Chemical Industry and Engineering Progress ›› 2025, Vol. 44 ›› Issue (12): 6953-6962.DOI: 10.16085/j.issn.1000-6613.2024-2036
• Industrial catalysis • Previous Articles
WANG Ting(
), SUN Yan, SUN Qiwen(
)
Received:2024-12-15
Revised:2025-03-02
Online:2026-01-06
Published:2025-12-25
Contact:
SUN Qiwen
通讯作者:
孙启文
作者简介:王廷(1988—),男,博士,研究方向为合成气高效转化制高值化学品的催化剂设计及反应机理。E-mail:wangting245349@163.com。
CLC Number:
WANG Ting, SUN Yan, SUN Qiwen. Influence of Sr and Na modification on ZnZrO x /SAPO-34 bifunctional catalysts and its performance in catalytic conversion of syngas to lower olefins[J]. Chemical Industry and Engineering Progress, 2025, 44(12): 6953-6962.
王廷, 孙燕, 孙启文. Sr和Na改性对ZnZrO x /SAPO-34催化剂及催化合成气制低碳烯烃的影响[J]. 化工进展, 2025, 44(12): 6953-6962.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2024-2036
| 样品 | 比表面积/m2·g-1 | 孔体积/cm3·g-1 | 平均孔径/nm |
|---|---|---|---|
| ZnZr | 59.7 | 0.2 | 9.4 |
| SrZnZr | 68.6 | 0.1 | 4.3 |
| NaSrZnZr | 56.1 | 0.1 | 5.9 |
| SAPO-34 | 656.5 | 0.2 | 1.4 |
| 样品 | 比表面积/m2·g-1 | 孔体积/cm3·g-1 | 平均孔径/nm |
|---|---|---|---|
| ZnZr | 59.7 | 0.2 | 9.4 |
| SrZnZr | 68.6 | 0.1 | 4.3 |
| NaSrZnZr | 56.1 | 0.1 | 5.9 |
| SAPO-34 | 656.5 | 0.2 | 1.4 |
| 样品 | 晶格氧(OL) | 氧空位(OV) | 化学吸附氧(OC) | |||||
|---|---|---|---|---|---|---|---|---|
| 结合能/eV | 含量/% | 结合能/eV | 含量/% | 结合能/eV | 含量/% | |||
| ZnZr | 530.1 | 61.9 | 531.6 | 32.2 | 533.2 | 5.9 | ||
| SrZnZr | 529.9 | 55.8 | 531.2 | 35.2 | 532.8 | 9.0 | ||
| NaSrZnZr | 529.4 | 45.6 | 530.9 | 43.1 | 532.4 | 11.3 | ||
| 样品 | 晶格氧(OL) | 氧空位(OV) | 化学吸附氧(OC) | |||||
|---|---|---|---|---|---|---|---|---|
| 结合能/eV | 含量/% | 结合能/eV | 含量/% | 结合能/eV | 含量/% | |||
| ZnZr | 530.1 | 61.9 | 531.6 | 32.2 | 533.2 | 5.9 | ||
| SrZnZr | 529.9 | 55.8 | 531.2 | 35.2 | 532.8 | 9.0 | ||
| NaSrZnZr | 529.4 | 45.6 | 530.9 | 43.1 | 532.4 | 11.3 | ||
| [1] | ZHOU Haibo, LIU Su, SU Junjie, et al. Light olefin synthesis from syngas over sulfide-zeolite composite catalyst[J]. Industrial & Engineering Chemistry Research, 2018, 57(20): 6815-6820. |
| [2] | TORRES GALVIS Hirsa M, DE JONG Krijn P, et al. Catalysts for production of lower olefins from synthesis gas: A review[J]. ACS Catalysis, 2013, 3(9): 2130-2149. |
| [3] | YU Fei, LI Zhengjia, AN Yunlei, et al. Research progress in the direct conversion of syngas to lower olefins[J]. Journal of Fuel Chemistry and Technology, 2016, 44(7): 801-814. |
| [4] | ZHAI Peng, XU Cong, GAO Rui, et al. Highly tunable selectivity for syngas-derived alkenes over zinc and sodium modulated Fe5C2 catalyst[J]. Angewandte Chemie International Edition, 2016, 55: 9902-9907. |
| [5] | JIANG Feng, LIU Bing, LI Wenping, et al. Two-dimensional graphene-directed formation of the cylindrical iron carbide nanocapsules for Fischer-Tropsch synthesis[J]. Catalysis Science & Technology, 2017, 7(20): 4609-4621. |
| [6] | TORRES GALVIS Hirsa M, KOEKEN Ard C J, BITTER Johannes H, et al. Effects of sodium and sulfur on catalytic performance of supported iron catalysts for the Fischer-Tropsch synthesis of lower olefins[J]. Journal of Catalysis, 2013, 303: 22-30. |
| [7] | CAI Jian, JIANG Feng, LIU Xiaohao, et al. Exploring pretreatment effects in Co/SiO2 Fischer-Tropsch catalysts: Different oxidizing gases applied to oxidation-reduction process[J]. Applied Catalysis B: Environment and Energy, 2017, 210: 1-13. |
| [8] | ZHAO Zi’ang, LU Wei, YANG Ruo’ou, et al. Insight into the formation of Co@Co2C catalysts for direct synthesis of higher alcohols and olefins from syngas[J]. ACS Catalysis, 2018, 8(1): 228-241. |
| [9] | TORRES GALVIS Hirsa M, BITTER Johannes H, KHARE Chaitanya B, et al. Supported iron nanoparticles as catalysts for sustainable production of lower olefins[J]. Science, 2012, 335: 835-838. |
| [10] | ZHONG Liangshu, YU Fei, AN Yunlei, et al. Cobalt carbide nanoprisms for direct production of lower olefins from syngas[J]. Nature, 2016, 538: 84-87. |
| [11] | LIU Xiaoliang, WANG Mengheng, YIN Haoren, et al. Tandem catalysis for hydrogenation of CO and CO2 to lower olefins with bifunctional catalysts composed of spinel oxide and SAPO-34[J]. ACS Catalysis, 2020, 10(15): 8303-8314. |
| [12] | ZHAO Guolong, LIU Cun, XING Xuexiang, et al. Latest progress in one-step conversion from syngas to light olefins[J]. Modern Chemical Industry, 2019, 39(2): 55-60. |
| [13] | RAVEENDRA G, LI Congming, LIU Bin, et al. Synthesis of lower olefins from syngas over Zn/Al2O3-SAPO-34 hybrid catalysts: Role of doped Zr and influence of the Zn/Al2O3 ratio[J]. Catalysis Science & Technology, 2018, 8(14): 3527-3538. |
| [14] | MENG Fanhui, LI Xiaojing, ZHANG Peng, et al. Highly active ternary oxide ZrCeZnO x combined with SAPO-34 zeolite for direct conversion of syngas into light olefins[J]. Catalysis Today, 2021, 368: 118-125. |
| [15] | PAN Xiulian, JIAO Feng, MIAO Dengyun, et al. Oxide-zeolite-based composite catalyst concept that enables syngas chemistry beyond Fischer-Tropsch synthesis[J]. Chemical Reviews, 2021, 121(11): 6588-6609. |
| [16] | JIAO Feng, LI Jinjing, PAN Xiulian, et al. Selective conversion of syngas to light olefins[J]. Science, 2016, 351: 1065-1068. |
| [17] | JIAO Feng, BAI Bing, LI Gen, et al. Disentangling the activity-selectivity trade-off in catalytic conversion of syngas to light olefins[J]. Science, 2023, 380: 727-730. |
| [18] | ZHU Yifeng, PAN Xiulian, JIAO Feng, et al. Role of manganese oxide in syngas conversion to light olefins[J]. ACS Catalysis, 2017, 7(4): 2800-2804. |
| [19] | CHENG Kang, GU Bang, LIU Xiaoliang, et al. Direct and highly selective conversion of synthesis gas into lower olefins: Design of a bifunctional catalyst combining methanol synthesis and carbon-carbon coupling[J]. Angewandte Chemie International Edition, 2016, 128(15): 4803-4806. |
| [20] | LIU Xiaoliang, ZHOU Wei, YANG Yudan, et al. Design of efficient bifunctional catalysts for direct conversion of syngas into lower olefins via methanol/dimethyl ether intermediates[J]. Chemical Science, 2018, 9(20): 4708-4718. |
| [21] | SU Junjie, ZHOU Haibo, LIU Su, et al. Syngas to light olefins conversion with high olefin/paraffin ratio using ZnCrO x /AlPO-18 bifunctional catalysts[J]. Nature Communication, 2019, 10(1): 1-8. |
| [22] | WANG Sen, WANG Pengfei, SHI Dezhi, et al. Direct conversion of syngas into light olefins with low CO2 emission[J]. ACS Catalysis, 2020, 10: 2046-2059. |
| [23] | NI Youming, LIU Yong, CHEN Zhiyang, et al. Realizing and recognizing syngas-to-olefins reaction via a dual-bed catalyst[J]. ACS Catalysis, 2018, 9(2): 1026-1032. |
| [24] | ZHANG Peng, MENG Fanhui, LI Xiaojing, et al. Excellent selectivity for direct conversion of syngas to light olefins over a Mn-Ga oxide and SAPO-34 bifunctional catalyst[J]. Catalysis Science & Technology, 2019, 9(20): 5577-5581. |
| [25] | SU Junjie, WANG Dong, WANG Yangdong, et al. Direct conversion of syngas into light olefins over zirconium-doped indium (Ⅲ) oxide and SAPO-34 bifunctional catalysts: Design of oxide component and construction of reaction network[J]. ChemCatChem, 2018, 10(7): 1536-1541. |
| [26] | LI Jifan, ZHANG Chenghua, CHENG Xiaofan, et al. Effects of alkaline-earth metals on the structure, adsorption and catalytic behavior of iron-based Fischer-Tropsch synthesis catalysts[J]. Applied Catalysis A: General, 2013, 464(16): 10-19. |
| [27] | OREGE Joshua Iseoluwa, WEI Jian, HAN Yu, et al. Highly stable Sr and Na co-decorated Fe catalyst for high-valued olefin synthesis from CO2 hydrogenation[J]. Applied Catalysis B: Environment and Energy, 2022, 316: 121640. |
| [28] | WANG Mengheng, WANG Ziwei, LIU Suhan, et al. Synthesis of hierarchical SAPO-34 to improve the catalytic performance of bifunctional catalysts for syngas-to-olefins reactions[J]. Journal of Catalysis, 2021, 394: 181-192. |
| [29] | XING Aihua, YUAN Delin, TIAN Dayong, et al. Controlling acidity and external surface morphology of SAPO-34 and its improved performance for methanol to olefins reaction[J]. Microporous and Mesoporous Materials, 2019, 288: 109562. |
| [30] | Jie TUO, LI Shiqing, XU Hao, et al. A progress of structure design and acidity tunning of zeolites in catalytic syngas conversion[J]. Journal of Fuel Chemistry and Technology, 2023, 51(1): 1-18. |
| [31] | DANG Shanshan, GAO Peng, LIU Ziyu, et al. Role of zirconium in direct CO2 hydrogenation to lower olefins on oxide/zeolite bifunctional catalysts[J]. Journal of Catalysis, 2018, 364: 382-393. |
| [32] | LIU Tangkang, XU Di, SONG Mengyang, et al. K-ZrO2 interfaces boost CO2 hydrogenation to higher alcohols[J]. ACS Catalysis, 2023, 13: 4667-4674. |
| [33] | WANG Jijie, LI Guanna, LI Zelong, et al. A highly selective and stable ZnO-ZrO2 solid solution catalyst for CO2 hydrogenation to methanol[J]. Science Advances, 2017, 3e701290. |
| [34] | WANG Ting, XU Yuebing, LI Yufeng, et al. Sodium-mediated bimetallic Fe-Ni catalyst boosts stable and selective production of light aromatics over HZSM-5 zeolite[J]. ACS Catalysis, 2021, 11(6): 3553-3574. |
| [35] | YU Hailing, WANG Caiqi, LIN Tiejun, et al. Direct production of olefins from syngas with ultrahigh carbon efficiency[J]. Nature Communication, 2022, 13: 5987. |
| [1] | QIN Fei, ZHANG Zhi, SONG Guangchun, WANG Wuchang, LI Yuxing, WANG Shixin, HE Sicheng, WANG Jiangyan. Advances in research on the molecular dynamics behaviors of hydrate-based hydrogen storage [J]. Chemical Industry and Engineering Progress, 2025, 44(S1): 112-123. |
| [2] | LIU Zhe, ZHOU Shunli, LI Yongxiang, ZHANG Chengxi, LIU Yipeng. Research progress on alkyl naphthalene synthesis catalysts [J]. Chemical Industry and Engineering Progress, 2025, 44(S1): 144-158. |
| [3] | LIN Yijie, QIAO Peng, LI Xinrui, ZHANG Hongbin, WANG Xueqin. Construction and application of heterostructures of photocatalyst TiO2 nanomaterials [J]. Chemical Industry and Engineering Progress, 2025, 44(S1): 159-177. |
| [4] | WANG Tao, ZHANG Xuebing, ZHANG Qi, CHEN Qiang, ZHANG Kui, MEN Zhuowu. Effects of reduction-carburization temperature and inlet CO concentration on industrial precipitated iron-based catalyst for Fischer-Tropsch synthesis [J]. Chemical Industry and Engineering Progress, 2025, 44(S1): 178-184. |
| [5] | BAO Xinde, LIU Biye, HUANG Renwei, HONG Yuhao, GUAN Xin, LIN Jinguo. Preparation of biomass-based@CuNiOS composite catalysts for the reduction of organic dye [J]. Chemical Industry and Engineering Progress, 2025, 44(S1): 185-196. |
| [6] | MA Xiaobiao, LIU Han, WANG Weihuan, MIAO Peipei, JI Yinghui, CHEN Boyang, PENG Xiaowei, XU Qiang, JIN Fengying, MA Mingchao, WANG Yinbin, GUO Chunlei. Effect of acid and phosphorus composite modification on the catalytic cracking performance of ZSM-5 molecular sieve [J]. Chemical Industry and Engineering Progress, 2025, 44(S1): 197-204. |
| [7] | ZHAO Siyang, LI Chenran, LIU Yang. Process optimization for regulating diene selectivity of MTO regenerated catalyst through pre-carbon deposition using C4 by-product [J]. Chemical Industry and Engineering Progress, 2025, 44(S1): 205-212. |
| [8] | ZHAO Yulong, CAI Kai, YU Shanqing. Influence of pore structure of alumina on the adsorption, diffusion and reactivity of hydrocarbon molecules in catalytic cracking [J]. Chemical Industry and Engineering Progress, 2025, 44(S1): 213-221. |
| [9] | LI Junliang, LI Yue, SUN Daolai. Hydrodeoxygenation of 1,2-butanediol to 1-butanol over Cu/SiO2-Al2O3 catalyst [J]. Chemical Industry and Engineering Progress, 2025, 44(S1): 222-231. |
| [10] | LIU Chao, DING Chengao, WU Baoshun, LEI Xinyu, WANG Guangying, YU Zhengwei. Effect of TiO2 support particle size on the denitrification and water/sulfur poisoning resistance of RuO x -V2O5-WO3/TiO2 catalyst [J]. Chemical Industry and Engineering Progress, 2025, 44(S1): 232-242. |
| [11] | ZHANG Hanlin, YUE Xuehai, LIU Junxi, YIN Fengjun. Fabrication of high stability electrocatalyst for oxygen evolution reaction by Ru-Sr-Ir electrodeposition [J]. Chemical Industry and Engineering Progress, 2025, 44(S1): 243-251. |
| [12] | CHEN Zizhao, HE Fangshu, HU Qiang, YANG Yang, CHEN Hanping, YANG Haiping. Research progress on anti-carbon deposition Ni-based catalysts for dry reforming of methane [J]. Chemical Industry and Engineering Progress, 2025, 44(9): 4968-4978. |
| [13] | WANG Zhen, ZHANG Yaoyuan, WU Qin, SHI Daxin, CHEN Kangcheng, LI Hansheng. Development of Ni/Al2O3-based catalysts for the dry reforming of methane [J]. Chemical Industry and Engineering Progress, 2025, 44(9): 4979-4998. |
| [14] | ZHANG Haipeng, QIN Shanshan, WANG Yuxuan, YU Haibiao. Preparation of 3.0F-Ag x Co catalysts for N2O decomposition [J]. Chemical Industry and Engineering Progress, 2025, 44(9): 4999-5005. |
| [15] | LI Zhifu, YANG Xiaodong, WANG Baocai, HU Changliu, PEI Jikai, YAN Longfang, WU Ruifang, ZHANG Changsheng, WANG Yongzhao. Synthesis and properties of high temperature retarder HJ-1 [J]. Chemical Industry and Engineering Progress, 2025, 44(9): 5092-5100. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
|
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |