Chemical Industry and Engineering Progress ›› 2025, Vol. 44 ›› Issue (11): 6449-6465.DOI: 10.16085/j.issn.1000-6613.2025-0588

• Materials science and technology • Previous Articles    

Research progress on doped carbon nanotubes for solid-state hydrogen storage

LIU Jialing1(), ZHANG Hong2, ZHANG Zhiming3, DONG Shuliang1(), AN Libao1()   

  1. 1.College of Mechanical Engineering, North China University of Science and Technology, Tangshan 063000, Hebei, China
    2.College of Life Science, North China University of Science and Technology, Tangshan 063000, Hebei, China
    3.College of Materials Science and Engineering, North China University of Science and Technology, Tangshan 063000, Hebei, China
  • Received:2025-04-18 Revised:2025-06-25 Online:2025-12-08 Published:2025-11-25
  • Contact: DONG Shuliang, AN Libao

应用于固态储氢领域的掺杂碳纳米管材料研究进展

刘珈伶1(), 张红2, 张志明3, 董树亮1(), 安立宝1()   

  1. 1.华北理工大学机械工程学院,河北 唐山 063000
    2.华北理工大学生命科学学院,河北 唐山 063000
    3.华北理工大学材料科学与工程学院,河北 唐山 063000
  • 通讯作者: 董树亮,安立宝
  • 作者简介:刘珈伶(2000—),女,硕士研究生,研究方向为固态储氢材料。E-mail:15530356211@163.com
  • 基金资助:
    国家自然科学基金(51472074);河北省“百人计划”(E2012100005)

Abstract:

The advancement of solid-state hydrogen storage technology is essential for facilitating efficient and safe hydrogen storage, transportation and large-scale hydrogen energy applications. Consequently, the research of high-performance solid-state hydrogen storage materials have obtained significant attention in recent years. Doped carbon nanotubes, owing to their low density, high specific surface area, stable structures and tunable physicochemical properties, have emerged as a focal point in the field of solid-state hydrogen storage materials. This paper introduced the hydrogen storage mechanisms of doped carbon nanotubes, encompassing two primary adsorption types: physical adsorption and chemical adsorption supplementing by two auxiliary mechanisms: the spillover mechanism and Kubas interaction. Furthermore, it elaborated on five prevalent synthesis methodologies for doped carbon nanotubes, including the arc discharge method, laser ablation method, chemical vapor deposition, catalytic pyrolysis method and high-energy ball milling method. The study systematically summaried the current evaluation framework for assessing the hydrogen storage performance of doped carbon nanotubes, incorporating core evaluation metrics, pivotal assessment technologies and cutting-edge technological advancements. Additionally, it comprehensively analyzed the critical factors influencing the hydrogen storage performance of doped carbon nanotubes, including doping methodologies, dopant classifications, doping concentrations, pressure, temperature, dimensional parameters, active sites and other pertinent factors. Finally, this paper systematically investigated the future research directions of doped carbon nanotubes in the field of solid-state hydrogen storage from five critical perspectives: auxiliary mechanisms, preparation procedures, engineering applications, influencing factors and emerging applications.

Key words: solid-state hydrogen storage, doped carbon nanotubes, absorption, hydrogen storage performance, synthesis methods

摘要:

固态储氢技术的发展是推动高效安全氢储运以及规模化氢能应用的关键,因而近年来,高性能固态储氢材料的研发备受关注。掺杂碳纳米管凭借其密度低、比表面积大、结构稳定和物化性质可调等优势,成为了固态储氢材料研究领域的热点。本文介绍了包含物理吸附和化学吸附这两种吸附类型以及溢出机制和Kubas相互作用这两种辅助机制在内的掺杂碳纳米管的储氢原理,详细叙述了近年来包括电弧放电法、激光烧蚀法、化学气相沉积法、催化热解法和高能球磨法在内的五种常用的掺杂碳纳米管制备方法,系统总结了包含核心评估指标、关键评估技术和前沿技术进展在内的掺杂碳纳米管储氢性能的评估体系,全面分析了包含掺杂方式、掺杂物种类、掺杂浓度、压力、温度、尺寸参数、活性位点及其他因素在内的掺杂碳纳米管储氢性能的影响因素。本文最后从辅助机制、制备工艺、工程实际、影响因素和新兴应用这五个维度,讨论了掺杂碳纳米管应用于固态储氢领域未来的研究方向。

关键词: 固态储氢, 掺杂碳纳米管, 吸附, 储氢性能, 制备方法

CLC Number: 

京ICP备12046843号-2;京公网安备 11010102001994号
Copyright © Chemical Industry and Engineering Progress, All Rights Reserved.
E-mail: hgjz@cip.com.cn
Powered by Beijing Magtech Co. Ltd