hydrogen storage: Challenges and sustainability at operating conditions for renewable energy[J]. ChemSusChem, 2022, 15(11): e202200281. |
| [25] | ABE J O, POPOOLA A P I, AJENIFUJA E, et al. Hydrogen energy, economy and storage: Review and recommendation[J]. International Journal of Hydrogen Energy, 2019, 44(29): 15072-15086. |
| [26] | ABDULKADIR Bashir Abubakar, SETIABUDI Herma Dina. Recent advances in multi-walled carbon nanotubes for high-efficient solid-state hydrogen storage: A review[J]. Chemical Engineering & Technology, 2025, 48(2): e202400067. |
| [27] | ZHANG Bing, XIE Xiubo, WANG Yukun, et al. In situ formation of multiple catalysts for enhancing the hydrogen storage of MgH2 by adding porous Ni3ZnC0.7/Ni loaded carbon nanotubes microspheres[J]. Journal of Magnesium and Alloys, 2024, 12(3): 1227-1238. |
| [28] | FU Yaokun, YU Zhichao, GUO Sanyang, et al. Catalytic effect of bamboo-like carbon nanotubes loaded with NiFe nanoparticles on hydrogen storage properties of MgH2 [J]. Chemical Engineering Journal, 2023, 458: 141337. |
| [29] | BARGHI Seyed Hamed, TSOTSIS Theodore T, SAHIMI Muhammad. Chemisorption, physisorption and hysteresis during hydrogen storage in carbon nanotubes[J]. International Journal of Hydrogen Energy, 2014, 39(3): 1390-1397. |
| [30] | LAI Qiwen, PASKEVICIUS Mark, SHEPPARD Drew A, et al. Hydrogen storage materials for mobile and stationary applications: Current state of the art[J]. ChemSusChem, 2015, 8(17): 2789-2825. |
| [31] | PRINS R. Hydrogen spillover. facts and fiction[J]. Chemical Reviews, 2012, 112(5): 2714-2738. |
| [32] | Soon Hyeong SO, LEE Sungwoo, Jungho MUN, et al. What induces the dense storage of hydrogen of liquid-or solid-like density levels in carbon nanopores with sub-1nm diameters?[J]. Carbon, 2023, 204: 594-600. |
| [33] | DHANYA A R, RAMAPRABHU Sundara. Nitrogen-doped CNT embedded with Pd/Ni nanoparticles for room-temperature hydrogen storage application[J]. Fuel, 2025, 380: 133127. |
| [34] | Tapas DAS, BANERJEE Seemita, DASGUPTA Kinshuk, et al. Nature of the Pd-CNT interaction in Pd nanoparticles dispersed on multi-walled carbon nanotubes and its implications in hydrogen storage properties[J]. RSC Advances, 2015, 5(52): 41468-41474. |
| [35] | VERMA Ritu, JAGGI Neena. A DFT investigation of osmium decorated single walled carbon nanotubes for hydrogen storage[J]. International Journal of Hydrogen Energy, 2024, 54: 1507-1520. |
| [36] | WANG Yongxin, SUI Yinquan, SUN Mengying, et al. Research on hydrogen adsorption characteristics of Pt decorated cup-stacked carbon nanotubes[J]. Diamond and Related Materials, 2022, 130: 109500. |
| [37] | CHUNG ChiHye, Jisoon IHM, LEE Hoonkyung. Recent progress on Kubas-type hydrogen-storage nanomaterials: From theories to experiments[J]. Journal of the Korean Physical Society, 2015, 66(11): 1649-1655. |
| [38] | LU Jinlian, XIAO Hong, CAO Juexian. Mechanism for high hydrogen storage capacity on metal-coated carbon nanotubes: A first principle analysis[J]. Journal of Solid State Chemistry, 2012, 196: 367-371. |
| [39] | BABANEJAD S A, MALEKFAR R, ASHRAFI F, et al. Production and study of boron and nitrogen-doped carbon nanotubes by arc discharge method using dispersive Raman back-scattering spectroscopy[J]. Asian Journal of Chemistry, 2010, 22(1): 245-252. |
| [40] | QIU Jieshan, CHEN Gang, LI Zhentao, et al. Preparation of double-walled carbon nanotubes from fullerene waste soot by arc-discharge[J]. Carbon, 2010, 48(4): 1312-1315. |
| [41] | ASHKARRAN Ali Akbar, FAKHARI Majid, MAHMOUDI Morteza. Synthesis of a solar photo and bioactive CNT-TiO2 nanocatalyst[J]. RSC Advances, 2013, 3(40): 18529-18536. |
| [42] | SAFAVI Afsaneh, MALEKI Norouz, DOROODMAND Mohammad Mahdi, et al. Carbon nanostructures as catalytic support for chemiluminescence of sulfur compounds in a molecular emission cavity analysis system[J]. Analytica Chimica Acta, 2009, 644(1/2): 61-67. |
| [43] | CAO Xingru, MIAO Wenfang, QIN Maofan, et al. N-doping carbon-coated Cu@C(N) nanocapsules synthesized by arc plasma toward high-performance ORR electrocatalyst[J]. Journal of Alloys and Compounds, 2023, 948: 169739. |
| [44] | BELGACEM Abir BEN, HINKOV Ivaylo, YAHIA Sana BEN, et al. Arc discharge boron nitrogen doping of carbon nanotubes[J]. Materials Today Communications, 2016, 8: 183-195. |
| [45] | Rasel DAS, SHAHNAVAZ Zohreh, Md Eaqub ALI, et al. Can we optimize arc discharge and laser ablation for well-controlled carbon nanotube synthesis?[J]. Nanoscale Research Letters, 2016, 11(1): 510. |
| [46] | Rasel DAS, Md Eaqub ALI, HAMID Sharifah Bee Abd, et al. Common wet chemical agents for purifying multiwalled carbon nanotubes[J]. Journal of Nanomaterials, 2014, 2014(1): 945172. |
| [47] | HOKKANEN Matti J, LAUTALA Saara, SHAO Dongkai, et al. On-chip purification via liquid immersion of arc-discharge synthesized multiwalled carbon nanotubes[J]. Applied Physics A, 2016, 122(7): 634. |
| [48] | ZHANG Da, TANG Yuanzheng, ZHANG Chuanqi, et al. One-step synthesis of SnO2/carbon nanotube nanonests composites by direct current arc-discharge plasma and its application in lithium-ion batteries[J]. Nanomaterials, 2021, 11(11): 3138. |
| [49] | LI Shaolong, LIANG Yuchen, CHANG Qiang, et al. Preparation of Pt/CNT catalyst with high dispersion structure via plasma jet[J]. Diamond and Related Materials, 2024, 141: 110674. |
| [50] | ISMAIL Raid A, MOHSIN Mayyadah H, Abdulrahman K ALI, et al. Preparation and characterization of carbon nanotubes by pulsed laser ablation in water for optoelectronic application[J]. Physica E: Low-Dimensional Systems and Nanostructures, 2020, 119: 113997. |
| [51] | KHASHAN Khawla S, SULAIMAN Ghassan M, MAHDI Rafal, et al. The effect of laser energy on the properties of carbon nanotube-iron oxide nanoparticles composite prepared via pulsed laser ablation in liquid[J]. Materials Research Express, 2018, 5(10): 105004. |
| [52] | KHASHAN Khawla S, SULAIMAN Ghassan M, MAHDI Rafal. Preparation of iron oxide nanoparticles-decorated carbon nanotube using laser ablation in liquid and their antimicrobial activity[J]. Artificial Cells, Nanomedicine, and Biotechnology, 2017, 45(8): 1699-1709. |
| [53] | BARBERIO M, STRANGES F, XU F. Coating geometry of Ag, Ti, Co, Ni, and Al nanoparticles on carbon nanotubes[J]. Applied Surface Science, 2015, 334: 174-179. |
| [54] | BAROOT Abbad AL, ELSAYED Khaled A, HALADU Shamsuddeen A, et al. One-pot synthesis of SnO2 nanoparticles decorated multi-walled carbon nanotubes using pulsed laser ablation for photocatalytic applications[J]. Optics & Laser Technology, 2023, 157: 108734. |
| [55] | ALAMRO Fowzia S, MOSTAFA Ayman M, Khulood A Abu AL-OLA, et al. Synthesis of Ag nanoparticles-decorated CNTs via laser ablation method for the enhancement the photocatalytic removal of naphthalene from water[J]. Nanomaterials, 2021, 11(8): 2142. |
| [56] | BAROOT Abbad AL, ELSAYED Khaled A, KHAN Firdos Alam, et al. Anticancer activity of Au/CNT nanocomposite fabricated by nanosecond pulsed laser ablation method on colon and cervical cancer[J]. Micromachines, 2023, 14(7): 1455. |
| [57] | ELSAYED Khaled A, IMAM Hisham, AHMED M A, et al. Effect of focusing conditions and laser parameters on the fabrication of gold nanoparticles via laser ablation in liquid[J]. Optics & Laser Technology, 2013, 45: 495-502. |
| [58] | THURAKITSEREE Theerapol, RATTANACHATA Arunothai, NAKAJIMA Hideki, et al. Nitrogen-doped single-walled carbon nanotubes by floating-catalyst CVD process[J]. Chemical Physics, 2024, 576: 112090. |
| [59] | WU Muhong, LI Xiao, PAN Ding, et al. Synthesis of nitrogen-doped single-walled carbon nanotubes and monitoring of doping by Raman spectroscopy[J]. Chinese Physics B, 2013, 22(8): 086101. |
| [60] | 王惠颖, 安立宝. 基于碳纳米管的超级电容器电极材料研究进展[J]. 现代化工, 2023, 43(3): 30-35. |
| WANG Huiying, AN Libao. Research progress on carbon nanotubes-based electrode materials for supercapacitors[J]. Modern Chemical Industry, 2023, 43(3): 30-35. | |
| [61] | HASSANI Fahimeh, TAVAKOL Hossein. Synthesis of sulfur-doped carbon nanotubes from sulfur powder using chemical vapor deposition[J]. Fullerenes, Nanotubes and Carbon Nanostructures, 2018, 26(8): 479-486. |
| [62] | SHAH Khurshed A, TALI Bilal A. Synthesis of carbon nanotubes by catalytic chemical vapour deposition: A review on carbon sources, catalysts and substrates[J]. Materials Science in Semiconductor Processing, 2016, 41: 67-82. |
| [63] | ZHANG Yu, LIU Chenguang, WEN Bin, et al. Preparation and electrochemical properties of nitrogen-doped multi-walled carbon nanotubes[J]. Materials Letters, 2011, 65(1): 49-52. |
| [64] | HOMMA Yoshikazu. Carbon nanotube synthesis and the role of catalyst[M]//Frontiers of Graphene and Carbon Nanotubes. Tokyo: Springer Japan, 2015: 125-129. |
| [65] | YAN Yibo, MIAO Jianwei, YANG Zhihong, et al. Carbon nanotube catalysts: Recent advances in synthesis, characterization and applications[J]. Chemical Society Reviews, 2015, 44(10): 3295-3346. |
| [66] | BULLA Mamta, KUMAR Vinay, DEVI Raman, et al. Exploring the frontiers of carbon nanotube synthesis techniques and their potential applications in supercapacitors, gas sensing, and water purification[J]. Journal of Environmental Chemical Engineering, 2024, 12(6): 114504. |
| [67] | SHARMA Anita, DASGUPTA Kinshuk, PATWARDHAN Ashwin, et al. Kinetic study of nitrogen doped carbon nanotubes in a fixed bed[J]. Chemical Engineering Science, 2017, 170: 756-766. |
| [68] | MUBARAK N M, YUSOF Faridah, ALKHATIB M F. The production of carbon nanotubes using two-stage chemical vapor deposition and their potential use in protein purification[J]. Chemical Engineering Journal, 2011, 168(1): 461-469. |
| [69] | WANG Jie, WU Aimin, QIU Zhiwen, et al. N-CNT supported Fe/Ce bimetallic catalyst for Al-air aqueous batteries[J]. Applied Surface Science, 2023, 608: 155185. |
| [70] | ZEFERINO GONZÁLEZ Isaías, CHIU Hsien-Chieh, GAUVIN Raynald, et al. Silicon doped carbon nanotubes as high energy anode for lithium-ion batteries[J]. Materials Today Communications, 2022, 30: 103158. |
| [71] | WU Lei, LIU Jiao, Rajasekhar REDDY B, et al. Preparation of coal-based carbon nanotubes using catalytical pyrolysis: A brief review[J]. Fuel Processing Technology, 2022, 229: 107171. |
| [72] | MU Pan, MA Wenyan, ZHAO Yongbo, et al. Facile preparation of MnO/nitrogen-doped porous carbon nanotubes composites and their application in energy storage[J]. Journal of Power Sources, 2019, 426: 33-39. |
| [73] | WANG Xiaoyan, MU Pan, ZHANG Chong, et al. Control synthesis of tubular hyper-cross-linked polymers for highly porous carbon nanotubes[J]. ACS Applied Materials & Interfaces, 2017, 9(24): 20779-20786. |
| [74] | ROCHA Inês M, SOARES O Salomé G P, FERNANDES Diana M, et al. N-doped carbon nanotubes for the oxygen reduction reaction in alkaline medium: Synergistic relationship between pyridinic and quaternary nitrogen[J]. ChemistrySelect, 2016, 1(10): 2522-2530. |
| [75] | ROCHA Raquel P, SOARES O Salomé G P, GONÇALVES Alexandra G, et al. Different methodologies for synthesis of nitrogen doped carbon nanotubes and their use in catalytic wet air oxidation[J]. Applied Catalysis A: General, 2017, 548: 62-70. |
| [76] | DENG Xiaoqian, ZHU Menghan, KE Jin, et al. SnO2-ZrO2 nanoparticles embedded in carbon nanotubes as a large capacity, high rate and long lifetime anode for lithium-ion batteries[J]. Ceramics International, 2021, 47(10): 14301-14310. |
| [77] | FOUDA A N, DURAIA El Shazly M, ALMAQWASHI Ali A. Facile and scalable green synthesis of N-doped graphene/CNTs nanocomposites via ball milling[J]. Ain Shams Engineering Journal, 2021, 12(1): 1017-1024. |
| [78] | WEI Yong, LU Xianke, WANG Gang, et al. Simultaneous improvement of microstructure and high-temperature tensile properties in CNT-doped Mo-based composites[J]. Vacuum, 2022, 205: 111470. |
| [79] | CAI Xiaolan, WANG Xiaofei. Preparation of the Al-CNT (carbon nanotubes) compound material by high energy milling[J]. Current Nanoscience, 2012, 8(1): 33-37. |
| [80] | RATHER Sami ullah, TAIMOOR Aqeel Ahmad, MUHAMMAD Ayyaz, et al. Kinetics of hydrogen adsorption on MgH2/CNT composite[J]. Materials Research Bulletin, 2016, 77: 23-28. |
| [81] | YE Wenbin, FENG Zuyong, XIONG Deping, et al. Ni-doped SnO2 nanoparticles anchored on carbon nanotubes as anode materials for lithium-ion batteries[J]. ACS Applied Nano Materials, 2023, 6(18): 16524-16535. |
| [82] | HANG Zhouming, JIANG Ruicheng, SHI Liqiu, et al. Sodium alanate in-situ doped with Ti2C MXene with enhanced hydrogen storage properties[J]. International Journal of Hydrogen Energy, 2024, 71: 250-258. |
| [83] | MANOHARAN Kaaviah, PALANISWAMY Vasantha Kumar, RAMAN Kannan, et al. Investigation of solid state hydrogen storage performances of novel NaBH4/Ah-BN nanocomposite as hydrogen storage medium for fuel cell applications[J]. Journal of Alloys and Compounds, 2021, 860: 158444. |
| [84] | KOSE Ahmet, YUKSEL Numan, Ferdi FELLAH M. Hydrogen adsorption on Ni doped carbon nanocone[J]. Diamond and Related Materials, 2022, 124: 108921. |
| [85] | VERMA Ritu, JAGGI Neena. Ability of transition metal and hetero atoms co-doped SWCNTs for hydrogen adsorption: A DFT study[J]. Journal of Physics and Chemistry of Solids, 2024, 194: 112244. |
| [86] | Ebru ERÜNAL, ULUSAL Fatma, ASLAN Mustafa Y, et al. Enhancement of hydrogen storage capacity of multi-walled carbon nanotubes with palladium doping prepared through supercritical CO2 deposition method[J]. International Journal of Hydrogen Energy, 2018, 43(23): 10755-10764. |
| [87] | ZAFANELLI Lucas F A S, Ezzeldin ALY, HENRIQUE Adriano, et al. Green hydrogen recovery from natural gas grids by vacuum pressure swing adsorption[J]. Industrial & Engineering Chemistry Research, 2024, 63(14): 6333-6346. |
| [88] | YALÇINKAYA Fatma Nur, Mehmet DOĞAN, BICIL Zeynep, et al. Effect of functionalization and Li-doping methods to hydrogen storage capacities of MWCNTs[J]. Fuel, 2024, 372: 132274. |
| [89] | MACEIRAS Rocio, FEIJOO Jorge, Leticia PEREZ-RIAL, et al. Study of natural zeolites for hydrogen purification: CO2 adsorption capacity and kinetic mechanism[J]. Fuel, 2024, 376: 132732. |
| [90] | LIU Ran, PENG Yating, RONG Wan, et al. Thermodynamics and kinetics hydrogen isotope effects of hydrogen/deuterium absorption in Pd-5wt.%Pt alloy[J]. International Journal of Hydrogen Energy, 2024, 50: 637-647. |
| [91] | GUPTA Susmita SEN, BHATTACHARYYA Krishna G. Kinetics of adsorption of metal ions on inorganic materials: A review[J]. Advances in Colloid and Interface Science, 2011, 162(1/2): 39-58. |
| [92] | 陈桥, 董欣, 姬龙雪, 等. 高炉渣基地质聚合物对Zn2+的吸附和解吸性能[J]. 硅酸盐学报, 2025, 53(5): 1078-1087. |
| CHEN Qiao, DONG Xin, JI Longxue, et al. Adsorption and desorption performances of Zn2+ by geopolymers based on blast furnace slag[J]. Journal of the Chinese Ceramic Society, 2025, 53(5): 1078-1087. | |
| [93] | PANG Xu, RAN Lei, CHEN Yu’an, et al. Enhancing hydrogen storage performance via optimizing Y and Ni element in magnesium alloy[J]. Journal of Magnesium and Alloys, 2022, 10(3): 821-835. |
| [94] | SUN Wei, SUN Hanfeng, ZHANG Xin, et al. Improved hydrogen storage thermodynamics and kinetics of As-milled Ce-Mg-Ni-based alloys by adding Ni[J]. Journal of Materials Engineering and Performance, 2025, 34(10): 8669-8682. |
| [95] | KUNDU Ajit, CHAKRABORTY Brahmananda. Yttrium doped covalent triazine frameworks as promising reversible hydrogen storage material: DFT investigations[J]. International Journal of Hydrogen Energy, 2022, 47(71): 30567-30579. |
| [96] | WEBB C J, GRAY E MacA. Analysis of uncertainties in gas uptake measurements using the gravimetric method[J]. International Journal of Hydrogen Energy, 2014, 39(13): 7158-7164. |
| [97] | RAFI-UD-DIN, LIN Zhang, LI Ping, et al. Catalytic effects of nano-sized TiC additions on the hydrogen storage properties of LiAlH4 [J]. Journal of Alloys and Compounds, 2010, 508(1): 119-128. |
| [98] | QI Yan, ZHANG Xin, LI Jun, et al. Hydrogen storage thermodynamics and kinetics of as-cast Ce-Mg-Ni-based alloy[J]. Journal of Iron and Steel Research International, 2024, 31(3): 752-766. |
| [99] | CHECCHETTO R, TRETTEL G, MIOTELLO A. Sievert-type apparatus for the study of hydrogen storage in solids[J]. Measurement Science and Technology, 2004, 15(1): 127-130. |
| [100] | RATHER Sami-ullah. Hydrogen uptake of Ti-decorated multiwalled carbon nanotube composites[J]. International Journal of Hydrogen Energy, 2021, 46(34): 17793-17801. |
| [101] | TOME Kudzaishe Caren, XI Senliang, FU Yuanyi, et al. Remarkable catalytic effect of Ni and ZrO2 nanoparticles on the hydrogen sorption properties of MgH2 [J]. International Journal of Hydrogen Energy, 2022, 47(7): 4716-4724. |
| [102] | SAWANT Shrilekha V, YADAV Manishkumar D, BANERJEE Seemita, et al. Hydrogen storage in boron-doped carbon nanotubes: Effect of dopant concentration[J]. International Journal of Hydrogen Energy, 2021, 46(79): 39297-39314. |
| [103] | ARIHARAN Arjunan, VISWANATHAN Balasubramanian, NANDHAKUMAR Vaiyapuri. Nitrogen-incorporated carbon nanotube derived from polystyrene and polypyrrole as hydrogen storage material[J]. International Journal of Hydrogen Energy, 2018, 43(10): 5077-5088. |
| [104] | PARK Ki Beom, NA Tae-Wook, KIM Young Do, et al. Characterization of microstructure and surface oxide of Ti1.2Fe hydrogen storage alloy[J]. International Journal of Hydrogen Energy, 2021, 46(24): 13082-13087. |
| [105] | SKUDIN Valery, ANDREEVA Tatiana, MYACHINA Maria, et al. CVD-synthesis of N-CNT using propane and ammonia[J]. Materials, 2022, 15(6): 2241. |
| [106] | 范青青, 安立宝, 常春蕊, 等. 石墨烯负载Pdn(n=1~3)原子/团簇吸附三氯甲烷分子的第一性原理研究[J]. 材料导报, 2023, 37(21): 105-110. |
| FAN Qingqing, AN Libao, CHANG Chunrui, et al. A first-principles study of the adsorption of chloroform on graphene decorated by Pdn (n=1—3) atoms/clusters[J]. Materials Reports, 2023, 37(21): 105-110. | |
| [107] | BEHESHTIAN Javad, RAVAEI Isa. Hydrogen storage by BeO nano-cage: A DFT study[J]. Applied Surface Science, 2016, 368: 76-81. |
| [108] | VERMA Ritu, JAGGI Neena. Study of dual osmium and boron co-doped SWCNTs for reversible hydrogen storage[J]. Diamond and Related Materials, 2024, 148: 111470. |
| [109] | GECIM Gozde, OZEKMEKCI Mehtap. A density functional theory study of molecular H2S adsorption on (4, 0) SWCNT doped with Ge, Ga and B[J]. Surface Science, 2021, 711: 121876. |
| [110] | 元丽华, 巩纪军, 王道斌, 等. 碱金属修饰的多孔石墨烯的储氢性能[J]. 物理学报, 2020, 69(6): 273-281. |
| YUAN Lihua, GONG Jijun, WANG Daobin, et al. Hydrogen storage capacity of alkali metal atoms decorated porous graphene[J]. Acta Physica Sinica, 2020, 69(6): 273-281. | |
| [111] | MISHRA Saurabh, KUNDALWAL S I. Topological defects embedded large-sized single-walled carbon nanotubes for hydrogen storage: A molecular dynamics study[J]. International Journal of Hydrogen Energy, 2022, 47(86): 36605-36621. |
| [112] | ZHAO Yu, QUAN Daguo, WANG Chaolin, et al. Experiments and molecular simulations study on hydrogen adsorption and diffusion behavior of the inorganic mineral surfaces of shale[J]. International Journal of Hydrogen Energy, 2025, 97: 1302-1315. |
| [113] | Evangeline ASHNA G, Janani SIVASANKAR K, Preferencial KALA C, et al. Hydrogen adsorption on vacancy-bent graphene nanosheets: A DFT study[J]. Materials Today Communications, 2023, 37: 107319. |
| [114] | SANTOS Dyovani Bruno Lima, NORONHA Fábio Bellot, HORI Carla Eponina. Bi-reforming of methane for hydrogen production using LaNiO3/Ce x Zr1- x O2 as precursor material[J]. International Journal of Hydrogen Energy, 2020, 45(27): 13947-13959. |
| [115] | LIU Chunlei, ZHANG Gong, ZHOU Wei, et al. Regulating oriented adsorption on targeted nickel sites for antibiotic oxidation with simultaneous hydrogen energy recovery by a direct electrochemical process[J]. ACS Applied Materials & Interfaces, 2021, 13(16): 18673-18682. |
| [116] | MATSUDA Junko. In situ TEM studies on hydrogen-related issues: Hydrogen storage, hydrogen embrittlement, fuel cells and electrolysis[J]. Microscopy, 2024, 73(2): 196-207. |
| [117] | Anibal RAMIREZ-CUESTA, BALDERAS XICOHTENCATL Rafael, CHENG Yongqiang. Inelastic neutron scattering: A unique tool to study hydrogen in materials[J]. Journal of Materials Research, 2024, 39(5): 727-736. |
| [118] | ZHANG Xiaoyue, SUN Yahui, XIA Guanglin, et al. Light-weight solid-state hydrogen storage materials characterized by neutron scattering[J]. Journal of Alloys and Compounds, 2022, 899: 163254. |
| [119] | GU Yan, XU Tiefeng, CHEN Xiufang, et al. High-loading single-atom tungsten anchored on graphitic carbon nitride (melon) for efficient oxidation of emerging contaminants[J]. Chemical Engineering Journal, 2022, 427: 131973. |
| [120] | CHEN Yisheng, LIU Pangyu, NIU Ranming, et al. Atom probe tomography for the observation of hydrogen in materials: A review[J]. Microscopy and Microanalysis, 2023, 29(1): 1-15. |
| [121] | CHEN P, WU X, LIN J, et al. High H2 uptake by alkali-doped carbon nanotubes under ambient pressure and moderate temperatures[J]. Science, 1999, 285(5424): 91-93. |
| [122] | AGHABABAEI Maryam, GHOREYSHI Ali Asghar, ESFANDIARI Kourosh. Optimizing the conditions of multi-walled carbon nanotubes surface activation and loading metal nanoparticles for enhanced hydrogen storage[J]. International Journal of Hydrogen Energy, 2020, 45(43): 23112-23121. |
| [123] | SAWANT Shrilekha V, BANERJEE Seemita, PATWARDHAN Ashwin W, et al. Effect of in-situ boron doping on hydrogen adsorption properties of carbon nanotubes[J]. International Journal of Hydrogen Energy, 2019, 44(33): 18193-18204. |
| [124] | CHO Jung Hyun, YANG Seung Jae, LEE Kunsil, et al. Si-doping effect on the enhanced hydrogen storage of single walled carbon nanotubes and graphene[J]. International Journal of Hydrogen Energy, 2011, 36(19): 12286-12295. |
| [125] | YANG Ralph T. Hydrogen storage by alkali-doped carbon nanotubes-revisited[J]. Carbon, 2000, 38(4): 623-626. |
| [126] | ITAS Yahaya Saadu, KHANDAKER Mayeen Uddin, SULEIMAN Abdussalam Balarabe, et al. Studies of H2 storage efficiency of metal-doped carbon nanotubes by optical adsorption spectra analysis[J]. Diamond and Related Materials, 2023, 136: 109964. |
| [127] | KASKUN Songül, KAYFECI Muhammet. The synthesized nickel-doped multi-walled carbon nanotubes for hydrogen storage under moderate pressures[J]. International Journal of Hydrogen Energy, 2018, 43(23): 10773-10778. |
| [128] | KHALILOV Umedjon, ULJAYEV Utkir, MEHMONOV Kamoliddin, et al. Can endohedral transition metals enhance hydrogen storage in carbon nanotubes?[J]. International Journal of Hydrogen Energy, 2024, 55: 604-610. |
| [129] | MIREA Radu, IORDOC Mihai, RIMBU Gimi. Comparative research concerning hydrogen storage by platinum, ruthenium and iridium doped multiwall carbon nanotubes[J]. Revista de Chimie, 2019, 70(9): 3123-3128. |
| [130] | KASKUN Songul, AKINAY Yuksel, KAYFECI Muhammet. Improved hydrogen adsorption of ZnO doped multi-walled carbon nanotubes[J]. International Journal of Hydrogen Energy, 2020, 45(60): 34949-34955. |
| [131] | SAWANT Shrilekha V, BANERJEE Seemita, PATWARDHAN Ashwin W, et al. Synthesis of boron and nitrogen co-doped carbon nanotubes and their application in hydrogen storage[J]. International Journal of Hydrogen Energy, 2020, 45(24): 13406-13413. |
| [132] | LIANG Hui, DU Xihua, LI Jing, et al. Manipulating active sites on carbon nanotube materials for highly efficient hydrogen storage[J]. Applied Surface Science, 2023, 619: 156740. |
| [133] | CHEN Yuanzhen, LIU Qing, YAN Yisheng, et al. Influence of sample cell physisorption on measurements of hydrogen storage of carbon materials using a Sieverts apparatus[J]. Carbon, 2010, 48(3): 714-720. |
| [134] | MAN Mohan, SHARMA Vinod Kumar, KUMAR E Anil, et al. Hydrogen storage in carbon materials—A review[J]. Energy Storage, 2019, 1(2): e35. |
| [135] | ANIKINA Ekaterina, BANERJEE Amitava, BESKACHKO Valery, et al. Li-functionalized carbon nanotubes for hydrogen storage: Importance of size effects[J]. ACS Applied Nano Materials, 2019, 2(5): 3021-3030. |
| [136] | RICE Peter S, LEE Gabriel, SCHWARTZ Brayden, et al. Leveraging curvature on N-doped carbon materials for hydrogen storage[J]. Small, 2024, 20(25): 2310162. |
| [137] | TAHERKHANI A, MORTAZAVI S Z, REYHANI A, et al. Temperature-dependent hydrogen storage mechanism in palladium nanoparticles decorated on multi-walled carbon nanotubes[J]. International Journal of Hydrogen Energy, 2023, 48(26): 9734-9747. |
| [138] | MA Pengcheng, TANG Benzhong, KIM Jang-Kyo. Effect of CNT decoration with silver nanoparticles on electrical conductivity of CNT-polymer composites[J]. Carbon, 2008, 46(11): 1497-1505. |
| [139] | AHMADPOOR F, Mojtaba ZEBARJAD S, JANGHORBAN K. Decoration of multi-walled carbon nanotubes with silver nanoparticles and investigation on its colloid stability[J]. Materials Chemistry and Physics, 2013, 139(1): 113-117. |
| [140] | Renáta ORIŇÁKOVÁ, Andrej ORIŇÁK. Recent applications of carbon nanotubes in hydrogen production and storage[J]. Fuel, 2011, 90(11): 3123-3140. |
| [141] | DING R G, LU G Q, YAN Z F, et al. Recent advances in the preparation and utilization of carbon nanotubes for hydrogen storage[J]. Journal of Nanoscience and Nanotechnology, 2001, 1(1): 7-29. |
| [1] | ZHAO Tiannan, ZHAO Chang, SUN Hao, LU Jianmin, YANG Huinan. Frozen droplets height measurement system based on absorption spectroscopy [J]. Chemical Industry and Engineering Progress, 2025, 44(4): 1907-1912. |
| [2] | HUANG Yuedong, GAO Botao, YANG Li, YAO Siyu, GUO Shenghui, HOU Ming. Microwave electromagnetic characteristics and microwave absorbing properties of foam silicon carbide carrier [J]. Chemical Industry and Engineering Progress, 2025, 44(4): 2238-2249. |
| [3] | WANG Wen, JIN Yang, LI Jun, CHEN Jianjun, CHEN Ming, MENG Xin. Preparation of superhydrophobic PVDF membrane via in-situ FeOOH growth for CO2 absorption [J]. Chemical Industry and Engineering Progress, 2025, 44(3): 1570-1577. |
| [4] | WANG Peiqi, DAI Jingxiong, ZHONG Liang. 3D printing preparation and microwave absorption property analysis of C/UV curable resin electromagnetic metamaterials [J]. Chemical Industry and Engineering Progress, 2025, 44(10): 5819-5827. |
| [5] | ZHANG Yang, HUANG Zhijia, XIE Fusong, LU Yuehong. Preparation and properties investigation of CO2 anhydrous absorbent based on diethylenetriamine-ethanolamine-dimethyl sulfoxide [J]. Chemical Industry and Engineering Progress, 2025, 44(10): 6073-6082. |
| [6] | WANG Ning, LU Shijian, LIU Ling, LIANG Jing, LIU Miaomiao, SUN Mengyuan, KANG Guojun. Research progress of catalytic regeneration for energy-efficient CO2 capture in amine absorption system [J]. Chemical Industry and Engineering Progress, 2025, 44(1): 445-464. |
| [7] | WANG Bowei, ZHENG Mingzhen, WANG Lemeng, FU Dong, WANG Shan, ZHU Shengjun, ZHAO Kun, ZHANG Pan. Preparation of NaOH for CO2 capture by electrolysis of Na2SO4 [J]. Chemical Industry and Engineering Progress, 2024, 43(S1): 604-614. |
| [8] | LU Shijian, ZHANG Juanjuan, YANG Fei, LIU Ling, CHEN Siming, KANG Guojun, FANG Qinqin. Research progress of amine escape control technology by chemical absorption method [J]. Chemical Industry and Engineering Progress, 2024, 43(8): 4562-4570. |
| [9] | GU Songqi, SUN Fanfei, WEI Yao, SONG Xingfei, NAN Bing, LI Lina, HUANG Yuying. Time-resolved thermochemical in-situ XAFS methodology [J]. Chemical Industry and Engineering Progress, 2024, 43(7): 3747-3755. |
| [10] | LIU Kefeng, LIU Taoran, CAI Yong, HU Xuesheng, DONG Weigang, ZHOU Huaqun, GAO Fei. Progress in research and engineering demonstration of CO2 capture technology [J]. Chemical Industry and Engineering Progress, 2024, 43(6): 2901-2914. |
| [11] | LIAO Changjian, ZHANG Kewei, WANG Jing, ZENG Xiangyu, JIN Ping, LIU Zhiyu. Progress on direct air capture of carbon dioxide [J]. Chemical Industry and Engineering Progress, 2024, 43(4): 2031-2048. |
| [12] | MIAO Feng, XU Chuanlong, LI Jian, ZHANG Biao, HAN Shaopeng, TANG Guanghua. Online calibration of the wavelength of spectrometer based on SO2 absorption spectrum [J]. Chemical Industry and Engineering Progress, 2024, 43(2): 818-822. |
| [13] | WU Dawei, YIN Yihan, CAO Zhiyong, LIN Haizhou, FAN Yongchun, GAO Hongxia, LIANG Zhiwu. Experimental study on CO2 mass transfer performance of TETA-DEEA-TMS-H2O phase separation absorbent in hollow fiber membrane contactor [J]. Chemical Industry and Engineering Progress, 2024, 43(11): 6039-6048. |
| [14] | LU Shijian, ZHU Wenju, LIU Ling, KANG Guojun, CHEN Siming. Advances in atmospheric gas-phase reactions initiated by amine absorbent escape [J]. Chemical Industry and Engineering Progress, 2024, 43(11): 6397-6411. |
| [15] | ZHAO Kaiyue, ZHU Chunshan, ZHANG Binpeng, ZHAO Meijing, HE Yuting, WANG Mingrui. Preparation and oil absorption properties of oil-material for corn straw by esterification modification [J]. Chemical Industry and Engineering Progress, 2024, 43(11): 6483-6492. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
|
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |