Chemical Industry and Engineering Progress ›› 2025, Vol. 44 ›› Issue (12): 7103-7116.DOI: 10.16085/j.issn.1000-6613.2024-2007
• Materials science and technology • Previous Articles
DUAN Ran1(
), LI Yinhui1, FU Yu1, WU Yue1, TAO Chunhui1, TANG Yufeng1, ZHAO Zeyi1, ZHANG Gang2(
), ZHANG Wenxiang1, MA Heping1(
)
Received:2024-12-10
Revised:2025-02-27
Online:2026-01-06
Published:2025-12-25
Contact:
ZHANG Gang, MA Heping
段然1(
), 李印辉1, 傅钰1, 伍岳1, 陶春珲1, 唐羽丰1, 赵泽一1, 张罡2(
), 张文祥1, 马和平1(
)
通讯作者:
张罡,马和平
作者简介:段然(2000—),男,硕士研究生,研究方向为碘及其化合物的吸附分离。E-mail: duanran80428673@stu.xjtu.edu.cn。
基金资助:CLC Number:
DUAN Ran, LI Yinhui, FU Yu, WU Yue, TAO Chunhui, TANG Yufeng, ZHAO Zeyi, ZHANG Gang, ZHANG Wenxiang, MA Heping. Preparation of imidazole-containing porous organic polymers with micro-mesoporous structure for iodine and iodomethane adsorption[J]. Chemical Industry and Engineering Progress, 2025, 44(12): 7103-7116.
段然, 李印辉, 傅钰, 伍岳, 陶春珲, 唐羽丰, 赵泽一, 张罡, 张文祥, 马和平. 具有微-介复合孔结构的含咪唑有机多孔聚合物的制备及其碘/碘甲烷吸附性能[J]. 化工进展, 2025, 44(12): 7103-7116.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2024-2007
| 实验 | 气体流量/mL·min-1 | |||
|---|---|---|---|---|
| 氦气 | 碘甲烷 | 氮气 | 水蒸气 | |
| 25℃,CH3I穿透 | 10.00 | 5.65 | 0 | 0 |
| 25℃,50%相对湿度,CH3I穿透 | 2.50 | 1.14 | 48.00 | 0.85 |
| 75℃,CH3I穿透 | 10.00 | 5.65 | 0 | 0 |
| 75℃,I2穿透 | 10.00 | 0 | 0 | 0 |
| 实验 | 气体流量/mL·min-1 | |||
|---|---|---|---|---|
| 氦气 | 碘甲烷 | 氮气 | 水蒸气 | |
| 25℃,CH3I穿透 | 10.00 | 5.65 | 0 | 0 |
| 25℃,50%相对湿度,CH3I穿透 | 2.50 | 1.14 | 48.00 | 0.85 |
| 75℃,CH3I穿透 | 10.00 | 5.65 | 0 | 0 |
| 75℃,I2穿透 | 10.00 | 0 | 0 | 0 |
| 样品编号 | 元素原子分数/% | ||
|---|---|---|---|
| N | C | H | |
| 0 | 6.744 | 84.108 | 6.665 |
| 1 | 7.304 | 83.260 | 6.675 |
| 2 | 9.804 | 78.249 | 6.674 |
| 3 | 8.047 | 82.118 | 6.830 |
| 4 | 7.087 | 83.476 | 6.715 |
| 5 | 6.598 | 84.154 | 6.749 |
| 样品编号 | 元素原子分数/% | ||
|---|---|---|---|
| N | C | H | |
| 0 | 6.744 | 84.108 | 6.665 |
| 1 | 7.304 | 83.260 | 6.675 |
| 2 | 9.804 | 78.249 | 6.674 |
| 3 | 8.047 | 82.118 | 6.830 |
| 4 | 7.087 | 83.476 | 6.715 |
| 5 | 6.598 | 84.154 | 6.749 |
| 样品名称 | 碘甲烷吸附量 | 碘蒸气吸附量 | 参考文献 |
|---|---|---|---|
| POP-VD2 | 1.47g/g,75℃ | 3.10g/g,75℃ | 本文 |
| MFU-4l | 0.41g/g,150℃ | — | [ |
| SCU-20 | 1.84g/g,75℃ | — | [ |
| TPC-cPS | 1.57g/g,25℃ | — | [ |
| Ag-Tipe | 0.55g/g,75℃ | 3.31g/g,75℃ | [ |
| Zn-Vlm6 | — | 2.47g/g,75℃ | [ |
| TPTA-BD | 0.76g/g,75℃ | — | [ |
| Ag-ZSM-5 | 1.1g/g,90℃ | — | [ |
| SCU-COF-2 | 1.45g/g,75℃ | — | [ |
| HIL | 0.42g/g,75℃ | — | [ |
| MHP-P5Q | 0.8g/g,25℃ | — | [ |
| MIL-101-Cr-DMEDA | 0.8g/g,150℃ | — | [ |
| 1-Me-2-PhIn-P | — | 2.99g/g,75℃ | [ |
| PAF-24 | — | 2.76g/g,75℃ | [ |
| BDP-CPP-1 | — | 2.83g/g,75℃ | [ |
| NOP-54 | — | 2.02g/g,75℃ | [ |
| TPAPyH | — | 1.27g/g,70℃ | [ |
| PAF-1 | — | 1.86g/g,25℃ | [ |
| JUC-Z2 | — | 1.44g/g,25℃ | [ |
| HCPs-1 | — | 2.04g/g,75℃ | [ |
| HCPs-2 | — | 2.50g/g,75℃ | [ |
| 样品名称 | 碘甲烷吸附量 | 碘蒸气吸附量 | 参考文献 |
|---|---|---|---|
| POP-VD2 | 1.47g/g,75℃ | 3.10g/g,75℃ | 本文 |
| MFU-4l | 0.41g/g,150℃ | — | [ |
| SCU-20 | 1.84g/g,75℃ | — | [ |
| TPC-cPS | 1.57g/g,25℃ | — | [ |
| Ag-Tipe | 0.55g/g,75℃ | 3.31g/g,75℃ | [ |
| Zn-Vlm6 | — | 2.47g/g,75℃ | [ |
| TPTA-BD | 0.76g/g,75℃ | — | [ |
| Ag-ZSM-5 | 1.1g/g,90℃ | — | [ |
| SCU-COF-2 | 1.45g/g,75℃ | — | [ |
| HIL | 0.42g/g,75℃ | — | [ |
| MHP-P5Q | 0.8g/g,25℃ | — | [ |
| MIL-101-Cr-DMEDA | 0.8g/g,150℃ | — | [ |
| 1-Me-2-PhIn-P | — | 2.99g/g,75℃ | [ |
| PAF-24 | — | 2.76g/g,75℃ | [ |
| BDP-CPP-1 | — | 2.83g/g,75℃ | [ |
| NOP-54 | — | 2.02g/g,75℃ | [ |
| TPAPyH | — | 1.27g/g,70℃ | [ |
| PAF-1 | — | 1.86g/g,25℃ | [ |
| JUC-Z2 | — | 1.44g/g,25℃ | [ |
| HCPs-1 | — | 2.04g/g,75℃ | [ |
| HCPs-2 | — | 2.50g/g,75℃ | [ |
| 参数 | CH3I | POP-VD2 | 产物 | I- |
|---|---|---|---|---|
| Etotal/Hartree | -6960.342 | -1463.980 | -1503.760 | -6920.493 |
| Gtotal/kcal·mol-1 | 5.400 | 392.355 | 414.904 | -4342643.959 |
| ETcorr/kcal·mol-1 | -4367644.090 | -918261.000 | -94322.000 | -4342643.959 |
| ΔG/kcal·mol-1 | -10.860(-45.438kJ·mol-1) | |||
| 参数 | CH3I | POP-VD2 | 产物 | I- |
|---|---|---|---|---|
| Etotal/Hartree | -6960.342 | -1463.980 | -1503.760 | -6920.493 |
| Gtotal/kcal·mol-1 | 5.400 | 392.355 | 414.904 | -4342643.959 |
| ETcorr/kcal·mol-1 | -4367644.090 | -918261.000 | -94322.000 | -4342643.959 |
| ΔG/kcal·mol-1 | -10.860(-45.438kJ·mol-1) | |||
| [1] | LIU Yujia, WANG Jiafeng, HU Xiaoping, et al. Radioiodine therapy in advanced differentiated thyroid cancer: Resistance and overcoming strategy[J]. Drug Resistance Updates, 2023, 68: 100939. |
| [2] | ROBBINS Jacob, SCHNEIDER Arthur B. Thyroid cancer following exposure to radioactive iodine[J]. Reviews in Endocrine and Metabolic Disorders, 2000, 1(3): 197-203. |
| [3] | HIROSE, Katsumi. 2011 Fukushima Dai-ichi nuclear power plant accident: Summary of regional radioactive deposition monitoring results[J]. Journal of Environmental Radioactivity, 2012, 111: 13-17. |
| [4] | SANYAOLU Olufunke Mary, MOURI Hassina, SELINUS Olle, et al. Sources, pathways, and health effects of iodine in the environment[M]. Practical applications of medical geology. Cham: Springer International Publishing, 2021: 565-613. |
| [5] | ZHANG Xiaoyuan, GU Ping, LI Xiaoyuan, et al. Efficient adsorption of radioactive iodide ion from simulated wastewater by nano Cu2O/Cu modified activated carbon[J]. Chemical Engineering Journal, 2017, 322: 129-139. |
| [6] | UMADEVI K, MANDAL D. Performance of radio-iodine discharge control methods of nuclear reprocessing plants[J]. Journal of Environmental Radioactivity, 2021, 234: 106623. |
| [7] | 叶明吕, 茅云, 唐静娟, 等. 动力堆核燃料后处理过程废气中碘的去除的研究——吸附放射性碘用的附银硅胶的制备和筛选[J]. 核技术, 1985, 8(2): 65-68. |
| YE Minglyu, MAO Yun, TANG Jingjuan, et al. Study on removal of radio-iodine from off-gases of nuclear fuel reprocessing of power reactor[J]. Nuclear Techniques, 1985, 8(2): 65-68. | |
| [8] | 黄晓春, 张杰鹏, 陈小明. [Zn(bim)2]·(H2O)(1.67): 具有方钠石拓扑结构的金属-有机敞开骨架[J]. 科学通报, 2003, 48(14): 1491-1494. |
| HUANG Xiaochun, ZHANG Jiepeng, CHEN Xiaoming. Zn(bim)2·(H2O)(1.67):Metal-organic open skeleton with sodalite topology[J].Chinese Science Bulletin, 2003, 48(14): 1491-1494. | |
| [9] | 陈俊畅, 张明星, 王殳凹. 晶态多孔材料合成方法的研究进展[J]. 化学学报, 2023, 81(2): 146-157. |
| CHEN Junchang, ZHANG Mingxing, WANG Shu’ao. Research progress of synthesis methods for crystalline porous materials[J]. Acta Chimica Sinica, 2023, 81(2): 146-157. | |
| [10] | 党璐童, 康永锋. 金属有机框架材料合成方法研究进展[J]. 化工新型材料, 2020, 48(10): 15-19, 24. |
| DANG Lutong, KANG Yongfeng. Research progress on MOFs synthesis method[J]. New Chemical Materials, 2020, 48(10): 15-19, 24. | |
| [11] | MA Juncheng, XU Shuangping, WANG Xintian, et al. Biomass derived porous carbon for efficient iodine adsorption from vapor and solution[J]. Separation and Purification Technology, 2024, 347: 127613. |
| [12] | Hubler T L, Snoeyink V L. Adsorption of iodine on silver-exchanged zeolites[J]. Industrial & Engineering Chemistry Research, 2005, 44(15): 5720-5726. |
| [13] | HEINITZ Stephan, MERMANS Jasper, MAERTENS Dominic, et al. Adsorption of radon on silver exchanged zeolites at ambient temperatures[J]. Scientific Reports, 2023, 13(1): 6811. |
| [14] | LU Shuangchun, LIU Qingling, HAN Rui, et al. Potential applications of porous organic polymers as adsorbent for the adsorption of volatile organic compounds[J]. Journal of Environmental Sciences, 2021, 105: 184-203. |
| [15] | AHMED Shakeel. Applications of advanced green materials[M]. Duxford: Woodhead Publishing, 2021: 681-703. |
| [16] | KURISINGAL Jintu Francis, YUN Hongryeol, HONG Chang Seop. Porous organic materials for iodine adsorption[J]. Journal of Hazardous Materials, 2023, 458: 131835. |
| [17] | NIU Tianhui, FENG Chenchen, YAO Chan, et al. Bisimidazole-based conjugated polymers for excellent iodine capture[J]. ACS Applied Polymer Materials, 2021, 3(1): 354-361. |
| [18] | YU Yanan, YIN Zheng, CAO Lihui, et al. Organic porous solid as promising iodine capture materials[J]. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2022, 102(5): 395-427. |
| [19] | HE Linwei, CHEN Long, DONG Xinglong, et al. A nitrogen-rich covalent organic framework for simultaneous dynamic capture of iodine and methyl iodide[J]. Chem, 2021, 7(3): 699-714. |
| [20] | ZHANG Yong, HONG Xin, CAO Xiaomei, et al. Functional porous organic polymers with conjugated triaryl triazine as the core for superfast adsorption removal of organic dyes[J]. ACS Applied Materials & Interfaces, 2021, 13(5): 6359-6366. |
| [21] | KAUR Parminder, HUPP Joseph T, NGUYEN SonBinh T. Porous organic polymers in catalysis: Opportunities and challenges[J]. ACS Catalysis, 2011, 1(7): 819-835. |
| [22] | NIKKHOO Elham, MALLAKPOUR Shadpour, HUSSAIN Chaudhery Mustansar. Design, synthesis, and application of covalent organic frameworks as catalysts[J]. New Journal of Chemistry, 2023, 47(14): 6765-6788. |
| [23] | YANG Jian, HU Shaojun, CAI Lixuan, et al. Counteranion-mediated efficient iodine capture in a hexacationic imidazolium organic cage enabled by multiple non-covalent interactions[J]. Nature Communications, 2023, 14(1): 6082. |
| [24] | Rachel E MOW, RUSSELL-PARKS Glory A, REDWINE Grace E B, et al. Polymer-coated covalent organic frameworks as porous liquids for gas storage[J]. Chemistry of Materials, 2024, 36(3): 1579-1590. |
| [25] | PAN Tingting, YANG Kaijie, DONG Xinglong, et al. Adsorption-based capture of iodine and organic iodides: Status and challenges[J]. Journal of Materials Chemistry A, 2023, 11(11): 5460-5475. |
| [26] | 王玲钰, 包良进. 放射性尾气中碘的净化处理研究进展[J]. 韩山师范学院学报, 2020, 41(6): 23-38. |
| WANG Lingyu, BAO Liangjin. Research progress on iodine removal from radioactive off-gases[J]. Journal of Hanshan Normal University, 2020, 41(6): 23-38. | |
| [27] | NAKAMOTO Kazuo. Infrared and Raman spectra of inorganic and coordination compounds[M]. 5th ed. New York: Wiley, 1997. |
| [28] | KRESGE C T, LEONOWICZ M E, ROTH W J, et al. Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism[J]. Nature, 1992, 359(6397): 710-712. |
| [29] | THOMMES Matthias, KANEKO Katsumi, NEIMARK Alexander V, et al. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report)[J]. Pure and Applied Chemistry, 2015, 87(9/10): 1051-1069. |
| [30] | ROUQUEROL Françoise, ROUQUEROL Jean, SING and Kenneth. Adsorption by powders and porous solids: Principles, methodology, and applications[M]. Second edition. San Diego: Academic Press, 1999. |
| [31] | Gérard FÉREY, SERRE Christian, Caroline MELLOT-DRAZNIEKS, et al. A hybrid solid with giant pores prepared by a combination of targeted chemistry, simulation, and powder diffraction[J]. Angewandte Chemie International Edition, 2004, 43(46): 6296-6301. |
| [32] | SING K S W. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984)[J]. Pure and Applied Chemistry, 1985, 57(4): 603-619. |
| [33] | PAN Tingting, YANG Kaijie, DONG Xinglong, et al. Strategies for high-temperature methyl iodide capture in azolate-based metalorganic frameworks[J]. Nature Communications, 2024(15):26-30. |
| [34] | TAI Bo, LI Baoyu, HE Linwei, et al. Flexible interdigitated layered framework with multiple accessible active sites for high-performance CH3I capture[J]. Science China Chemistry, 2024, 67(5): 1569-1577. |
| [35] | WAN Haibo, XU Qingfeng, WU Jiacheng, et al. SuFEx-enabled elastic polysulfates for efficient removal of radioactive iodomethane and polar aprotic organics through weak intermolecular forces[J]. Angewandte Chemie International Edition, 2022, 61(33): e202208577. |
| [36] | 高昕. 咪唑基金属配位聚合物的制备及对碘的吸附研究[D]. 南昌: 南昌大学, 2023. |
| GAO Xin. Preparation of imidazole-based metal coordination polymer and its adsorption of iodine[D]. Nanchang: Nanchang University, 2023. | |
| [37] | 延恺萌. 富氮共价有机骨架的制备及其碘吸附性能研究[D]. 长春: 东北师范大学, 2023. |
| YAN Kaimeng. Preparation of nitrogen-rich covalent organic frameworks and study on their iodine adsorption properties. Changchun: Northeast Normal University, 2023. | |
| [38] | 于静文, 李忠, 武蒙蒙, 等. 吲哚基多孔有机聚合物对碘蒸气的吸附性能[J/OL]. 低碳化学与化工, 2025, 50(4): 90-97, 106. |
| YU Jingwen, LI Zhong, WU Mengmeng, et al. Iodine vapor adsorption performance of indole-based porous organic polymers[J/OL]. China Industrial Economics, 2025, 50(4): 90-97, 106. | |
| [39] | PHAM Tung Cao Thanh, DOCAO Son, HWANG In Chul, et al. Capture of iodine and organic iodides using silica zeolites and the semiconductor behaviour of iodine in a silica zeolite[J]. Energy & Environmental Science, 2016, 9(3): 1050-1062. |
| [40] | Kecheng JIE, ZHOU Yujuan, SUN Qi, et al. Mechanochemical synthesis of pillar[5]quinone derived multi-microporous organic polymers for radioactive organic iodide capture and storage[J]. Nature Communications, 2020,11(1): 1086. |
| [41] | LI Baiyan, DONG Xinglong, WANG Hao, et al. Functionalized metal organic frameworks for effective capture of radioactive organic iodides[J]. Faraday Discussions, 2017, 201: 47-61. |
| [42] | YAN Zhuojun, YUAN Ye, TIAN Yuyang, et al. Highly efficient enrichment of volatile iodine by charged porous aromatic frameworks with three sorption sites[J]. Angewandte Chemie International Edition, 2015, 54(43): 12733-12737. |
| [43] | ZHU Yunlong, JI Yajian, WANG Degao, et al. BODIPY-based conjugated porous polymers for highly efficient volatile iodine capture[J]. Journal of Materials Chemistry A, 2017, 5(14): 6622-6629. |
| [44] | CHEN Dongyang, FU Yu, YU Wenguang, et al. Versatile Adamantane-based porous polymers with enhanced microporosity for efficient CO2 capture and iodine removal[J]. Chemical Engineering Journal, 2018, 334: 900-906. |
| [45] | CHEN Yi, SONG Xiaojuan, LI Aisen, et al. Solvent-responsive nonporous adaptive crystals derived from pyridinium hydrochloride and the application in iodine adsorption[J]. Advanced Materials, 2024, 36(30): 2402885. |
| [46] | PEI Cuiying, Teng BEN, XU Shixian, et al. Ultrahigh iodine adsorption in porous organic[J]. Journal of Materials ChemistryA, 2014,2:7179-7187. |
| [47] | 李和国, 王立莹, 赵越, 等. 一类新型高效捕获碘蒸汽的低成本超交联微孔聚合物[J]. 兵器装备工程学报, 2021, 42(7): 269-273. |
| LI Heguo, WANG Liying, ZHAO Yue, et al. A kind of novel low-cost hypercrosslinked polymers with efficient lodine adsorption[J]. Journal of Ordnance Equipment Engineering, 2021, 42(7): 269-273. | |
| [48] | SOCRATES George. Infrared and Raman characteristic group frequencies: Tables and charts[M]. 3rd ed. Chichester: Wiley, 2001. |
| [49] | CORMA Avelino, GARCIA Hermenegildo. Lewis acids: From conventional homogeneous to green homogeneous and heterogeneous catalysis[J]. Chemical Reviews, 2003, 103(11): 4307-4365. |
| [50] | SMITH B C. Fundamentals of Fourier transform infrared spectroscopy[M]. 2nd ed. Boca Raton, FL: CRC Press, 2011 |
| [51] | BRUNAUER Stephen, EMMETT P H, TELLER Edward. Adsorption of gases in multimolecular layers[J]. Journal of the American Chemical Society, 1938, 60(2): 309-319. |
| [1] | ZHAO Yulong, CAI Kai, YU Shanqing. Influence of pore structure of alumina on the adsorption, diffusion and reactivity of hydrocarbon molecules in catalytic cracking [J]. Chemical Industry and Engineering Progress, 2025, 44(S1): 213-221. |
| [2] | GUAN Siying, WEN Jinyue, JIAO Shouzheng, HAO Yuwei, SUN Zhicheng. Redox couple electrolyte in dye-sensitized solar cells [J]. Chemical Industry and Engineering Progress, 2025, 44(S1): 350-367. |
| [3] | WU Jinyi, ZHAO Ruikai, DENG Shuai, ZHANG Jiaqi, GAO Chunxiao, LIU Weihua, ZHAO Li. Numerical simulation of temperature swing adsorption for SF6 recovery from mixed insulating gas [J]. Chemical Industry and Engineering Progress, 2025, 44(S1): 19-28. |
| [4] | FU Hongmei, LIU Dinghua, LIU Xiaoqin. Research progress on the separation of aromatic isomers using MOF materials [J]. Chemical Industry and Engineering Progress, 2025, 44(9): 5006-5017. |
| [5] | ZHANG Wenjing, HUANG Zhixin, LI Shiteng, DENG Shuai, LI Shuangjun. Biomass carbon aerogels for CO2 adsorbents [J]. Chemical Industry and Engineering Progress, 2025, 44(9): 5018-5032. |
| [6] | YANG Yong, ZHANG Zhao, WANG Dongliang, ZHOU Huairong, ZHAO Zihao, LI Yukun. Technical-economic evaluation for different separation strategies of xylene isomers [J]. Chemical Industry and Engineering Progress, 2025, 44(8): 4732-4740. |
| [7] | MI Yifang, WANG Baoguo, WANG Wenqiang, SUN Guojin, CAO Zhihai. Preparation of nitrogen self-doped cyanobacterial biomass-based activated carbon for CO2 adsorption [J]. Chemical Industry and Engineering Progress, 2025, 44(7): 4223-4232. |
| [8] | GAO Jiaojiao, YAN Shiyu, YANG Taishun, XIE Shangzhi, YANG Yanjuan, XU Jing. Effect of alumina support crystal structure of Ru-based catalysts on polyethylene hydrogenolysis performance [J]. Chemical Industry and Engineering Progress, 2025, 44(7): 3917-3927. |
| [9] | LIANG Shuwei, YU Jie, XIE Zhongyin, PEI Jianlu, LIN Zhongxin, CHEN Zexiang. Covalent organic frameworks for radioactive gaseous iodine adsorption [J]. Chemical Industry and Engineering Progress, 2025, 44(7): 3965-3975. |
| [10] | WANG Ying, TANG Mengfei, WANG Ying, ZHANG Chuanfang, ZHANG Guojie, LIU Jun, ZHAO Yuqiong. Preparation of CNT composites from coal pyrolysis catalyzed by different alkali metals for adsorption of Rhodamine B [J]. Chemical Industry and Engineering Progress, 2025, 44(7): 3985-3996. |
| [11] | ZHAO Baohua, LIU Xiaona, HU Yanyun, JIA Tiancong, XIE Qiang, HE Yan, MA Xiangshuai, MA Shuangchen. Comparison and development trend of traditional electroadsorption and flow electrode capacitive deion technology [J]. Chemical Industry and Engineering Progress, 2025, 44(7): 4101-4116. |
| [12] | YE Xiaosheng, YUAN Ting, JIA Xin, REN Qingxia. Research progress on the removal of microcystin-LR by multicomponent composite nanomaterials [J]. Chemical Industry and Engineering Progress, 2025, 44(7): 4144-4157. |
| [13] | CHEN Chongming, LI Dong, YU Jinxing, CHE Kai, HE Wei, CHEN Chuanmin. Adsorption performance of titanium based MXene aerogel for Hg(Ⅱ) in desulfurization wastewater [J]. Chemical Industry and Engineering Progress, 2025, 44(6): 3112-3120. |
| [14] | HAN Pei, LI Jinjian, KE Tian, ZHANG Zhiguo, BAO Zongbi, REN Qilong, YANG Qiwei. Advances in adsorption separation of sulfur hexafluoride/nitrogen by novel porous materials [J]. Chemical Industry and Engineering Progress, 2025, 44(6): 3592-3617. |
| [15] | REN Pengkun, ZHONG Zhaoping, ZHANG Xiaoni, YANG Yuxuan, RAN Zhenzhen. Preparation of sludge-sawdust-based activated carbon and its adsorption performance for benzene series VOCs [J]. Chemical Industry and Engineering Progress, 2025, 44(6): 3031-3040. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
|
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |