Chemical Industry and Engineering Progress ›› 2024, Vol. 43 ›› Issue (11): 6483-6492.DOI: 10.16085/j.issn.1000-6613.2023-1784
• Resources and environmental engineering • Previous Articles
ZHAO Kaiyue(), ZHU Chunshan(), ZHANG Binpeng, ZHAO Meijing, HE Yuting, WANG Mingrui
Received:
2023-10-11
Revised:
2023-11-16
Online:
2024-12-07
Published:
2024-11-15
Contact:
ZHU Chunshan
赵凯月(), 朱春山(), 张宾朋, 赵美箐, 何昱铤, 王明锐
通讯作者:
朱春山
作者简介:
赵凯月(1998—),女,硕士研究生,研究方向为生物质材料。E-mail:1733082150@qq.com。
CLC Number:
ZHAO Kaiyue, ZHU Chunshan, ZHANG Binpeng, ZHAO Meijing, HE Yuting, WANG Mingrui. Preparation and oil absorption properties of oil-material for corn straw by esterification modification[J]. Chemical Industry and Engineering Progress, 2024, 43(11): 6483-6492.
赵凯月, 朱春山, 张宾朋, 赵美箐, 何昱铤, 王明锐. 酯化改性玉米秸秆吸油材料的制备与性能[J]. 化工进展, 2024, 43(11): 6483-6492.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2023-1784
水平 | 甲酸质量分数 (A)/% | 固液体积比(B) | 微波功率 (C)/W | 反应温度 (D)/℃ |
---|---|---|---|---|
-1 | 5 | 1∶35 | 300 | 90 |
0 | 7 | 1∶40 | 400 | 100 |
1 | 9 | 1∶45 | 500 | 110 |
水平 | 甲酸质量分数 (A)/% | 固液体积比(B) | 微波功率 (C)/W | 反应温度 (D)/℃ |
---|---|---|---|---|
-1 | 5 | 1∶35 | 300 | 90 |
0 | 7 | 1∶40 | 400 | 100 |
1 | 9 | 1∶45 | 500 | 110 |
实验号 | A | B | C | D | Y/g·g-1 |
---|---|---|---|---|---|
1 | 0 | 1 | 0 | -1 | 20.48 |
2 | -1 | 1 | 0 | 0 | 19.08 |
3 | 1 | 0 | 0 | -1 | 21.65 |
4 | -1 | 0 | 0 | -1 | 17.37 |
5 | -1 | 0 | 0 | 1 | 22.59 |
6 | 0 | 0 | 0 | 0 | 25.73 |
7 | 0 | 1 | -1 | 0 | 20.28 |
8 | 1 | 0 | 0 | 1 | 20.25 |
9 | 1 | -1 | 0 | 0 | 18.20 |
10 | 0 | 0 | 1 | 1 | 22.70 |
11 | 1 | 0 | 1 | 0 | 23.17 |
12 | 0 | 0 | 0 | 0 | 25.56 |
13 | 0 | -1 | 0 | 1 | 21.58 |
14 | -1 | -1 | 0 | 0 | 17.06 |
15 | 0 | -1 | -1 | 0 | 18.30 |
16 | 0 | 0 | 0 | 0 | 24.92 |
17 | 0 | 0 | 1 | -1 | 21.37 |
18 | 1 | 0 | -1 | 0 | 20.13 |
19 | 0 | 0 | -1 | -1 | 21.05 |
20 | 0 | -1 | 0 | -1 | 17.28 |
21 | 0 | -1 | 1 | 0 | 19.61 |
22 | 0 | 1 | 1 | 0 | 20.62 |
23 | 0 | 0 | 0 | 0 | 26.11 |
24 | 0 | 0 | -1 | 1 | 23.54 |
25 | 1 | 1 | 0 | 0 | 19.88 |
26 | 0 | 1 | 0 | 1 | 20.47 |
27 | -1 | 0 | 1 | 0 | 21.52 |
28 | -1 | 0 | -1 | 0 | 19.90 |
29 | 0 | 0 | 0 | 0 | 25.85 |
实验号 | A | B | C | D | Y/g·g-1 |
---|---|---|---|---|---|
1 | 0 | 1 | 0 | -1 | 20.48 |
2 | -1 | 1 | 0 | 0 | 19.08 |
3 | 1 | 0 | 0 | -1 | 21.65 |
4 | -1 | 0 | 0 | -1 | 17.37 |
5 | -1 | 0 | 0 | 1 | 22.59 |
6 | 0 | 0 | 0 | 0 | 25.73 |
7 | 0 | 1 | -1 | 0 | 20.28 |
8 | 1 | 0 | 0 | 1 | 20.25 |
9 | 1 | -1 | 0 | 0 | 18.20 |
10 | 0 | 0 | 1 | 1 | 22.70 |
11 | 1 | 0 | 1 | 0 | 23.17 |
12 | 0 | 0 | 0 | 0 | 25.56 |
13 | 0 | -1 | 0 | 1 | 21.58 |
14 | -1 | -1 | 0 | 0 | 17.06 |
15 | 0 | -1 | -1 | 0 | 18.30 |
16 | 0 | 0 | 0 | 0 | 24.92 |
17 | 0 | 0 | 1 | -1 | 21.37 |
18 | 1 | 0 | -1 | 0 | 20.13 |
19 | 0 | 0 | -1 | -1 | 21.05 |
20 | 0 | -1 | 0 | -1 | 17.28 |
21 | 0 | -1 | 1 | 0 | 19.61 |
22 | 0 | 1 | 1 | 0 | 20.62 |
23 | 0 | 0 | 0 | 0 | 26.11 |
24 | 0 | 0 | -1 | 1 | 23.54 |
25 | 1 | 1 | 0 | 0 | 19.88 |
26 | 0 | 1 | 0 | 1 | 20.47 |
27 | -1 | 0 | 1 | 0 | 21.52 |
28 | -1 | 0 | -1 | 0 | 19.90 |
29 | 0 | 0 | 0 | 0 | 25.85 |
来源 | 平方和 | 自由度 | 均值 | F值 | P值 | 显著性 |
---|---|---|---|---|---|---|
模型 | 186.91 | 14 | 13.35 | 34.10 | <0.0001 | ** |
A | 2.76 | 1 | 2.76 | 7.06 | 0.0188 | * |
B | 6.42 | 1 | 6.42 | 16.41 | 0.0012 | ** |
C | 2.79 | 1 | 2.79 | 7.13 | 0.0183 | * |
D | 11.86 | 1 | 11.86 | 30.29 | <0.0001 | ** |
AB | 0.0289 | 1 | 0.0289 | 0.0738 | 0.7898 | — |
AC | 0.5041 | 1 | 0.5041 | 1.29 | 0.2756 | — |
AD | 10.96 | 1 | 10.96 | 27.98 | 0.0001 | ** |
BC | 0.2352 | 1 | 0.2352 | 0.6007 | 0.4512 | — |
BD | 4.64 | 1 | 4.64 | 11.86 | 0.0040 | ** |
CD | 0.3364 | 1 | 0.3364 | 0.8591 | 0.3697 | — |
A² | 60.49 | 1 | 60.49 | 154.47 | <0.0001 | ** |
B² | 106.32 | 1 | 106.32 | 271.54 | <0.0001 | ** |
C² | 17.23 | 1 | 17.23 | 44.01 | <0.0001 | ** |
D² | 22.50 | 1 | 22.50 | 57.46 | <0.0001 | ** |
残值 | 5.48 | 14 | 0.3916 | — | — | — |
失拟 | 4.68 | 10 | 0.4684 | 2.35 | 0.2130 | 不显著 |
纯差 | 0.7977 | 4 | 0.1994 | — | — | — |
总和 | 192.39 | 28 | — | — | — | — |
来源 | 平方和 | 自由度 | 均值 | F值 | P值 | 显著性 |
---|---|---|---|---|---|---|
模型 | 186.91 | 14 | 13.35 | 34.10 | <0.0001 | ** |
A | 2.76 | 1 | 2.76 | 7.06 | 0.0188 | * |
B | 6.42 | 1 | 6.42 | 16.41 | 0.0012 | ** |
C | 2.79 | 1 | 2.79 | 7.13 | 0.0183 | * |
D | 11.86 | 1 | 11.86 | 30.29 | <0.0001 | ** |
AB | 0.0289 | 1 | 0.0289 | 0.0738 | 0.7898 | — |
AC | 0.5041 | 1 | 0.5041 | 1.29 | 0.2756 | — |
AD | 10.96 | 1 | 10.96 | 27.98 | 0.0001 | ** |
BC | 0.2352 | 1 | 0.2352 | 0.6007 | 0.4512 | — |
BD | 4.64 | 1 | 4.64 | 11.86 | 0.0040 | ** |
CD | 0.3364 | 1 | 0.3364 | 0.8591 | 0.3697 | — |
A² | 60.49 | 1 | 60.49 | 154.47 | <0.0001 | ** |
B² | 106.32 | 1 | 106.32 | 271.54 | <0.0001 | ** |
C² | 17.23 | 1 | 17.23 | 44.01 | <0.0001 | ** |
D² | 22.50 | 1 | 22.50 | 57.46 | <0.0001 | ** |
残值 | 5.48 | 14 | 0.3916 | — | — | — |
失拟 | 4.68 | 10 | 0.4684 | 2.35 | 0.2130 | 不显著 |
纯差 | 0.7977 | 4 | 0.1994 | — | — | — |
总和 | 192.39 | 28 | — | — | — | — |
实验次数 | 甲酸质量分数/% | 固液体积比 | 微波功率/W | 反应温度/℃ | 反应时间/min | 吸油倍率/g·g-1 |
---|---|---|---|---|---|---|
1 | 7 | 1∶40 | 400 | 100 | 20 | 25.16 |
2 | 7 | 1∶40 | 400 | 100 | 20 | 25.53 |
3 | 7 | 1∶40 | 400 | 100 | 20 | 25.72 |
平均 | — | — | — | — | — | 25.47 |
实验次数 | 甲酸质量分数/% | 固液体积比 | 微波功率/W | 反应温度/℃ | 反应时间/min | 吸油倍率/g·g-1 |
---|---|---|---|---|---|---|
1 | 7 | 1∶40 | 400 | 100 | 20 | 25.16 |
2 | 7 | 1∶40 | 400 | 100 | 20 | 25.53 |
3 | 7 | 1∶40 | 400 | 100 | 20 | 25.72 |
平均 | — | — | — | — | — | 25.47 |
样品 | C/% | H/% | O/% | N/% |
---|---|---|---|---|
PCS | 42.923 | 6.248 | 47.503 | 0 |
ECS | 43.465 | 6.217 | 46.081 | 0 |
样品 | C/% | H/% | O/% | N/% |
---|---|---|---|---|
PCS | 42.923 | 6.248 | 47.503 | 0 |
ECS | 43.465 | 6.217 | 46.081 | 0 |
吸油材料以及改性方法 | 吸油倍率/g·g-1 | 参考文献 |
---|---|---|
玉米秸秆接枝丙烯酸丁酯改性 | 3.60~5.30 | [ |
玉米秸秆接枝甲基丙烯酸甲酯以及接枝苯乙烯和甲基丙烯酸甲酯的混合物改性 | 13.57~18.61 | [ |
玉米秸秆表面沉积SiO2/ZnO复合粒子改性 | 15.07~22.50 | [ |
玉米秸秆表面负载(十六氟-1,1,2,2-十四烷基)三甲氧基硅烷修饰的SiO2颗粒 | 13.50~27.80 | [ |
玉米秸秆为原料,二氧化硅及乙烯基三乙氧基硅烷为表面改性剂 | 5.42~6.31 | [ |
玉米秸秆表面沉积空心球形氧化锌粒子 | 20.40 | [ |
玉米秸秆为原料,辛基三甲氧基硅烷为改性剂 | 1.77~2.06 | [ |
在玉米秸秆表面生长聚硅氧烷纳米丝 | 0.58~1.81 | [ |
玉米秸秆为原料,浓硫酸为催化剂,乙酸酐酯化改性 | 9.03 | [ |
本文制备的吸油材料 | 17.06~33.68 | — |
吸油材料以及改性方法 | 吸油倍率/g·g-1 | 参考文献 |
---|---|---|
玉米秸秆接枝丙烯酸丁酯改性 | 3.60~5.30 | [ |
玉米秸秆接枝甲基丙烯酸甲酯以及接枝苯乙烯和甲基丙烯酸甲酯的混合物改性 | 13.57~18.61 | [ |
玉米秸秆表面沉积SiO2/ZnO复合粒子改性 | 15.07~22.50 | [ |
玉米秸秆表面负载(十六氟-1,1,2,2-十四烷基)三甲氧基硅烷修饰的SiO2颗粒 | 13.50~27.80 | [ |
玉米秸秆为原料,二氧化硅及乙烯基三乙氧基硅烷为表面改性剂 | 5.42~6.31 | [ |
玉米秸秆表面沉积空心球形氧化锌粒子 | 20.40 | [ |
玉米秸秆为原料,辛基三甲氧基硅烷为改性剂 | 1.77~2.06 | [ |
在玉米秸秆表面生长聚硅氧烷纳米丝 | 0.58~1.81 | [ |
玉米秸秆为原料,浓硫酸为催化剂,乙酸酐酯化改性 | 9.03 | [ |
本文制备的吸油材料 | 17.06~33.68 | — |
1 | 鞠春红. 含油废水常用的处理方法及超疏水材料的应用[J]. 黑龙江科学, 2023, 14(8): 128-129, 149. |
JU Chunhong. Application of super-hydrophobic material and the treatment of oily wastewater[J]. Heilongjiang Science, 2023, 14(8): 128-129, 149. | |
2 | 赵诗琳, 孟范平, 林雨霏, 等. 二甲苯吸附剂及其在泄漏事故水域的适用性评述[J]. 化工进展, 2019, 38(6): 2813-2824. |
ZHAO Shilin, MENG Fanping, LIN Yufei, et al. Sorbents for seprating xylene and their applicability in waters after the accidental spills: A review[J]. Chemical Industry and Engineering Progress, 2019, 38(6): 2813-2824. | |
3 | 叶泽权, 吴青芸, 顾林. 纤维素基油水分离材料研究进展[J]. 化工进展, 2022, 41(6): 3038-3050. |
YE Zequan, WU Qingyun, GU Lin. Recent progress in cellulose-based materials for oil-water separation[J]. Chemical Industry and Engineering Progress, 2022, 41(6): 3038-3050. | |
4 | 李小菊, 武芸, 李惠成, 等. 酯化改性葵花秸秆吸油性能研究[J]. 当代化工, 2023, 52(4): 794-800. |
LI Xiaoju, WU Yun, LI Huicheng, et al. Study on oil absorption performance of esterified modified sunflower straw[J]. Contemporary Chemical Industry, 2023, 52(4): 794-800. | |
5 | 王磊, 刘昌见. 水稻秸秆水热处理-酯交换改性制备吸油材料[J]. 化工进展, 2017, 36(5): 1811-1817. |
WANG Lei, LIU Changjian. Hydrothermal treatment and transesterification modification of rice straw for oil spill absorption material[J]. Chemical Industry and Engineering Progress, 2017, 36(5): 1811-1817. | |
6 | 李亚婧, 孙晓锋, 王广征, 等. 秸秆的改性及吸油能力[J]. 化工进展, 2012, 31(8): 1847-1851. |
LI Yajing, SUN Xiaofeng, WANG Guangzheng, et al. Modification of straw and its oil absorbency[J]. Chemical Industry and Engineering Progress, 2012, 31(8): 1847-1851. | |
7 | TANG M X, ZHANG R, PU Y W. Wheat straw modified with palmitic acid as an efficient oil spill adsorbent[J]. Fibers and Polymers, 2018, 19(5): 949-955. |
8 | 王帅, 杨晨曦. 疏水/亲油改性柚子皮纤维的制备及其性能研究[J]. 应用化工, 2019, 48(6): 1321-1325. |
WANG Shuai, YANG Chenxi. Preparation and properties of hydrophobic/lipophilic modified grapefruit fiber[J]. Applied Chemical Industry, 2019, 48(6): 1321-1325. | |
9 | 王旭, 王晓丽, 彭世涛, 等. 香蕉果皮酯化改性制备吸油材料[J]. 化工新型材料, 2020, 48(1): 257-261. |
WANG Xu, WANG Xiaoli, PENG Shitao, et al. Preparation of oil-absorbing material by esterification of banana peel[J]. New Chemical Materials, 2020, 48(1): 257-261. | |
10 | 王艳敏, 丁文明, 蔡静. 改性木屑对海上溢油的吸附[J]. 环境工程学报, 2017, 11(5): 2705-2710. |
WANG Yanmin, DING Wenming, CAI Jing. Adsorption of oil spill by modified sawdust[J]. Chinese Journal of Environmental Engineering, 2017, 11(5): 2705-2710. | |
11 | 闫红芹, 郑文瑞, 张桂玉, 等. 疏水/亲油丝瓜络制备及在油水分离中的应用[J]. 化工进展, 2021, 40(5): 2893-2899. |
YAN Hongqin, ZHENG Wenrui, ZHANG Guiyu, et al. Preparation of hydrophobic/oleophilic luffa and its application in oil-water separation[J]. Chemical Industry and Engineering Progress, 2021, 40(5): 2893-2899. | |
12 | 高文中, 张佳, 付存亭, 等. 玉米秸秆的水热酸处理工艺技术研究[J]. 化工设计通讯, 2019, 45(8): 80-81. |
GAO Wenzhong, ZHANG Jia, FU Cunting, et al. Study on hydrothermal acid treatment of corn stover[J]. Chemical Engineering Design Communications, 2019, 45(8): 80-81. | |
13 | 葛秀, 谭凤芝, 刘兆丽, 等. 秸秆接枝丙烯酸丁酯制备吸油树脂[J]. 大连工业大学学报, 2012, 31(2): 132-135. |
GE Xiu, TAN Fengzhi, LIU Zhaoli, et al. Synthesis of oil-absorption resin with corn straw graft butyl acrylate[J]. Journal of Dalian Polytechnic University, 2012, 31(2): 132-135. | |
14 | 陈鹤男. 玉米秸秆吸油材料的制备与研究[D]. 大连: 大连海洋大学, 2019. |
CHEN Henan. Preparation and research of oil absorbing material of corn straw[D]. Dalian: Dalian Ocean University, 2019. | |
15 | TAN X F, WANG H-M D, ZANG D L, et al. Superhydrophobic/superoleophilic corn straw as an eco-friendly oil sorbent for the removal of spilled oil[J]. Clean Technologies and Environmental Policy, 2021, 23(1): 145-152. |
16 | XU Y, YANG H Y, ZANG D L, et al. Preparation of a new superhydrophobic/superoleophilic corn straw fiber used as an oil absorbent for selective absorption of oil from water[J]. Bioresources and Bioprocessing, 2018, 5(1): 1-11. |
17 | 任俊鹏, 汤婷, 董翠鸽, 等. 表面硅烷化改性秸秆吸油材料的制备及性能[J]. 环境化学, 2021, 40(7): 2246-2254. |
REN Junpeng, TANG Ting, DONG Cuige, et al. Preparation and properties of surface silanized modified corn stalkas nature oil sorbents[J]. Environmental Chemistry, 2021, 40(7): 2246-2254. | |
18 | ZANG D L, ZHANG M, LIU F, et al. Superhydrophobic/superoleophilic corn straw fibers as effective oil sorbents for the recovery of spilled oil[J]. Journal of Chemical Technology and Biotechnology, 2016, 91(9): 2449-2456. |
19 | SHI Y L, FENG X J, YANG R H. Preparation of recyclable corn straw fiber as oil absorbent via a one-step direct modification[J]. Materials Research Express, 2021, 8(1): 015506. |
20 | LIU T. Direct conversion of rod-shaped corn straw to superhydrophobic absorbent by hydroxyl-driven silylation for selective removal of organic solvents and oils[J]. Journal of the Iranian Chemical Society, 2023, 20(10): 2621-2629. |
21 | PENG D, OUYANG F, LIANG X J, et al. Sorption of crude oil by enzyme-modified corn stalk vs. chemically treated corn stalk[J]. Journal of Molecular Liquids, 2018, 255: 324-332. |
22 | WANG Z, TIAN T, XU K, et al. Removal of antimony(Ⅲ) by magnetic MIL-101(Cr)-NH2 loaded with SiO2: Optimization based on response surface methodology and adsorption properties[J]. Chemical Papers, 2022, 76(5): 2733-2745. |
23 | CELLI G B, GHANEM A, S-L BROOKS M. Optimized encapsulation of anthocyanin-rich extract from haskap berries (Lonicera caerulea L.) in calcium-alginate microparticles[J]. Journal of Berry Research, 2016, 6(1): 1-11. |
24 | 汤健, 毕明, 陈长洁, 等. 超疏水棕榈生物质材料的研发[J]. 现代丝绸科学与技术, 2019, 34(1): 12-15, 34. |
TANG Jian, BI Ming, CHEN Changjie, et al. Research and development of super hydrophobic palm biomass materials[J]. Modern Silk Science & Technology, 2019, 34(1): 12-15, 34. | |
25 | 唐明晓, 吕二盟, 张睿, 等. 常温下乙酰化小麦秸秆纤维制备高效溢油吸附剂的研究[J]. 安徽农业科学, 2018, 46(8): 183-187. |
TANG Mingxiao, Ermeng LÜ, ZHANG Rui, et al. Preparation of an efficient oil-spill adsorbent by acetylating wheat straw cellulose at room temperature[J]. Journal of Anhui Agricultural Sciences, 2018, 46(8): 183-187. | |
26 | 姜思雨, 娄春华, 于晶晶, 等. 玉米秸秆乙酰化改性对环氧树脂性能的影响[J]. 工程塑料应用, 2023, 51(3): 129-135. |
JIANG Siyu, LOU Chunhua, YU Jingjing, et al. Effect of acetylation modification of corn straw on properties of epoxy resin[J]. Engineering Plastics Application, 2023, 51(3): 129-135. | |
27 | WARR L N, PERDRIAL J N, M-C LETT, et al. Clay mineral-enhanced bioremediation of marine oil pollution[J]. Applied Clay Science, 2009, 46(4): 337-345. |
28 | SETYAWAN H, FAUZIYAH M, TOMO H S S, et al. Fabrication of hydrophobic cellulose aerogels from renewable biomass coir fibers for oil spillage clean-up[J]. Journal of Polymers and the Environment, 2022, 30(12): 5228-5238. |
29 | 范廷玉, 李文洁, 彭丹, 等. 漆酶改性玉米秸秆髓的制备及其吸油特性[J]. 中国环境科学, 2020, 40(9): 3810-3820. |
FAN Tingyu, LI Wenjie, PENG Dan, et al. Preparation of laccase modified corn stover pith as oil sorbent and its properties[J]. China Environmental Science, 2020, 40(9): 3810-3820. | |
30 | 吕福全, 孟玉霞, 张元军, 等. 成型玉米秸秆气化的热重分析及动力学研究[J]. 当代化工研究, 2019(4): 147-150. |
LV Fuquan, MENG Yuxia, ZHANG Yuanjun, et al. Study on thermogravimetric analysis and kinetics during gasification of molding corn straw[J]. Modern Chemical Research, 2019(4): 147-150. | |
31 | PAWAR A A, KIM H. Sustainable, hydrophobic, and reusable paper waste aerogel as an effective and versatile oil absorbent[J]. Journal of Environmental Chemical Engineering, 2022, 10(2): 107356. |
32 | WANG J J, ZHOU J L, ZHAI R, et al. A versatile platform of corn stalk-based membranes for high performance of oil/water separation[J]. Vacuum, 2023, 210: 111862. |
33 | 刘晓晖, 曹亚峰, 李沅, 等. 玉米秸秆基吸油材料的制备与表征[J]. 林产化学与工业, 2016, 36(5): 37-44. |
LIU Xiaohui, CAO Yafeng, LI Yuan, et al. Preparation and characterization of oil absorbent material derived from corn stalk[J]. Chemistry and Industry of Forest Products, 2016, 36(5): 37-44. |
[1] | WAN Zhen, WANG Shaoqing, LI Zhihe, ZHAO Tiansheng. Advances in HZSM-5 catalyzed pyrolysis of lignin to aromatic hydrocarbons [J]. Chemical Industry and Engineering Progress, 2024, 43(S1): 517-532. |
[2] | XIE Yulin, RAU Jui-yeh, HUANG Jian, HAO Jiayi, WANG Youyi, HUANG Qi. Preparation of continuous ZIF-8 membrane and its progress in hydrogen separation [J]. Chemical Industry and Engineering Progress, 2024, 43(S1): 403-418. |
[3] | FU Wei, NING Shuying, CAI Chen, CHEN Jiayin, ZHOU Hao, SU Yaxin. SCR-C3H6 denitrification performance of Cu-modified MIL-100(Fe) catalysts [J]. Chemical Industry and Engineering Progress, 2024, 43(9): 4951-4960. |
[4] | OU Hongxiang, MIN Zheng, XUE Honglai, CAO Haizhen, BI Haipu, WANG Junqi. Effect of hydrophobic modified magnesium oxide nanoparticles on the properties of short fluorocarbon chain foam [J]. Chemical Industry and Engineering Progress, 2024, 43(9): 5177-5184. |
[5] | SUN Yan, XIE Xiaoyang, FENG Qianying, ZHENG Lu, HE Jiaojie, YANG Liwei, BAI Bo. Preparation of forward osmosis membrane modified by tannic acid-iron (Ⅲ) and its antifouling performance [J]. Chemical Industry and Engineering Progress, 2024, 43(9): 5309-5319. |
[6] | LIANG Guowei, JIN Jing, DONG Bo, HOU Fengxiao. Effect of in-situ modification of coal ash on carbon deposition of Ca-based oxygen carrier in chemical looping combustion [J]. Chemical Industry and Engineering Progress, 2024, 43(8): 4253-4261. |
[7] | FU Tao, LI Li, GAO Lining, ZHU Fuwei, CAO Weiye, CHEN Huaxin. Cement-based boron-doped graphite phase carbon nitride material degrades NO [J]. Chemical Industry and Engineering Progress, 2024, 43(8): 4403-4410. |
[8] | LONG Tao, ZHOU Feng, ZHANG Wei, WU Hong, WANG Jian, CHEN Lin. Synthesis and modification of deuterated methanol catalyst used in CO-CO2 system [J]. Chemical Industry and Engineering Progress, 2024, 43(8): 4411-4420. |
[9] | LI li, CAI Xinyu, CHEN Yinjie, ZHANG Wenqi, LI Guanghui, RAO Pinhua. Preparation and properties of superhydrophobic-highly oleophobic SiC membrane [J]. Chemical Industry and Engineering Progress, 2024, 43(8): 4516-4522. |
[10] | ZHENG Yunxiang, GAO Yilun, LI Yanru, LIU Qinglin, ZHANG Haoteng, WANG Xiangpeng. Preparation and adsorption properties of porous double-network hydrogels modified by nitrilotriacetic acid anhydride [J]. Chemical Industry and Engineering Progress, 2024, 43(8): 4542-4549. |
[11] | LIU Yucan, GAO Zhonglu, XU Xinyi, JI Xianguo, ZHANG Yan, SUN Hongwei, WANG Gang. Adsorption performance and mechanism of diuron from water by calcium-modified water hyacinth-based biochar [J]. Chemical Industry and Engineering Progress, 2024, 43(8): 4630-4641. |
[12] | HE Shikun, ZHANG Wenhao, FENG Junfeng, PAN Hui. Directional conversion of lignocellulosic biomass to methyl levulinate over supported metal solid acid [J]. Chemical Industry and Engineering Progress, 2024, 43(6): 3042-3050. |
[13] | CHEN Zhiqiang, XIA Mingwei, YANG Haiping, CHEN Yingquan, WANG Xianhua, CHEN Hanping. Research progress on synthesis and regulation of lignocellulose-based carbon quantum dots [J]. Chemical Industry and Engineering Progress, 2024, 43(6): 3100-3113. |
[14] | LI Yingying, LIU An, JIANG Leyan, LI Hui, CHEN Chunyu, JU Dianchun. Progress in the preparation and electrochemical properties of transition metal sulfide Co9S8 [J]. Chemical Industry and Engineering Progress, 2024, 43(6): 3114-3127. |
[15] | GONG Xuemei, JIANG Jun, WANG Chao, MEI Changtong. Research progress on hydrophobicity modification and functional application of nanocellulose [J]. Chemical Industry and Engineering Progress, 2024, 43(6): 3187-3198. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |