Chemical Industry and Engineering Progress ›› 2025, Vol. 44 ›› Issue (10): 5547-5562.DOI: 10.16085/j.issn.1000-6613.2025-0322
• Chemical processes and equipment • Previous Articles
LIU Xi1,2(
), LIN Yuting1,2, WANG Dong1,2, LU Kai1,2(
), TENG Lin1, WANG Dabiao1, LUO Yu1, JIANG Lilong1(
)
Received:2025-03-03
Revised:2025-04-09
Online:2025-11-10
Published:2025-10-25
Contact:
LU Kai, JIANG Lilong
刘曦1,2(
), 林钰婷1,2, 王栋1,2, 卢凯1,2(
), 滕霖1, 王大彪1, 罗宇1, 江莉龙1(
)
通讯作者:
卢凯,江莉龙
作者简介:刘曦(1983—),女,博士,副教授,研究方向为化工装备的腐蚀与防护。E-mail:xi.liu@fzu.edu.cn。
基金资助:CLC Number:
LIU Xi, LIN Yuting, WANG Dong, LU Kai, TENG Lin, WANG Dabiao, LUO Yu, JIANG Lilong. Research progress on failure behavior and analysis technique of ammonia equipment under the background of “ammonia-hydrogen” energy[J]. Chemical Industry and Engineering Progress, 2025, 44(10): 5547-5562.
刘曦, 林钰婷, 王栋, 卢凯, 滕霖, 王大彪, 罗宇, 江莉龙. “氨-氢”能源背景下临氨设备失效行为及分析技术研究进展[J]. 化工进展, 2025, 44(10): 5547-5562.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2025-0322
| 失效部位 | 年份 | 失效情况 | 失效形式 | 失效原因 |
|---|---|---|---|---|
| 内壁环缝 | 1996 | 氨合成塔顶部法兰与内筒相焊的内壁环缝有多处开裂[ | 开裂 | 氨合成塔焊接接头上存在氢腐蚀裂纹和制造时潜伏的延迟裂纹 |
| 筒体 | 2009 | 筒体与上端盖第一环向焊缝和内筒第一筒节纵缝存在纵向裂纹,均为近表面埋藏性裂纹[ | 开裂 | 疲劳开裂、应力腐蚀开裂及脆性开裂 |
| 筒体内表面 | 2010 | 氨合成塔内表面有多处线状裂纹及网状裂纹[ | 开裂 | 氢腐蚀 |
| 波纹板 | 2019 | 氨合成塔内部321奥氏体不锈钢触媒框波纹板表面出现鳞片状的脆性物质和龟状裂纹[ | 开裂 | 蠕变、晶间腐蚀 |
| 冷激气分布器 | 2022 | 内件材质为0Cr18Ni9的氨合成塔冷激气分布器丝网破裂,导致催化剂进入分布器内[ | 开裂 | 冷激气分布器丝网长期在高温、高压、高氢环境下工作而变硬、变脆,随着生产中压力、温度变化加剧,最终断裂 |
| 失效部位 | 年份 | 失效情况 | 失效形式 | 失效原因 |
|---|---|---|---|---|
| 内壁环缝 | 1996 | 氨合成塔顶部法兰与内筒相焊的内壁环缝有多处开裂[ | 开裂 | 氨合成塔焊接接头上存在氢腐蚀裂纹和制造时潜伏的延迟裂纹 |
| 筒体 | 2009 | 筒体与上端盖第一环向焊缝和内筒第一筒节纵缝存在纵向裂纹,均为近表面埋藏性裂纹[ | 开裂 | 疲劳开裂、应力腐蚀开裂及脆性开裂 |
| 筒体内表面 | 2010 | 氨合成塔内表面有多处线状裂纹及网状裂纹[ | 开裂 | 氢腐蚀 |
| 波纹板 | 2019 | 氨合成塔内部321奥氏体不锈钢触媒框波纹板表面出现鳞片状的脆性物质和龟状裂纹[ | 开裂 | 蠕变、晶间腐蚀 |
| 冷激气分布器 | 2022 | 内件材质为0Cr18Ni9的氨合成塔冷激气分布器丝网破裂,导致催化剂进入分布器内[ | 开裂 | 冷激气分布器丝网长期在高温、高压、高氢环境下工作而变硬、变脆,随着生产中压力、温度变化加剧,最终断裂 |
| 失效部位 | 年份 | 失效情况 | 失效形式 | 失效原因 |
|---|---|---|---|---|
| 换热器管 | 2007 | 分解炉换热器内管近固定端发生纵向开裂[ | 开裂 | 管子在高温热应力、拉应力、腐蚀、蠕变和氮化等的综合作用下失效 |
| 反应器 | 2020 | 310S不锈钢氨分解反应器发生贯穿裂纹失效[ | 开裂 | 反应器处于高温富氢环境下,析出富铬σ相,致使周边组织贫Cr;富氢环境下材料发生氢脆反应;安装工艺导致管型反应器应力集中 |
| 炉胆 | 2023 | 氨分解炉炉胆局部焊接接头产生裂纹[ | 开裂 | S31008奥氏体不锈钢在长时间高温运行中连续析出网状脆性Cr23C6碳化物,在工作应力作用下沿晶界断裂 |
| 失效部位 | 年份 | 失效情况 | 失效形式 | 失效原因 |
|---|---|---|---|---|
| 换热器管 | 2007 | 分解炉换热器内管近固定端发生纵向开裂[ | 开裂 | 管子在高温热应力、拉应力、腐蚀、蠕变和氮化等的综合作用下失效 |
| 反应器 | 2020 | 310S不锈钢氨分解反应器发生贯穿裂纹失效[ | 开裂 | 反应器处于高温富氢环境下,析出富铬σ相,致使周边组织贫Cr;富氢环境下材料发生氢脆反应;安装工艺导致管型反应器应力集中 |
| 炉胆 | 2023 | 氨分解炉炉胆局部焊接接头产生裂纹[ | 开裂 | S31008奥氏体不锈钢在长时间高温运行中连续析出网状脆性Cr23C6碳化物,在工作应力作用下沿晶界断裂 |
| 失效部位 | 年份 | 失效情况 | 失效形式 | 失效原因 |
|---|---|---|---|---|
| 氨合成塔冷管 | 2004 | 氨合成塔冷管断裂,冷管弯管的外表面有大面积与管子垂直的裂纹[ | 开裂 | 渗氮致使氮化层严重脆化和开裂,同时在腐蚀氧化和冷热疲劳作用下,冷管韧性降低并断裂 |
| 冷气副线异径管 | 2007 | 氨合成塔冷气副线异径管爆裂,异径管本体与爆裂口相对的内表面存在纵向裂纹[ | 爆裂 | 异径管在超温高压富氢介质工况下发生了氢腐蚀和低应力脆性断裂 |
| 过热器管 | 2011 | 过热器管局部发生鼓包[ | 鼓包 | 停炉时过热器管内流动中断,热量积聚,导致过热器管热阻降低,过载失效 |
| 第一变换炉出口管道 | 2017 | 变换气管道第一变换炉出口管道有多处裂纹[ | 开裂 | H2S引起的应力腐蚀 |
| 合成气旁路管线 | 2018 | 合成氨厂脱碳装置下游的合成气旁路管线大爆炸[ | 爆炸 | 侵蚀和腐蚀协同作用导致管线上部壁厚减薄最终发生破裂 |
| 变换系统管道 | 2020 | 合成氨装置变换系统管道开裂导致泄漏[ | 开裂 | 应力腐蚀、晶间腐蚀、Cl-对奥氏体不锈钢的腐蚀破坏、氢腐蚀以及应力集中等多种因素共同作用的结果 |
| 加热炉出口管道 | 2020 | 合成氨装置加热炉出口管道爆炸,节流装置三个焊缝断裂[ | 爆炸 | 节流装置附属管道用材不当,制造质量低劣,焊缝存在严重的未焊透缺陷 |
| ASTM A335 P11合金蒸汽管道 | 2021 | ASTM A335 P11合金蒸汽管道在400℃、内压4.7MPa的条件下服役8年后开裂失效[ | 开裂 | 应力松弛开裂,粗大碳化物析出物在晶界处形成 |
| 失效部位 | 年份 | 失效情况 | 失效形式 | 失效原因 |
|---|---|---|---|---|
| 氨合成塔冷管 | 2004 | 氨合成塔冷管断裂,冷管弯管的外表面有大面积与管子垂直的裂纹[ | 开裂 | 渗氮致使氮化层严重脆化和开裂,同时在腐蚀氧化和冷热疲劳作用下,冷管韧性降低并断裂 |
| 冷气副线异径管 | 2007 | 氨合成塔冷气副线异径管爆裂,异径管本体与爆裂口相对的内表面存在纵向裂纹[ | 爆裂 | 异径管在超温高压富氢介质工况下发生了氢腐蚀和低应力脆性断裂 |
| 过热器管 | 2011 | 过热器管局部发生鼓包[ | 鼓包 | 停炉时过热器管内流动中断,热量积聚,导致过热器管热阻降低,过载失效 |
| 第一变换炉出口管道 | 2017 | 变换气管道第一变换炉出口管道有多处裂纹[ | 开裂 | H2S引起的应力腐蚀 |
| 合成气旁路管线 | 2018 | 合成氨厂脱碳装置下游的合成气旁路管线大爆炸[ | 爆炸 | 侵蚀和腐蚀协同作用导致管线上部壁厚减薄最终发生破裂 |
| 变换系统管道 | 2020 | 合成氨装置变换系统管道开裂导致泄漏[ | 开裂 | 应力腐蚀、晶间腐蚀、Cl-对奥氏体不锈钢的腐蚀破坏、氢腐蚀以及应力集中等多种因素共同作用的结果 |
| 加热炉出口管道 | 2020 | 合成氨装置加热炉出口管道爆炸,节流装置三个焊缝断裂[ | 爆炸 | 节流装置附属管道用材不当,制造质量低劣,焊缝存在严重的未焊透缺陷 |
| ASTM A335 P11合金蒸汽管道 | 2021 | ASTM A335 P11合金蒸汽管道在400℃、内压4.7MPa的条件下服役8年后开裂失效[ | 开裂 | 应力松弛开裂,粗大碳化物析出物在晶界处形成 |
| 失效部位 | 年份 | 失效情况 | 失效形式 | 失效原因 |
|---|---|---|---|---|
| 罐体 | 2004 | 在液氨球罐的液氨导入卧式氨罐的过程中,氨罐爆裂,液氨泄漏[ | 爆裂 | 卧式氨罐排油连通管道腐蚀变薄,不能承受液氨的压力,在最薄处爆裂 |
| T形接头处及封头环缝与筒体纵焊缝交叉部位 | 2020 | 液氨储罐液相区域的T形焊缝、热影响区和母材处出现十几条裂纹[ | 开裂 | 应力腐蚀开裂 |
| 钢瓶 | 2023 | 液氨钢瓶爆裂[ | 爆裂 | 钢瓶长期停用腐蚀严重,且卸料过程不规范,导致钢瓶内有部分液氨在高温照射下发生爆炸 |
| 失效部位 | 年份 | 失效情况 | 失效形式 | 失效原因 |
|---|---|---|---|---|
| 罐体 | 2004 | 在液氨球罐的液氨导入卧式氨罐的过程中,氨罐爆裂,液氨泄漏[ | 爆裂 | 卧式氨罐排油连通管道腐蚀变薄,不能承受液氨的压力,在最薄处爆裂 |
| T形接头处及封头环缝与筒体纵焊缝交叉部位 | 2020 | 液氨储罐液相区域的T形焊缝、热影响区和母材处出现十几条裂纹[ | 开裂 | 应力腐蚀开裂 |
| 钢瓶 | 2023 | 液氨钢瓶爆裂[ | 爆裂 | 钢瓶长期停用腐蚀严重,且卸料过程不规范,导致钢瓶内有部分液氨在高温照射下发生爆炸 |
| 失效分析技术 | 仪器 | 作用 |
|---|---|---|
| 宏观观察 | 放大镜、显微镜 | 观察失效设备的外观形貌,初步分析和快速评估失效情况 |
| 微观观测 | ||
| 金相检验 | 金相显微镜 | 通过观察和分析金属材料的显微组织结构,评估其成分、性能及使用过程中的变化 |
| 扫描电镜检测 | 扫描电子显微镜 | 提供高分辨率的表面形貌图像,呈现材料表面的微观结构、裂纹、颗粒和其他细节 |
| 能谱分析 | 能谱仪 | 适用于微观区域的元素分析,确定样品元素含量,观察元素在材料中的分布情况 |
| X射线衍射 | X射线衍射仪 | 基于X射线与晶体中原子的相互作用和衍射现象分析物质的晶体结构和相组成 |
| 透射电镜检测 | 透射电子显微镜 | 基于样品对电子束的散射和吸收获取图像,观察材料的微观结构、晶格缺陷以及相变等特征 |
| 力学性能分析 | ||
| 硬度检测 | 硬度仪 | 检测材料表面抵抗压入变形的能力,反映材料多方面的综合性能 |
| 拉伸试验 | 拉伸试验机 | 确定材料的抗拉强度、屈服强度、弹性模量、伸长率等主要力学性能指标 |
| 失效分析技术 | 仪器 | 作用 |
|---|---|---|
| 宏观观察 | 放大镜、显微镜 | 观察失效设备的外观形貌,初步分析和快速评估失效情况 |
| 微观观测 | ||
| 金相检验 | 金相显微镜 | 通过观察和分析金属材料的显微组织结构,评估其成分、性能及使用过程中的变化 |
| 扫描电镜检测 | 扫描电子显微镜 | 提供高分辨率的表面形貌图像,呈现材料表面的微观结构、裂纹、颗粒和其他细节 |
| 能谱分析 | 能谱仪 | 适用于微观区域的元素分析,确定样品元素含量,观察元素在材料中的分布情况 |
| X射线衍射 | X射线衍射仪 | 基于X射线与晶体中原子的相互作用和衍射现象分析物质的晶体结构和相组成 |
| 透射电镜检测 | 透射电子显微镜 | 基于样品对电子束的散射和吸收获取图像,观察材料的微观结构、晶格缺陷以及相变等特征 |
| 力学性能分析 | ||
| 硬度检测 | 硬度仪 | 检测材料表面抵抗压入变形的能力,反映材料多方面的综合性能 |
| 拉伸试验 | 拉伸试验机 | 确定材料的抗拉强度、屈服强度、弹性模量、伸长率等主要力学性能指标 |
| [101] | 马志刚, 靳明程, 陈衍涛, 等. HAZOP研究与故障树分析在合成氨装置危险辨识中的应用[J]. 中国安全生产科学技术, 2012, 8(10): 85-90. |
| MA Zhigang, JIN Mingcheng, CHEN Yantao, et al. Application of HAZOP and fault tree analysis (FTA) in hazard identification of ammonia synthesis plant[J]. Journal of Safety Science and Technology, 2012, 8(10): 85-90. | |
| [102] | 李磊磊, 高勇强, 马骥, 等. 基于故障树分析方法的化工离心泵常见故障研究[J]. 石油化工设备, 2024, 53(1): 20-25. |
| LI Leilei, GAO Yongqiang, MA Ji, et al. Research on common faults of chemical centrifugal pump based on fault tree analysis method[J]. Petro-Chemical Equipment, 2024, 53(1): 20-25. | |
| [103] | 高梓涵, 张福群. 基于动态故障树理论化工企业事故危险性分析[J]. 沈阳化工大学学报, 2023, 37(3): 218-221. |
| GAO Zihan, ZHANG Fuqun. Accident risk analysis of chemical enterprises based on dynamic fault tree theory[J]. Journal of Shenyang University of Chemical Technology, 2023, 37(3): 218-221. | |
| [104] | 于子航, 林家乐, 商宗雨, 等. 基于FTA-BN法的储存环节涉氨设备氨泄漏概率风险分析[J]. 化工机械, 2020, 47(4): 533-537. |
| YU Zihang, LIN Jiale, SHANG Zongyu, et al. Leakage probability risk analysis of ammonia-related devices in storage section based on the FTA-BN method[J]. Chemical Engineering & Machinery, 2020, 47(4): 533-537. | |
| [105] | ROY Arnab, SRIVASTAVA Prashant, SINHA Shishir. Dynamic failure assessment of an ammonia storage unit: A case study[J]. Process Safety and Environmental Protection, 2015, 94: 385-401. |
| [106] | 丁昱智, 曹金鑫, 曹凤婷, 等. 基于风险的检验技术在石油炼化领域中的研究进展[J]. 中国腐蚀与防护学报, 2024, 44(3): 553-566. |
| DING Yuzhi, CAO Jinxin, CAO Fengting, et al. Research progress of risk-based inspection technology in petrochemical industry[J]. Journal of Chinese Society for Corrosion and Protection, 2024, 44(3): 553-566. | |
| [107] | 中华人民共和国国家市场监督管理总局, 国家标准化管理委员会. 承压设备系统基于风险的检验实施导则 第1部分:基本要求和实施程序: [S]. 北京: 中国标准出版社, 2022. |
| [1] | ZHU Chenyu, GUAN Bin, ZHUANG Zhongqi, et al. Research status and advances of ammonia and hydrogen in the field of energy: Combined utilization[J]. Energy Conversion and Management, 2025, 327:119610-119610. |
| [2] | 滕霖, 林崴, 尹鹏博, 等. 碳中和目标下绿氨终端站储运技术发展现状及趋势[J]. 油气储运, 2024, 43(1): 1-11. |
| TENG Lin, LIN Wei, YIN Pengbo, et al. Development status and trends of green ammonia terminal storage and transportation technologies for achieving carbon neutrality[J]. Oil & Gas Storage and Transportation, 2024, 43(1): 1-11. | |
| [3] | QI Yunliang, LIU Wei, LIU Shang, et al. A review on ammonia-hydrogen fueled internal combustion engines[J]. eTransportation, 2023, 18: 100288. |
| [4] | 方辉煌, 程金星, 罗宇, 等. 氨电氧化催化剂及其低温直接氨碱性膜燃料电池性能的研究进展[J]. 化工学报, 2022, 73(9): 3802-3814. |
| FANG Huihuang, CHENG Jinxing, LUO Yu, et al. Recent progress on ammonia oxidation catalysts at anode and their performances in low-temperature direct ammonia alkaline exchange membrane fuel cells[J]. CIESC Journal, 2022, 73(9): 3802-3814. | |
| [5] | 陈永珍, 韩颖, 宋文吉, 等. 绿氨能源化及氨燃料电池研究进展[J]. 储能科学与技术, 2023, 12(1): 111-119. |
| CHEN Yongzhen, HAN Ying, SONG Wenji, et al. Research progress of green ammonia energy and ammonia fuel cell[J]. Energy Storage Science and Technology, 2023, 12(1): 111-119. | |
| [6] | LI Haojie, YAN Yunfei, FENG Shuai, et al. Ammonia borane and its applications in the advanced energy technology[J]. Journal of Energy Resources Technology, 2021, 143(11): 110801. |
| [7] | GONG Zhongbin, WANG Hao, LI Chenhao, et al. Progress in the design and performance evaluation of catalysts for low-temperature direct ammonia fuel cells[J]. Green Chemical Engineering, 2025, 6(1): 54-67. |
| [8] | 赵晓东, 文婕, 于明伟, 等. 氨能源技术的开发及前景展望[J]. 现代化工, 2023, 43(4): 50-53, 59. |
| ZHAO Xiaodong, WEN Jie, YU Mingwei, et al. Development and prospect of ammonia energy technology[J]. Modern Chemical Industry, 2023, 43(4): 50-53,59. | |
| [9] | 王龙平, 林立, 罗宇, 等. 氨的可再生合成与利用研究进展[J]. 热能动力工程, 2024, 39(10): 1-9. |
| WANG Longping, LIN Li, LUO Yu, et al. Research progress on renewable synthesis and utilization of ammonia[J]. Journal of Engineering for Thermal Energy and Power, 2024, 39(10): 1-9. | |
| [10] | 王放放, 于琳竹, 李琦, 等. “双碳”背景下燃煤电厂制氨与氨利用进展[J]. 化学通报, 2023, 86(3): 323-332. |
| WANG Fangfang, YU Linzhu, LI Qi, et al. Progress of ammonia production and utilization in coal-fired power plants under the background of “dual carbon”[J]. Chemistry, 2023, 86(3): 323-332. | |
| [11] | 李卫东, 李逸龙, 滕霖, 等. “双碳”目标下的氨能技术与经济性研究进展[J]. 化工进展, 2023, 42(12): 6226-6238. |
| LI Weidong, LI Yilong, TENG Lin, et al. Research progress on ammonia energy technology and economy under “carbon emission peak” and “carbon neutrality” targets[J]. Chemical Industry and Engineering Progress, 2023, 42(12): 6226-6238. | |
| [12] | 滕霖, 尹鹏博, 聂超飞, 等. “氨-氢”绿色能源路线及液氨储运技术研究进展[J]. 油气储运, 2022, 41(10): 1115-1129. |
| TENG Lin, YIN Pengbo, NIE Chaofei, et al. Research progress on “ammonia-hydrogen” green energy roadmap and storage & transportation technology of liquid ammonia[J]. Oil & Gas Storage and Transportation, 2022, 41(10): 1115-1129. | |
| [13] | 段志祥, 刘三江, 石坤, 等. 涉氨设备系统风险评估方法及典型应用[J]. 化工机械, 2019, 46(5): 501-507. |
| DUAN Zhixiang, LIU Sanjiang, SHI Kun, et al. Risk assessment method for ammonia equipments system and its typical application[J]. Chemical Engineering & Machinery, 2019, 46(5): 501-507. | |
| [14] | 国家安全监管总局.国家安全监管总局关于湖北宜化集团所属企业生产安全事故有关情况的通报[EB/OL]. (2017-08-03) [2024-10-22]. . |
| State Administration of Work Safety. Notice from the state administration of work safety on production safety accidents in enterprises affiliated to Hubei Yihua Group[EB/OL]. (2017-08-03) [2024-10-22]. . | |
| [15] | 上海证券交易所.云南云天化股份有限公司关于控股子公司发生一般安全事故的公告[EB/OL]. (2021-07-31) [2024-10-22]. . |
| Shanghai Stock Exchange. Announcement of Yunnan Yuntianhua Company Limited on the occurrence of general safety accidents in its holding subsidiary[EB/OL]. (2021-07-31) [2024-10-22]. . | |
| [16] | 时传兴, 尹高雷, 赵鹏鹏. 合成氨水冷器换热管断裂失效分析及对策[J]. 压力容器, 2020, 37(11): 51-56. |
| SHI Chuanxing, YIN Gaolei, ZHAO Pengpeng. Fracture failure analysis and countermeasures of heat exchange tube of ammonia water cooler[J]. Pressure Vessel Technology, 2020, 37(11): 51-56. | |
| [17] | 汤鹏杰, 梁斌. 某合成氨甲烷化装置脱硫槽焊接接头开裂原因[J]. 机械工程材料, 2023, 47(5): 66-71. |
| TANG Pengjie, LIANG Bin. Reason for cracking of welded joint in desulfurization tank of a synthetic ammonia methanation unit[J]. Materials for Mechanical Engineering, 2023, 47(5): 66-71. | |
| [18] | SABOURI M, HOSEINY H, FARIDI H R. Corrosion failure of superheat steam pipes of an ammonia production plant[J]. Vacuum, 2015, 121: 75-80. |
| [19] | TAGHIPOUR M, BAHRAMI A, RAHIMZADEH R, et al. Establishing the cause of failure in a secondary reformer nozzle in an ammonia plant[J]. Journal of Failure Analysis and Prevention, 2021, 21: 1143-1153. |
| [20] | 李坤, 郑嘉懿, 杨庆超, 等. 316L不锈钢应力腐蚀研究进展[J]. 有色金属材料与工程, 2023, 44(5): 36-46. |
| LI Kun, ZHENG Jiayi, YANG Qingchao, et al. Research progress on stress corrosion of 316L stainless steel[J]. Nonferrous Metal Materials and Engineering, 2023, 44(5): 36-46. | |
| [21] | 鲍庆煌, 叶兵, 蒋海燕, 等. 镍基高温合金耐腐蚀性能的研究进展[J]. 材料导报, 2015, 29(17): 128-134. |
| BAO Qinghuang, YE Bing, JIANG Haiyan, et al. Research progress on the corrosion resistance of nickel-based superalloy[J]. Materials Reports, 2015, 29(17): 128-134. | |
| [22] | GUO Shuwei, XU Donghai, LIANG Yu, et al. Corrosion characteristics of typical Ni-Cr alloys and Ni-Cr-Mo alloys in supercritical water: A review[J]. Industrial & Engineering Chemistry Research, 2020, 59: 18727-18739. |
| [23] | 李平瑾, 卜华全, 胡积胜, 等. 氨合成塔焊缝裂纹成因分析[J]. 中国锅炉压力容器安全, 2002, 18(5): 46-50. |
| LI Pingjin, BU Huaquan, HU Jisheng, et al. Analysis of the causes of weld cracks in ammonia synthesis tower[J]. China Special Equipment Safety, 2002, 18(5): 46-50. | |
| [24] | 蒋家慧, 景炜, 秦延山. 氨合成塔外壳内筒裂纹的分析[J]. 压力容器, 2010, 27(11): 59-62. |
| JIANG Jiahui, JING Wei, QIN Yanshan. Analysis of crack on the shell of ammonia converter[J]. Pressure Vessel Technology, 2010, 27(11): 59-62. | |
| [25] | 吴志泉, 涂晋林. 工业化学[M]. 2版. 上海: 华东理工大学出版社, 2003: 373. |
| WU Zhiquan, TU Jinlin. Industrial chemistry[M]. 2nd ed. Shanghai: East China University of Science and Technology Press, 2003: 373. | |
| [26] | TIAN Ning, ZHAO Guoqi, SHI Zhongzhen, et al. High-temperature creep behaviour and deformation mechanism of a high-concentration Re/Ru single-crystal nickel-based alloy[J]. Journal of Materials Research and Technology, 2024: 29: 1350-1358. |
| [27] | 张道云, 黄川, 熊杰, 等. 在用氨合成塔的检验及裂纹修复[J]. 石油和化工设备, 2011, 14(6): 45-46, 51. |
| ZHANG Daoyun, HUANG Chuan, XIONG Jie, et al. Inspection and crack repair of ammonia synthesis tower in use[J]. Petro & Chemical Equipment, 2011, 14(6): 45-46, 51. | |
| [28] | 刘升启. 氨合成塔检验及裂纹处理[J]. 装备制造技术, 2012 (2): 108-110. |
| LIU Shengqi. Inspection and crack treatment of ammonia synthesis tower[J]. Equipment Manufacturing Technology, 2012 (2): 108-110. | |
| [29] | 黄苍碧. 氨合成塔内件腐蚀失效分析及解决措施[J]. 石油和化工设备, 2019, 22(12): 69-71. |
| HUANG Cangbi. Corrosion failure analysis and solutions for internal components of ammonia synthesis tower[J]. Petro & Chemical Equipment, 2019, 22(12): 69-71. | |
| [30] | 史元璋. 冷激型氨合成塔内件故障原因分析及材料选用浅议[J]. 中氮肥, 2022 (6): 30-33. |
| SHI Yuanzhang. Analysis of failure causes and material selection for internal components of cold shock ammonia synthesis tower[J]. M-Sized Nitrogenous Fertilizer Progress, 2022 (6): 30-33. | |
| [31] | 裴喜华, 王恺, 吴晓根. 氨分解气在热处理中的安全防控对策研究[J]. 中国公共安全(学术版), 2019 (4): 73-75. |
| PEI Xihua, WANG Kai, WU Xiaogen. Research on safety control of ammonia decomposition atmosphere in heat treatment[J]. China Public Security. Academy Edition, 2019 (4): 73-75. | |
| [32] | HALLIGER H, WAHREN R. High-temperature corrosion of Austenitic steels in ammonia[J]. Werkst Korros-Mater Corros, 1993, 44(11/12): 473-479. |
| [33] | LIU Chunyang, HU Chunhua, SUN Zhijie, et al. Mechanics capability and structure of ion nitrocarburized layer of 42MnCr52 steel[C]. 4th 2016 International Conference on Material Science and Engineering (ICMSE 2016). Atlantis Press, 2016: 188-194. |
| [34] | 巴发海. 12Cr1MoV分解炉换热器管失效分析[J]. 化工设备与管道, 2007(4): 35-38. |
| BA Fahai. Failure analysis of 12Cr1MoV heat transfer tubes used in discomposing vessel[J]. Process Equipment & Piping, 2007(4): 35-38. | |
| [35] | 刘晓华, 廖晓玲, 孙琪, 等. 310S不锈钢反应器失效原因分析[J]. 当代化工, 2020, 49(8): 1719-1722. |
| LIU Xiaohua 1, LIAO Xiaoling1, SUN Qi,et al. Failure analysis of 310s stainless steel reaction vessel[J]. Contemporary Chemical Industry, 2020, 49(8): 1719-1722. | |
| [36] | 张鹏, 付一川, 赵振旭, 等. 裂解炉炉胆焊缝裂纹原因分析及焊接修复[J]. 电焊机, 2023, 53(10): 78-83. |
| ZHANG Peng, FU Yichuan, ZHAO Zhenxu, et al. Analysis and repair of cracks in the cracking furnace of ammonia decomposition unit[J]. Electric Welding Machine, 2023, 53(10): 78-83. | |
| [37] | 王威强, 李东, 陈鹭宾. 氨合成塔冷管失效分析[J]. 压力容器, 2004 (4): 40-43. |
| WANG Weiqiang, LI Dong, CHEN Lubin. Failure analysis of cooling tubes in synthetic ammonia tower[J]. Pressure Vessel Technology, 2004 (4): 40-43. | |
| [38] | 林清宇, 林靖宇, 林榕端, 等. 氨合成塔冷气副线异径管爆裂事故分析[J]. 压力容器, 2007 (5): 58-59. |
| LIN Qingyu, LIN Jingyu, LIN Rongduan, et al. Analyse on cracking accident of tapered pipe in air-cooling accessory line of a certain ammonia synthetic tower[J]. Pressure Vessel Technology, 2007 (5): 58-59. | |
| [39] | ABBASFARD Hamed, GHANBARI Mehdi, GHASEMI Amin, et al. Failure analysis and modeling of super heater tubes of a waste heat boiler thermally coupled in ammonia oxidation reactor[J]. Engineering Failure Analysis, 2012, 26: 285-292. |
| [40] | 郭保方. 变换气管道开裂失效原因分析及对策[J]. 氮肥与合成气, 2021, 49(1): 4-10. |
| GUO Baofang. Analysis and countermeasures of cracking failure causes in variable gas pipeline[J]. Nitrogenous Fertilizer & Syngas, 2021, 49(1): 4-10. | |
| [41] | DARVISHI P, ZAREIE-KORDSHOULI F, LASHANIZADEHGAN A. Failure analysis of syngas bypass line rupture in an industrial ammonia plant[J]. Engineering Failure Analysis, 2018, 84: 59-69. |
| [42] | 时柯. 合成氨装置变换系统管道裂纹原因分析及预防[J]. 中氮肥, 2020(3): 27-30. |
| SHI Ke. Analysis and prevention of pipeline cracks in the conversion system of synthetic ammonia plant[J]. M-Sized Nitrogenous Fertilizer Progress, 2020(3): 27-30. | |
| [43] | 王华明, 余江涌, 孙一平, 等. 某合成氨装置管道爆炸原因分析[J]. 特种设备安全技术, 2020(3): 10-12. |
| WANG Huaming, YU Jiangyong, SUN Yiping, et al. Analysis of the cause of pipeline explosion in a synthetic ammonia plant[J]. Safety Technology of Special Equipment, 2020(3): 10-12. | |
| [44] | BAHRAMI Abbas, MOHAMMADNEJAD Ali, KIANI KHOUZANI Mahdi, et al. Stress relaxation cracking failure in a high pressure steam pipeline in an ammonia plant[J]. International Journal of Pressure Vessels and Piping, 2021, 194(PA): 104542. |
| [45] | 陈智锋. 氨罐开裂失效原因探究[J]. 企业技术开发, 2012, 31(11): 117-118. |
| CHEN Zhifeng. Exploration into the causes of cracking and failure of ammonia tanks[J]. Technological Development of Enterprise, 2012, 31(11): 117-118. | |
| [46] | 李达志. 氨罐(槽)泄漏原因、危害及对策研究[J]. 中氮肥, 2012(1): 9-11. |
| LI Dazhi. Research on leaking causes of ammonia tank, hazards and countermeasures[J]. M-Sized Nitrogenous Fertilizer Progress, 2012(1): 9-11. | |
| [47] | 李元松. 16MnR液氨储罐应力腐蚀分析及防止措施[J]. 设备管理与维修, 2023(18): 189-190. |
| LI Yuansong. Stress corrosion analysis and preventive measures of 16MnR liquid ammonia storage tank[J]. Plant Maintenance Engineering, 2023(18): 189-190. | |
| [48] | REN Facai. The causes of explosion failure of liquid ammonia cylinder[J]. Journal of Physics: Conference Series, 2023, 2566(1): 012080. |
| [49] | 李加庆, 冯智雨, 梁辉龙, 等. 复杂输送环境下液氨腐蚀行为及防护技术研究进展[J]. 油气储运, 2024, 43(2): 121-133, 162. |
| LI Jiaqing, FENG Zhiyu, LIANG Huilong, et al. A review of research progress on the corrosion behavior and relevant protection techniques of liquid ammonia under complex transmission environments[J]. Oil & Gas Storage and Transportation, 2024, 43(2): 121-133, 162. | |
| [50] | 中华人民共和国国家市场监督管理总局, 中国国家标准化管理委员会. 承压设备损伤模式识别: [S]. 北京: 中国标准出版社, 2022. |
| State Administration for Market Regulation of the People’s Republic of China, Standardization Administration of the People’s Republic of China. Damage pattern recognition of pressure equipment: [S]. Beijing: Standards Press of China, 2022. | |
| [51] | 付正鸿, 陈辉, 苟国庆, 等. 载荷频率对690(TT)合金腐蚀疲劳裂纹扩展行为的影响[J]. 材料热处理学报, 2016, 37(2): 36-41. |
| FU Zhenghong, CHEN Hui, GOU Guoqing, et al. Effect of frequency on corrosion fatigue crack growth behavior of 690(TT) alloy[J]. Transactions of Materials and Heat Treatment, 2016, 37(2): 36-41. | |
| [52] | MYRONOVA Olga. Influence of various structural micro-defects on the fracture of cyclically stressed components revisited[J]. Materials Testing, 2020: 429-433. |
| [53] | 曹志明. 氨制冷压力容器应力腐蚀开裂原因及其对策[J]. 压力容器, 2003(5): 1-3. |
| CAO Zhiming. Stress corrosion cracking of pressure vessel for ammonia refrigerating equipments and research[J]. Pressure Vessel Technology, 2003(5): 1-3. | |
| [54] | 宋雨来, 付洪德, 王震, 等. 镁合金的应力腐蚀开裂:机理、影响因素、防护技术[J]. 材料导报, 2019, 33(5): 834-840. |
| SONG Yulai, FU Hongde, WANG Zhen, et al. Stress corrosion cracking of magnesium alloys: Mechanism,influencing factors,and prevention technology[J]. Materials Reports, 2019, 33(5): 834-840. | |
| [55] | 黄克智, 肖纪美. 材料的损伤断裂机理和宏微观力学理论[M]. 北京: 清华大学出版社, 1999: 233. |
| HUANG Kezhi, XIAO Jimei. The damage and fracture mechanism of materials and the theory of macro and micro mechanics[M]. Beijing: Tsinghua University Press, 1999: 233. | |
| [56] | GAVRILJUK V G, SHYVANIUK V M, TEUS S M. Hydrogen in metallic alloys - embrittlement and enhanced plasticity: A review[J]. Corrosion Reviews, 2024, 42: 267 - 301. |
| [57] | 陈林, 董绍华, 李凤, 等. 氢环境下压力容器及管道材料相容性研究进展[J]. 力学与实践, 2022, 44(3): 503-518. |
| CHEN Lin, DONG Shaohua, LI Feng, et al. Some advances in studies of material compatibility of pressure vessels and pipelinesin hydrogen atmosphere[J]. Mechanics in Engineering, 2022, 44(3): 503-518. | |
| [58] | SUN Qingqing, HE Jing, NAGAO Akihide, et al. Hydrogen-prompted heterogeneous development of dislocation structure in Ni[J]. Acta Materialia, 2023, 246: 118660. |
| [59] | 解德刚, 黄龙超, 单智伟. 氢对位错行为影响的原位电镜研究[J]. 电子显微学报, 2023, 42(5): 629-641. |
| XIE Degang, HUANG Longchao, SHAN Zhiwei. In situ TEM study on the effects of hydrogen on dislocation behavior[J]. Journal of Chinese Electron Microscopy Society, 2023, 42(5): 629-641. | |
| [60] | WOODTLI Jarmila, KIESELBACH Rolf. Damage due to hydrogen embrittlement and stress corrosion cracking[J]. Engineering Failure Analysis, 2000,7(6): 427-450. |
| [61] | 赵骞, 张洁, 毛锐锐, 等. Q235钢结构件表面热镀锌层的应力腐蚀及其机理[J]. 中国腐蚀与防护学报, 2024, 44(5): 1305-1315. |
| ZHAO Qian, ZHANG Jie, MAO Ruirui, et al. Stress corrosion and its mechanism of hot-dip galvanized coating on Q235 steel structure[J]. Journal of Chinese Society for Corrosion and Protection, 2024, 44(5): 1305-1315. | |
| [62] | 白天祥, 罗岩. 氨合成塔裂纹及修复[J]. 压力容器, 1999 (2): 69-72. |
| BAI Tianxiang, LUO Yan. Cracks and repairing techniques of ammonia synthesis tower[J]. Pressure Vessel Technology, 1999 (2): 69-72. | |
| [63] | 白天祥, 宋新相. 在用压力容器检验案例分析和对策[J]. 河南化工, 2002 (1): 29-30. |
| BAI Tianxiang, SONG Xinxiang. Case analysis and countermeasures of pressure vessel inspection in use[J]. Henan Chemical Industry, 2002 (1): 29-30. | |
| [64] | 姜圆博. 深海管道焊接接头的循环塑性变形行为及氢脆机理研究[D]. 天津: 天津大学, 2022. |
| JIANG Yuanbo. Study on the cyclic plastic deformation behavior and hydrogen embrittlement mechanism of deep-sea pipeline welded joint[D]. Tianjin: Tianjin University, 2022. | |
| [107] | State Administration for Market Regulation of the People’s Republic of China, Standardization Administration of the People’s Republic of China. Guideline for implementation of risk-based inspection of pressure equipment system — Part 1: Basic requirements and implementation procedure: [S]. Beijing: Standards Press of China, 2022. |
| [65] | 张敬强. 焊接接头中应力促进氢致裂纹形成理论分析与实验研究[D]. 哈尔滨: 哈尔滨工业大学, 2015. |
| ZHANG Jingqiang. Theoretical analysis and experimental research on stress-facilitated nucleation of hydrogen induced cracking in welded joint[D]. Harbin: Harbin Institute of Technology, 2015. | |
| [66] | SILVERSTEIN R, ELIEZER D, TAL-GUTELMACHER E. Hydrogen trapping in alloys studied by thermal desorption spectrometry[J]. Journal of Alloys and Compounds, 2018, 747: 511-522. |
| [67] | VANDEWALLE Liese, KONSTANTINOVIĆ Milan J, VERBEKEN Kim, et al. A combined thermal desorption spectroscopy and internal friction study on the interaction of hydrogen with microstructural defects and the influence of carbon distribution[J]. Acta Materialia, 2022, 241: 118374. |
| [68] | 宋雨霖, 李玉星. 氢气在管线钢表面的解离吸附机制及影响因素研究进展[J]. 油气储运, 2024, 43(11): 1212-1223. |
| SONG Yulin, LI Yuxing. Research review of the mechanism and influencing factors in dissociative adsorption of hydrogen on pipeline steel surface[J]. Oil & Gas Storage and Transportation, 2024, 43(11): 1212-1223. | |
| [69] | 江镇海. 大型合成氨装置中的高温氢腐蚀及防护[J]. 腐蚀与防护, 2008(3): 170. |
| JIANG Zhenhai. High temperature hydrogen corrosion and protection in large-scale synthetic ammonia plants[J]. Corrosion & Protection, 2008(3): 170. | |
| [70] | 马双忱, 焦坤灵, 张立男, 等. 高温气相条件下硫酸氢铵与硫酸铵对20#碳钢的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2017, 37(6): 605-612. |
| MA Shuangchen, JIAO Kunling, ZHANG Linan, et al. Corrosion characteristics of carbon steel in high temperature gas containing ammonium bisulfate and ammonium sulfate[J]. Journal of Chinese Society for Corrosion and Protection, 2017, 37(6): 605-612. | |
| [71] | KIM Dong-Min, KIM Chiwon, YANG Cheol-Hyeok, et al. Heat treatment design of Inconel 740H superalloy for microstructure stability and enhanced creep properties[J]. Journal of Alloys and Compounds, 2023, 946: 169341. |
| [72] | TAKAHASHI Akiyuki, KANAZAWA Motoyasu. Atomistic-continuum hybrid analysis of dislocation behavior in spinodally decomposed Fe-Cr alloys[J]. MATEC Web of Conferences, 2017, 101: 01018. |
| [73] | ZHOU Lang, HU Gengxiang, ZHANG Shouhua. Creep-corrosion interaction of high temperature alloys in the sulfidizing-oxidizing environment[J]. Chinese Journal of Engineering, 1987, 9(S2): 54-62. |
| [74] | ZHAO Jingwei, QIU Feng, XU Chuangang. Review of creep-thermomechanical fatigue behavior of austenitic stainless steel[J]. Crystals, 2023, 13(1): 70. |
| [75] | KORKHAUS J. Failure mechanisms and material degradation processes at high temperatures in ammonia synthesis[J]. Corrosion Engineering, Science and Technology, 2005, 40(3): 204-210. |
| [76] | CHEN Qingqing, LI Zuosheng, YIN Xiao, et al. Phase-field investigation of intergranular corrosion mechanism and kinetics in aluminum alloys[J]. Journal of Materials Research and Technology, 2024, 30: 8841-8853. |
| [77] | MOU Liming, BIAN Tiantian, ZHANG Shaohua, et al. New sights on intergranular corrosion resistance mechanism of type 304 austenitic stainless steel by adjusting carbon contents[J]. Journal of Materials Research and Technology, 2023, 26: 666-680. |
| [78] | 于宝. 合成氨装置液氨储罐的全面检测[J]. 炼油与化工, 2015, 26(2): 70-71. |
| YU Bao. Comprehensive inspection of liquid ammonia storage tank in synthetic ammonia plant[J]. Refining and Chemical Industry, 2015, 26(2): 70-71. | |
| [79] | 刘旭, 刘驰. 合成气废热锅炉管箱裂纹原因分析及修复[J]. 中氮肥, 2019 (3): 56-59, 68. |
| LIU Xu, LIU Chi. Analysis and repair of cracks in the tube box of synthetic gas waste heat boiler[J]. M-Sized Nitrogenous Fertilizer Progress, 2019 (3): 56-59, 68. | |
| [80] | 肖迪红, 李学锋, 尹谢平. 氨合成塔筒体泄漏的无损检测分析[J]. 中国化工装备, 2001 (3): 35-39. |
| XIAO Dihong, LI Xuefeng, YIN Xieping. The NDT analysis for the leakage reason of ammonia synthetic tower shell[J]. China Chemical Industry Equipment, 2001 (3): 35-39. | |
| [81] | 徐长业, 郑立农. 氨合成塔进出物料换热器的荧光磁粉检测[J]. 无损探伤, 2000 (6): 40-42. |
| XU Changye, ZHENG Linong. Fluorescent magnetic particle testing of heat exchanger for incoming and outgoing materials in ammonia synthesis tower[J]. Nondestructive Testing Technology, 2000 (6): 40-42. | |
| [82] | XU Yinhu, XU Kunshan, WANG Hongzhen, et al. Research progress on magnetic memory nondestructive testing[J]. Journal of Magnetism and Magnetic Materials, 2023, 565: 170245. |
| [83] | 吴凡, 赵明辉, 路坤桥, 等. 金属磁记忆检测技术在双金属复合管道上的探索应用[J]. 油气田地面工程, 2024, 43(4): 48-52, 62. |
| WU Fan, ZHAO Minghui, LU Kunqiao, et al. Exploration and application of metal magnetic memory testing technology on bimetallic composite pipelines[J]. Oil-Gas Field Surface Engineering, 2024, 43(4): 48-52, 62. | |
| [84] | 苏三庆, 刘馨为, 王威, 等. 金属磁记忆检测技术研究新进展与关键问题[J]. 工程科学学报, 2020, 42(12): 1557-1572. |
| SU Sanqing, LIU Xinwei, WANG Wei, et al. Progress and key problems in the research on metal magnetic memory testing technology[J]. Chinese Journal of Engineering, 2020, 42(12): 1557-1572. | |
| [85] | KOLOKOLNIKOV Sergey, DUBOV Anatoly, MEDVEDEV Andrei, et al. Comprehensive inspection of refrigerated ammonia storage tank welded joints by the metal magnetic memory technique and conventional NDT methods[J]. Welding in the World, 2020, 64(10): 1659-1670. |
| [86] | 杨斌, 张利欣, 金莹, 等. 工程材料失效检测技术现状及发展趋势[J]. 机械设计与制造, 2012(11): 269-271. |
| YANG Bin, ZHANG Lixin, JIN Ying, et al. Current status and development trends of non-destructive testing for fatigue of engineering materials[J]. Machinery Design & Manufacture, 2012(11): 269-271. | |
| [87] | 马斌, 徐海亮, 程康. 金属磁记忆方法在压力容器检验中的应用[J]. 新型工业化, 2022, 12(7): 58-62. |
| MA Bin, XU Hailiang, CHENG Kang. Application of metal magnetic memory method in pressure vessel inspection[J]. The Journal of New Industrialization, 2022, 12(7): 58-62. | |
| [88] | 滕达, 刘志勇, 刘立帅, 等. 疲劳裂纹扩展的非线性超声相控阵成像定位检测[J]. 机械工程学报, 2024, 60(24): 25-34. |
| TENG Da, LIU Zhiyong, LIU Lishuai, et al. Nonlinear ultrasonic phased array imaging for fatigue crack propagation location detection[J]. Journal of Mechanical Engineering, 2024, 60(24): 25-34. | |
| [89] | 叶晓同, 赵鹏, 郑珂, 等. 基于超声相控阵的水下船体表面成像方法研究[J]. 计量学报, 2020, 41(1): 79-84. |
| YE Xiaotong, ZHAO Peng, ZHENG Ke, et al. Research on underwater hull surface imaging method based on ultrasonic phased array[J]. Acta Metrologica Sinica, 2020, 41(1): 79-84. | |
| [90] | WEI Daoxiang, WEI Daorui, SI Jun. Application research on corrosion scanning of coated pressure vessel with ultrasonic phased array inspection technology[J]. Journal of Physics: Conference Series, 2021, 1894: 012056. |
| [91] | 陈振华, 许倩, 卢超. 基于超声相控阵衍射波图像的缺陷测量方法[J]. 应用声学, 2018, 37(4): 447-454. |
| CHEN Zhenhua, XU Qian, LU Chao. A defect measurement method based on ultrasonic phased array diffraction wave image[J]. Journal of Applied Acoustics, 2018, 37(4): 447-454. | |
| [92] | 王东, 江野, 刘文生, 等. 锅炉受热面小径管超声相控阵检测技术研究[J]. 华电技术, 2017, 39(7): 7-10. |
| WANG Dong, JIANG Ye, LIU Wensheng, et al. boiler heat surface small diameter pipe ultrasonic phased array inspection technology stady[J]. Huadian Technology, 2017, 39(7): 7-10. | |
| [93] | 郭伟灿, 郑慕林, 杜兴吉, 等. 换热器管板角焊缝手动超声相控阵检测[J]. 化工设备与管道, 2020, 57(1): 52-57. |
| GUO Weican, ZHENG Mulin, DU Xingji, et al. Manual ultrasonic phase array inspection for fillet wed in heat exchanger[J]. Process Equipment & Piping, 2020, 57(1): 52-57. | |
| [94] | 汤鹏杰, 梁斌. 某余热锅炉低温过热器U型管爆管原因[J]. 腐蚀与防护, 2024, 45(3): 101-105. |
| TANG Pengjie, LIANG Bin. Burst reason of low temperature superheater U-tube of a waste heat boiler[J]. Corrosion & Protection, 2024, 45(3): 101-105. | |
| [95] | 赖玉林, 战捷, 邸久源, 等. 废酸装置一级换热器换热管开裂原因[J]. 山东化工, 2023, 52(17): 185-187, 191. |
| LAI Yulin, ZHAN Jie, DI Jiuyuan, et al. Causes of cracking of heat exchange tube of primary heat exchanger in waste acid plant[J]. Shandong Chemical Industry, 2023, 52(17): 185-187, 191. | |
| [96] | 王威强, 李爱菊, 陈鹭滨, 等. 20钢高压管脆断分析[J]. 机械强度, 2004 (6): 683-690. |
| WANG Weiqiang, LI Aiju, CHEN Lubin, et al. Brittle fracture analysis of 20 steel high pressure piping[J]. Journal of Mechanical Strength, 2004 (6): 683-690. | |
| [97] | MOHAMMADIAN ARDALI Alireza, LOTFI Behnam. Failure analysis of secondary reformer burner nozzles made from Incoloy 825 in an ammonia production plant[J]. Engineering Failure Analysis, 2020, 118: 104860. |
| [98] | GHARA Tina, KURODA Seiji, YANAGISAWA Takashi, et al. Position-dependent degradation and damage mechanisms of Inconel 600 in an ammonia gas flow environment at elevated temperatures[J]. Corrosion Science, 2024, 240: 112421. |
| [99] | 李龙. 风险评价技术在化工设备安全评估中的应用[J]. 中国设备工程, 2021(4): 32-33. |
| LI Long. Application of risk assessment techniques in chemical equipment safety assessment[J]. China Plant Engineering, 2021(4): 32-33. | |
| [100] | 夏虹, 刘永阔, 谢春丽. 设备故障诊断技术[M]. 哈尔滨: 哈尔滨工业大学出版社, 2010: 286. |
| XIA Hong, LIU Yongkuo, XIE Chunli. Fault diagnosis technology of equipment[M]. Harbin: Harbin Institute of Technology Press, 2010: 286. |
| [1] | WU Zhanhua, KONG Debao, TIAN Junjun, LIANG Rujun, LU Penghui, SHENG Min. Evaluation method of the reactivity safety based on "1+N" mode [J]. Chemical Industry and Engineering Progress, 2025, 44(6): 3199-3207. |
| [2] | LI Xuejing, CUI Zhe, LIU Bin, LI Chuankun, TIAN Wende. Intelligent risk analysis and prediction of carbon di-hydrogenation and deethanization tower systems [J]. Chemical Industry and Engineering Progress, 2025, 44(2): 717-727. |
| [3] | ZHANG Yuhong, LI Xuanyu, FENG Chunjian, MA Chunxun, ZHANG Chen, ZHOU Yangyang, BI Haisheng. Research progress on failure prediction and prevention technology of non-metallic pipes in oil and gas fields [J]. Chemical Industry and Engineering Progress, 2024, 43(3): 1118-1132. |
| [4] | WU Zhanhua, SHENG Min. Pitfalls of accelerating rate calorimeter for reactivity hazard evaluation and risk assessment [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3374-3382. |
| [5] | LI Weidong, LI Yilong, TENG Lin, YIN Pengbo, HUANG Xin, LI Jiaqing, LUO Yu, JIANG Lilong. Research progress on ammonia energy technology and economy under "carbon emission peak" and "carbon neutrality" targets [J]. Chemical Industry and Engineering Progress, 2023, 42(12): 6226-6238. |
| [6] | LI Po, ZHANG Shanshan, SHI Jinqiu, GAO Hang, WANG Mingxin. Remediation of aniline-contaminated groundwater by activated persulfate and its environmental risks [J]. Chemical Industry and Engineering Progress, 2022, 41(5): 2753-2760. |
| [7] | ZHANG Yashan, CHEN Zongyao, MA Weifang. Research progress on the migration and transformation of microplastics and environmental risks [J]. Chemical Industry and Engineering Progress, 2022, 41(11): 6080-6098. |
| [8] | Haiqing WANG, Yin LIU, Zhiquan GAO, Wenqi SUI. Quantitative analysis of influence of petrochemical plant modification and expansion on flare system load [J]. Chemical Industry and Engineering Progress, 2020, 39(9): 3842-3848. |
| [9] | HUANG Jian. Study on the construction of risk assessment system for urban safety production and existing problems [J]. Chemical Industry and Engineering Progress, 2019, 38(s1): 288-292. |
| [10] | CHENG Yulong, LUO Yun, SHI Lichen, XU Ming. Quantitative assessment of Na-Tech risk in chemical industry park [J]. Chemical Industry and Engineering Progress, 2019, 38(s1): 282-287. |
| [11] | GUO Zhendong, LI Jinlin, WANG Kewei, LI Boying, MA Chihua. Bowtie analysis on pig launcher system safety management [J]. Chemical Industry and Engineering Progress, 2019, 38(s1): 259-264. |
| [12] | Kongxing HUANG, Guohua CHEN, Tao ZENG, Kun HU. Review of quantitative risk assessment and pre-control system of Na-Tech event in Chemical Industry Park [J]. Chemical Industry and Engineering Progress, 2019, 38(07): 3482-3494. |
| [13] | XU Damao, YAN Bo, CHEN Tao, LEI Chang, LI Liang, XIAO Xianming. Health risk assessment based on bioaccessibility of heavy metals in aged soils [J]. Chemical Industry and Engineering Progress, 2017, 36(07): 2632-2638. |
| [14] | JIA Meisheng, CHEN Guohua, HU Kun. Review of risk assessment and pre-control of Domino effect in Chemical Industry Park [J]. Chemical Industry and Engineering Progress, 2017, 36(04): 1534-1543. |
| [15] | BAO Qiang, WANG Feng, JIN Xu, YANG Ou, ZHAO Yankun. Multi-parameter coupling quantitative risk calculation method for raw oil booster pump [J]. Chemical Industry and Engineering Progree, 2015, 34(10): 3577-3582,3643. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
|
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |