Chemical Industry and Engineering Progress ›› 2025, Vol. 44 ›› Issue (S1): 451-461.DOI: 10.16085/j.issn.1000-6613.2024-2015
• Resources and environmental engineering • Previous Articles
SHI Peixin1(
), XIE Jing1, DIAO Rongjun2, HE Rong2, XIE Li1(
)
Received:2024-12-11
Revised:2025-06-26
Online:2025-11-24
Published:2025-10-25
Contact:
XIE Li
通讯作者:
谢丽
作者简介:史佩鑫(2001—),女,硕士研究生,研究方向为污水处理与资源化。E-mail:2331309@tongji.edu.cn。
CLC Number:
SHI Peixin, XIE Jing, DIAO Rongjun, HE Rong, XIE Li. Recent advances on the application of hydrolysis acidification process in the treatment of emerging contaminants[J]. Chemical Industry and Engineering Progress, 2025, 44(S1): 451-461.
史佩鑫, 谢靖, 刁荣俊, 何蓉, 谢丽. 水解酸化工艺用于新污染物治理研究进展[J]. 化工进展, 2025, 44(S1): 451-461.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2024-2015
| ECs种类 | 具体污染物 | 废水类型 | 水力停留时间(HRT)/d | 初始浓度/mg·L-1 | 去除率/% | 参考文献 |
|---|---|---|---|---|---|---|
| POPs | 三氯乙烯 | 模拟石化废水 | 3 | 10~200 | 77.83~6.67 | [ |
| 三氯乙醛 | 模拟石化废水 | 3 | 100 | 70 | [ | |
| PAHs | 实际浓缩污泥 | 2 | 7.82 | 37.05 | [ | |
| 抗生素 | 三氯生 | 模拟城镇生活污水 | 10 | 10 | 87 | [ |
| 青霉素G | 模拟城镇生活污水 | 10 | 1.3×10-4 | 0.7±2.4 | [ | |
| 恩诺沙星 | 模拟城镇生活污水 | 10 | 1.0×10-4 | 0.8±31.8 | [ | |
| 磺胺甲𫫇唑 | 模拟城镇生活污水 | 10 | 8.0×10-4 | 0.7±0.5 | [ | |
| 三甲氧苄啶 | 模拟城镇生活污水 | 10 | 6.5×10-4 | 0.7±0.1 | [ | |
| EDCs | 双酚A | 模拟淀粉废水 | 28 | 0.05~0.5 | 61 | [ |
| 西地那非 | 模拟淀粉废水 | 28 | 0.05~0.5 | 43 | [ | |
| ARGs | aph3Ib、sul2、tetX、aph6Id、tetG、sul1 | 实际剩余污泥 | 3 | 169.8 | 26.1 | [ |
| tetA、tetG、tetX、sul1、ermB、dfrA1、dfrA12、intI1 | 实际脱水污泥 | 3 | 107~109① | 0.1~0.72② | [ | |
| etA、tetG、tetL、tetM、tetO、tetW、tetX、intl1 | 实际剩余污泥 | 5 | 106~108① | 0.16~1.1② | [ |
| ECs种类 | 具体污染物 | 废水类型 | 水力停留时间(HRT)/d | 初始浓度/mg·L-1 | 去除率/% | 参考文献 |
|---|---|---|---|---|---|---|
| POPs | 三氯乙烯 | 模拟石化废水 | 3 | 10~200 | 77.83~6.67 | [ |
| 三氯乙醛 | 模拟石化废水 | 3 | 100 | 70 | [ | |
| PAHs | 实际浓缩污泥 | 2 | 7.82 | 37.05 | [ | |
| 抗生素 | 三氯生 | 模拟城镇生活污水 | 10 | 10 | 87 | [ |
| 青霉素G | 模拟城镇生活污水 | 10 | 1.3×10-4 | 0.7±2.4 | [ | |
| 恩诺沙星 | 模拟城镇生活污水 | 10 | 1.0×10-4 | 0.8±31.8 | [ | |
| 磺胺甲𫫇唑 | 模拟城镇生活污水 | 10 | 8.0×10-4 | 0.7±0.5 | [ | |
| 三甲氧苄啶 | 模拟城镇生活污水 | 10 | 6.5×10-4 | 0.7±0.1 | [ | |
| EDCs | 双酚A | 模拟淀粉废水 | 28 | 0.05~0.5 | 61 | [ |
| 西地那非 | 模拟淀粉废水 | 28 | 0.05~0.5 | 43 | [ | |
| ARGs | aph3Ib、sul2、tetX、aph6Id、tetG、sul1 | 实际剩余污泥 | 3 | 169.8 | 26.1 | [ |
| tetA、tetG、tetX、sul1、ermB、dfrA1、dfrA12、intI1 | 实际脱水污泥 | 3 | 107~109① | 0.1~0.72② | [ | |
| etA、tetG、tetL、tetM、tetO、tetW、tetX、intl1 | 实际剩余污泥 | 5 | 106~108① | 0.16~1.1② | [ |
| [1] | RAHMAN Nurhaslina ABD, CHOONG Choe Earn, PICHIAH Saravanan, et al. Recent advances in the TiO2 based photoreactors for removing contaminants of emerging concern in water[J]. Separation and Purification Technology, 2023, 304: 122294. |
| [2] | 孙建林, 龙阳可, 王可昳, 等. 环境中新污染物的来源、行为、归趋与治理[J]. 广东化工, 2023, 50(23): 107-109. |
| SUN Jianlin, LONG Yangke, WANG Keyi, et al. Source, behavior, fate, and governance of emerging pollutants in the environment[J]. Guangdong Chemical Industry, 2023, 50(23): 107-109. | |
| [3] | YADAV Deepak, RANGABHASHIYAM S, VERMA Pramit, et al. Environmental and health impacts of contaminants of emerging concerns: Recent treatment challenges and approaches[J]. Chemosphere, 2021, 272: 129492. |
| [4] | 宋梦琪, 周春江, 马鲁铭. 水解酸化工艺处理印染废水的机理[J]. 环境工程学报, 2015, 9(1): 102-106. |
| SONG Mengqi, ZHOU Chunjiang, MA Luming. Mechanism of printing and dyeing wastewater treatment by hydrolysis and acidification process[J]. Chinese Journal of Environmental Engineering, 2015, 9(1): 102-106. | |
| [5] | 张盛. 铁/碳强化水解酸化去除三氯乙醛的研究[D]. 兰州: 兰州交通大学, 2022. |
| ZHANG Sheng. Removal of trichloroacetaldehyde by iron/carbon enhanced hydrolytic acidification[D]. Lanzhou: Lanzhou Jiatong University, 2022. | |
| [6] | 朱悦. 钛盐及钛基固体酸水解预处理制药废水中泰乐菌素的研究[D]. 北京: 北京林业大学, 2020. |
| ZHU Yue. Study on pretreatment of tylosin in pharmaceutical wastewater by hydrolysis of titanium salt and titanium-based solid acid[D]. Beijing: Beijing Forestry University, 2020. | |
| [7] | AHMAD M, ESKICIOGLU C. Fate of sterols, polycyclic aromatic hydrocarbons, pharmaceuticals, ammonia and solids in single-stage anaerobic and sequential anaerobic/aerobic/anoxic sludge digestion[J]. Waste Management, 2019, 93: 72-82. |
| [8] | 邱玉, 李智饶, 刘浩亮, 等. 利福霉素类抗生素废水的水解酸化处理技术研究[J]. 中国资源综合利用, 2024, 42(11): 39-43, 66. |
| QIU Yu, LI Zhirao, LIU Haoliang, et al. Study on the hydrolysis and acidification treatment technology of rifamycin antibiotic wastewater[J]. China Resources Comprehensive Utilization, 2024, 42(11): 39-43, 66. | |
| [9] | 孙远帅. 半导体生产废水处理的工程实例[J]. 工业用水与废水, 2020, 51(6): 77-79, 83. |
| SUN Yuanshuai. A project example of semiconductor production wastewater treatment[J]. Industrial Water & Wastewater, 2020, 51(6): 77-79, 83. | |
| [10] | 肖卓远, 黄南, 巫寅虎, 等. 集成电路废水的达标排放、资源回收和再生处理[J]. 工业水处理, 2024, 44(4): 1-9. |
| XIAO Zhuoyuan, HUANG Nan, WU Yinhu, et al. The discharge, recovery, and reuse treatments of integrated circuit industry wastewater[J]. Industrial Water Treatment, 2024, 44(4): 1-9. | |
| [11] | 熊建辉. 酸化—好氧工艺处理硅生产废水的应用研究[D]. 哈尔滨: 哈尔滨工业大学, 2011. |
| XIONG Jianhui. Study on the application of acidification-aerobic process in treating silicon production wastewater[D]. Harbin: Harbin Institute of Technology, 2011. | |
| [12] | 李元志, 刘佳. 新能源汽车动力电池生产废水深度处理研究[J]. 中国资源综合利用, 2024, 42(5): 192-194. |
| LI Yuanzhi, LIU Jia. Research on advanced treatment of wastewater from the production of power batteries for new energy vehicles[J]. China Resources Comprehensive Utilization, 2024, 42(5): 192-194. | |
| [13] | GUO Tao, PAN Kuan, CHEN Yunxin, et al. When aerobic granular sludge faces emerging contaminants: A review[J]. Science of the Total Environment, 2024, 907: 167792. |
| [14] | 李学健, 漆丹, 张成, 等. 典型新污染物在我国垃圾填埋渗滤液中的赋存、迁移与去除[J]. 环境化学, 2024, 43(8): 2555-2570. |
| LI Xuejian, QI Dan, ZHANG Cheng, et al. The occurrence, migration, and removal of typical emerging contaminants in landfill leachate in China[J]. Environmental chemistry, 2024, 43(8): 2555-2570. | |
| [15] | 彭薪屹, 李玉花, 杨晓, 等. 制药污水处理厂污泥中抗生素的污染特征及风险评估: 生产负荷的影响[J]. 中国环境科学, 2025, 45(2): 736-747. |
| PENG Xinyi, LI Yuhua, YANG Xiao, et al. Pollution characteristics and risk assessment of antibiotics in sludge from pharmaceutical wastewater treatment plants: The influence of production load[J]. China Environmental Science, 2025, 45(2): 736-747. | |
| [16] | JANG Hyun Min, LEE Jangwoo, SHIN Seung Gu, et al. Comparing the fate of antibiotic resistance genes in two full-scale thermophilic anaerobic digestion plants treating food wastewater[J]. Bioresource Technology, 2020, 312: 123577. |
| [17] | WANG Yali, ZHAO Jianwei, WANG Dongbo, et al. Free nitrous acid promotes hydrogen production from dark fermentation of waste activated sludge[J]. Water Research, 2018, 145: 113-124. |
| [18] | CHEN Hongbo, ZOU Zhiming, TANG Mengge, et al. Polycarbonate microplastics induce oxidative stress in anaerobic digestion of waste activated sludge by leaching bisphenol A[J]. Journal of Hazardous Materials, 2023, 443: 130158. |
| [19] | SHANG Zezhou, WANG Rui, ZHANG Xiyi, et al. Differential effects of petroleum-based and bio-based microplastics on anaerobic digestion: A review[J]. Science of the Total Environment, 2023, 875: 162674. |
| [20] | SHI Yafei, CHAI Jiaqi, XU Tao, et al. Microplastics contamination associated with low-value domestic source organic solid waste: A review[J]. Science of the Total Environment, 2023, 857: 159679. |
| [21] | ALIMOHAMMADI Mahsa, DEMIRER Goksel N. Microplastics in anaerobic digestion: Occurrence, impact, and mitigation strategies[J]. Journal of Environmental Health Science & Engineering, 2024, 22(2): 397-411. |
| [22] | BENN Nicholas, ZITOMER Daniel. Pretreatment and anaerobic co-digestion of selected PHB and PLA bioplastics[J]. Frontiers in Environmental Science, 2018, 5: 93. |
| [23] | PORTERFIELD K K, HOBSON S A, NEHER D A, et al. Microplastics in composts, digestates, and food wastes: A review[J]. Journal of Environmental Quality, 2023, 52(2): 225-240. |
| [24] | MAHON A M, O’CONNELL B, HEALY M G, et al. Microplastics in sewage sludge: Effects of treatment[J]. Environmental Science & Technology, 2017, 51(2): 810-818. |
| [25] | STAPLETON Michael J, Faisal I HAI. Microplastics as an emerging contaminant of concern to our environment: A brief overview of the sources and implications[J]. Bioengineered, 2023, 14(1): 2244754. |
| [26] | DELIGIANNIS Michalis, GKALIPIDOU Evdokia, GATIDOU Georgia, et al. Study on the fate of per- and polyfluoroalkyl substances during thermophilic anaerobic digestion of sewage sludge and the role of granular activated carbon addition[J]. Bioresource Technology, 2024, 406: 131013. |
| [27] | 宋雨佩, 马玉石, 张朝志, 等. 三氯乙烯对厌氧水解酸化菌的抑制作用及去除特性[J]. 环境工程技术学报, 2023, 13(3): 1088-1096. |
| SONG Yupei, MA Yushi, ZHANG Chaozhi, et al. Inhibition and removal characteristics of trichloroethylene on anaerobic hydrolysis acidifying bacteria[J]. Journal of Environmental Engineering Technology, 2023, 13(3): 1088-1096. | |
| [28] | 张树艳. 微波化学协同水解酸化/好氧堆肥降解污泥有机污染物[D]. 西安: 西安工程大学, 2021. |
| ZHANG Shuyan. Degradation of organic pollutants in sludge by microwave chemical hydrolysis acidification/aerobic composting[D]. Xi’an: Xi’an Polytechnic University, 2021. | |
| [29] | GANGADHARAN PUTHIYA Veetil Prajeesh, VIJAYA NADARAJA Anupama, BHASI Arya, et al. Degradation of triclosan under aerobic, anoxic, and anaerobic conditions[J]. Applied Biochemistry and Biotechnology, 2012, 167(6): 1603-1612. |
| [30] | RUAS Graziele, Rebeca LÓPEZ-SERNA, SCARCELLI Priscila Guenka, et al. Influence of the hydraulic retention time on the removal of emerging contaminants in an anoxic-aerobic algal-bacterial photobioreactor coupled with anaerobic digestion[J]. Science of the Total Environment, 2022, 827: 154262. |
| [31] | Jennifer ARCILA-SAENZ, Gina HINCAPIÉ-MEJÍA, LONDOÑO-CAÑAS Yudy Andrea, et al. Role of the hydrolytic-acidogenic phase on the removal of bisphenol A and sildenafil during anaerobic treatment[J]. Environmental Monitoring and Assessment, 2023, 195(12): 1552. |
| [32] | WU Ying, CUI Erping, ZUO Yiru, et al. Fate of antibiotic and metal resistance genes during two-phase anaerobic digestion of residue sludge revealed by metagenomic approach[J]. Environmental Science and Pollution Research International, 2018, 25(14): 13956-13963. |
| [33] | WU Ying, CUI Erping, ZUO Yiru, et al. Influence of two-phase anaerobic digestion on fate of selected antibiotic resistance genes and class Ⅰ integrons in municipal wastewater sludge[J]. Bioresource Technology, 2016, 211: 414-421. |
| [34] | 李哲. 热碱解-水解处理剩余污泥的效果及四环素类抗性基因的变化研究[D]. 广州: 华南理工大学, 2018. |
| LI Zhe. Study on the effect of thermal alkaline hydrolysis-hydrolysis treatment of excess sludge and the change of tetracycline resistance genes[D]. Guangzhou: South China University of Technology, 2018. | |
| [35] | HERON Gorm, LACHANCE John, BAKER Ralph. Removal of PCE DNAPL from tight clays using in situ thermal desorption[J]. Groundwater Monitoring & Remediation, 2013, 33(4): 31-43. |
| [36] | Joanna POLUSZYŃSKA, Elżbieta JAROSZ-KRZEMIŃSKA, Edeltrauda HELIOS-RYBICKA. Studying the effects of two various methods of composting on the degradation levels of polycyclic aromatic hydrocarbons (PAHs) in sewage sludge[J]. Water, Air, & Soil Pollution, 2017, 228(8): 305. |
| [37] | LIU Zhineng, LI Qing, WU Qihang, et al. Removal efficiency and risk assessment of polycyclic aromatic hydrocarbons in a typical municipal wastewater treatment facility in Guangzhou, China[J]. International Journal of Environmental Research and Public Health, 2017, 14(8): 861. |
| [38] | TSAI Jen-Chieh, KUMAR Mathava, LIN Jih-Gaw. Anaerobic biotransformation of fluorene and phenanthrene by sulfate-reducing bacteria and identification of biotransformation pathway[J]. Journal of Hazardous Materials, 2009, 164(2/3): 847-855. |
| [39] | BERGMANN Franz D, SELESI Draženka, MECKENSTOCK Rainer U. Identification of new enzymes potentially involved in anaerobic naphthalene degradation by the sulfate-reducing enrichment culture N47[J]. Archives of Microbiology, 2011, 193(4): 241-250. |
| [40] | AZIZAN Nur Alyaa Zahida, YUZIR Ali, ABDULLAH Norhayati. Pharmaceutical compounds in anaerobic digestion: A review on the removals and effect to the process performance[J]. Journal of Environmental Chemical Engineering, 2021, 9(5): 105926. |
| [41] | KOCH Niharika, ISLAM Nazim F, SONOWAL Songita, et al. Environmental antibiotics and resistance genes as emerging contaminants: Methods of detection and bioremediation[J]. Current Research in Microbial Sciences, 2021, 2: 100027. |
| [42] | MARTINEZ Jose Luis. Environmental pollution by antibiotics and by antibiotic resistance determinants[J]. Environmental Pollution, 2009, 157(11): 2893-2902. |
| [43] | CARNEIRO Rodrigo B, Lorena GONZALEZ-GIL, LONDOÑO Yudy Andrea, et al. Acidogenesis is a key step in the anaerobic biotransformation of organic micropollutants[J]. Journal of Hazardous Materials, 2020, 389: 121888. |
| [44] | Lorena GONZALEZ-GIL, KRAH Daniel, GHATTAS Ann-Kathrin, et al. Biotransformation of organic micropollutants by anaerobic sludge enzymes[J]. Water Research, 2019, 152: 202-214. |
| [45] | ZHOU Haidong, CAO Zhengcao, ZHANG Minquan, et al. Zero-valent iron enhanced in situ advanced anaerobic digestion for the removal of antibiotics and antibiotic resistance genes in sewage sludge[J]. Science of the Total Environment, 2021, 754: 142077. |
| [46] | YANG Shengfu, LIN Chengfang, LIN Angela Yu-Chen, et al. Sorption and biodegradation of sulfonamide antibiotics by activated sludge: Experimental assessment using batch data obtained under aerobic conditions[J]. Water Research, 2011, 45(11): 3389-3397. |
| [47] | GERBERSDORF Sabine U, CIMATORIBUS Carla, CLASS Holger, et al. Anthropogenic trace compounds (ATCs) in aquatic habitats—Research needs on sources, fate, detection and toxicity to ensure timely elimination strategies and risk management[J]. Environment International, 2015, 79: 85-105. |
| [48] | LUO Yunlong, GUO Wenshan, Huu Hao NGO, et al. A review on the occurrence of micropollutants in the aquatic environment and their fate and removal during wastewater treatment[J]. Science of the Total Environment, 2014, 473/474: 619-641. |
| [49] | POLESEL Fabio, ANDERSEN Henrik R, TRAPP Stefan, et al. Removal of antibiotics in biological wastewater treatment systems—A critical assessment using the activated sludge modeling framework for xenobiotics (ASM-X)[J]. Environmental Science & Technology, 2016, 50(19): 10316-10334. |
| [50] | TRAN Ngoc Han, REINHARD Martin, Karina Yew-Hoong GIN. Occurrence and fate of emerging contaminants in municipal wastewater treatment plants from different geographical regions—A review[J]. Water Research, 2018, 133: 182-207. |
| [51] | TRAN Ngoc Han, CHEN Hongjie, REINHARD Martin, et al. Occurrence and removal of multiple classes of antibiotics and antimicrobial agents in biological wastewater treatment processes[J]. Water Research, 2016, 104: 461-472. |
| [52] | LI Bing, ZHANG Tong. Biodegradation and adsorption of antibiotics in the activated sludge process[J]. Environmental Science & Technology, 2010, 44(9): 3468-3473. |
| [53] | LANGBEHN Rayane Kunert, MICHELS Camila, SOARES Hugo Moreira. Antibiotics in wastewater: From its occurrence to the biological removal by environmentally conscious technologies[J]. Environmental Pollution, 2021, 275: 116603. |
| [54] | TIWARI Bhagyashree, SELLAMUTHU Balasubramanian, OUARDA Yassine, et al. Review on fate and mechanism of removal of pharmaceutical pollutants from wastewater using biological approach[J]. Bioresource Technology, 2017, 224: 1-12. |
| [55] | COUSINS I T, STAPLES C A, KLEĈKA G M, et al. A multimedia assessment of the environmental fate of bisphenol A[J]. Human and Ecological Risk Assessment, 2002, 8(5): 1107-1135. |
| [56] | SYAFIUDDIN Achmad, BOOPATHY Raj. Role of anaerobic sludge digestion in handling antibiotic resistant bacteria and antibiotic resistance genes—A review[J]. Bioresource Technology, 2021, 330: 124970. |
| [57] | 叶涛. 甾体激素原料药废水处理工艺优化研究及应用[D]. 南昌: 南昌大学, 2024. |
| YE Tao. Study and application of optimization of steroid hormone raw material drug wastewater treatment process[D]. Nanchang: Nanchang University, 2024. | |
| [58] | LOPEZ Manuel, CORNAGLIA Laura María, GUTIERREZ Laura Beatriz, et al. Electrodialysis as a potential technology for 4-nitrophenol abatement from wastewater[J]. Environmental Science and Pollution Research, 2023, 30(46): 102198-102211. |
| [1] | LUO Siling, AI Jianping, LI Wenkui, WANG Yi, CHENG Lihong, WAN Yun, HUANG Long, LI Xibao. Research progress on degradation of typical antibiotics by advanced oxidation processes [J]. Chemical Industry and Engineering Progress, 2025, 44(7): 4169-4189. |
| [2] | DU Lei, CAO Zhitao, XU Lang, ZHANG Yingjie, SUN Baochang, ZOU Haikui, CHU Guangwen, CHEN Jianfeng. Progress research in preparation of adiponitrile [J]. Chemical Industry and Engineering Progress, 2025, 44(7): 3683-3696. |
| [3] | XU Rongsheng, WANG Dewu, WANG Ruojin, LIU Yan, WU Banghua, ZHANG Shaofeng. Gas-solid flow patterns in a rolling fluidized bed with the addition of longitudinal internal member [J]. Chemical Industry and Engineering Progress, 2025, 44(7): 3781-3793. |
| [4] | ZHANG Qian, QIN Shumin, YANG Chenxi, DUO Zeyu, TANG Qingping, YANG Zhouhong, JIANG Jiajun, FENG Yao, WAN Juan, LI Wei. Research progress on the impact of quorum sensing regulation on wastewater biological treatment processes [J]. Chemical Industry and Engineering Progress, 2025, 44(6): 3630-3641. |
| [5] | WANG Jiahui, LI Peiya, YANG Fusheng, WANG Bin, FANG Tao. Research progress on the dehydrogenation of methylcyclohexane as a liquid organic hydrogen carrier [J]. Chemical Industry and Engineering Progress, 2025, 44(6): 3208-3223. |
| [6] | LIU Zhihua, ZHAO Hongkui, LIU Xi, HAN Meiyi, LIU Jing, FANG Taowen, HUANG Puyu, GAN Zhiquan, XIE Caifeng. Research progress on wastewater treatment technologies of land-based aquaculture [J]. Chemical Industry and Engineering Progress, 2025, 44(2): 1053-1063. |
| [7] | ZHOU Yu, TANG Tian, XIONG Ziyou, WEI Qi. Methanol to olefin wastewater treatment based on a two-stage microchannel separation process [J]. Chemical Industry and Engineering Progress, 2025, 44(1): 100-108. |
| [8] | SUN Yan, XIE Xiaoyang, FENG Qianying, ZHENG Lu, HE Jiaojie, YANG Liwei, BAI Bo. Preparation of forward osmosis membrane modified by tannic acid-iron (Ⅲ) and its antifouling performance [J]. Chemical Industry and Engineering Progress, 2024, 43(9): 5309-5319. |
| [9] | LIU Miao, JIAO Yingying, DING Ling, LI Chengcheng, HE Ying, SUN Liangliang, HAO Qingqing, CHEN Huiyong, LUO Qunxing. Acid-catalyzed dehydration of hexoses to 5-hydroxymethylfurfural: Reaction, separation and process coupling [J]. Chemical Industry and Engineering Progress, 2024, 43(5): 2526-2543. |
| [10] | DU Yongliang, LIANG Zhuobin, GONG Yaoxu, BI Haojie, XU Zhiyuan, YUAN Hongying. Air gap membrane distillation research status and applications [J]. Chemical Industry and Engineering Progress, 2024, 43(4): 1655-1666. |
| [11] | YANG Chenyang, ZHU Huaigong, CAI Wangfeng, ZHANG Minqing, WANG Yan, ZHANG Ying, CHEN Jianbing. Research progress of cyclic distillation technology [J]. Chemical Industry and Engineering Progress, 2024, 43(3): 1109-1117. |
| [12] | ZHANG Liang, MA Ji, HE Gaohong, JIANG Xiaobin, XIAO Wu. Determination and analysis of combined cooling and antisolvent crystallization metastable zone width of cefuroxime sodium with membrane regulation [J]. Chemical Industry and Engineering Progress, 2024, 43(1): 260-268. |
| [13] | LIU Feng, CHU Yang, LI Huifeng, LI Mingfeng, ZHU Mei, ZHANG Runqiang. Reaction process intensification of heavy molecular mercaptan in FCC gasoline catalytic conversion [J]. Chemical Industry and Engineering Progress, 2024, 43(1): 279-284. |
| [14] | YUAN Liang, CONG Haifeng, LI Xingang. Research progress on gas-liquid flow and mass transfer characteristics in microchannels [J]. Chemical Industry and Engineering Progress, 2024, 43(1): 34-48. |
| [15] | FENG Yaoguang, CHEN Kui, ZHAO Jiawei, WANG Na, WANG Ting, HUANG Xin, ZHOU Lina, HAO Hongxun. Process intensification of solution crystallization [J]. Chemical Industry and Engineering Progress, 2024, 43(1): 87-99. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
|
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |