| [1] |
李洞, 石雨, 张亮, 等. 采用有机溶剂的热再生电池性能[J]. 化工进展, 2022, 41(12): 6302-6309.
|
|
LI Dong, SHI Yu, ZHANG Liang, et al. Performance of thermal regenerative batteries with organic solvents[J]. Chemical Industry and Engineering Progress, 2022, 41(12): 6302-6309.
|
| [2] |
HE Yijian, LI Rong, FAN Yuchen, et al. Study on the performance of a solid-state thermoelectric refrigeration system equipped with ionic wind fans for ultra-quiet operation[J]. International Journal of Refrigeration, 2021, 130: 441-451.
|
| [3] |
MACARIO Leilane R, GOLABEK Andrew, KLEINKE Holger, et al. Thermoelectric properties of Sb-doped tin oxide by a one-step solid-state reaction[J]. Ceramics International, 2022, 48(3): 3585-3591.
|
| [4] |
PILI Roberto, WIELAND Christoph, SPLIETHOFF Hartmut, et al. Optimal tuning of model predictive controllers for organic Rankine cycle systems recovering waste heat from heavy-duty vehicles[J]. Applied Thermal Engineering, 2023, 220: 119803.
|
| [5] |
MA Ruiqiang, QIAO Hongna, YU Xiaohui, et al. Thermo-economic analysis and multi-objective optimization of a reversible heat pump-organic Rankine cycle power system for energy storage[J]. Applied Thermal Engineering, 2023, 220: 119658.
|
| [6] |
HAO Jinlin, MA Shuhui, HOU Yushuang, et al. Concise and efficient asymmetric homogeneous Janus membrane for high-performance osmotic energy conversion based on oppositely charged montmorillonite[J]. Electrochimica Acta, 2022, 423: 140581.
|
| [7] |
ZEWELDI Hana G, BENDOY Anelyn P, PARK Myoung Jun, et al. Forward osmosis with direct contact membrane distillation using tetrabutylphosphonium p-toluenesulfonate as an effective and safe thermo-recyclable osmotic agent for seawater desalination[J]. Chemosphere, 2021, 263: 128070.
|
| [8] |
ZHANG Fang, LIU Jia, YANG Wulin, et al. A thermally regenerative ammonia-based battery for efficient harvesting of low-grade thermal energy as electrical power[J]. Energy & Environmental Science, 2015, 8(1): 343-349.
|
| [9] |
CHEN Pengyu, ZHANG Liang, SHI Yu, et al. Biomass waste-derived hierarchical porous composite electrodes for high-performance thermally regenerative ammonia-based batteries[J]. Journal of Power Sources, 2022, 517: 230719.
|
| [10] |
张永胜, 张亮, 李俊, 等. 采用阴/阳极通流的热再生氨电池性能[J]. 工程热物理学报, 2021, 42(12): 3274-3280.
|
|
ZHANG Yongsheng, ZHANG Liang, LI Jun, et al. Performance of a sequential cathode-anode thermally regenerative ammonia-based battery with flow-through electrodes[J]. Journal of Engineering Thermophysics, 2021, 42(12): 3274-3280.
|
| [11] |
陈鹏宇, 张亮, 李俊, 等. 具有嵌入式流道的贯穿电极热再生电池性能特性[J]. 工程热物理学报, 2023, 44(3): 812-817.
|
|
CHEN Pengyu, ZHANG Liang, LI Jun, et al. Performance of thermally regenerative batteries using flow-through porous electrodes with embedded flow channels[J]. Journal of Engineering Thermophysics, 2023, 44(3): 812-817.
|
| [12] |
ZHANG Fang, LABARGE Nicole, YANG Wulin, et al. Enhancing low-grade thermal energy recovery in a thermally regenerative ammonia battery using elevated temperatures[J]. ChemSusChem, 2015, 8(6): 1043-1048.
|
| [13] |
RAHIMI Mohammad, ZHU Liang, KOWALSKI Kelly L, et al. Improved electrical power production of thermally regenerative batteries using a poly(phenylene oxide) based anion exchange membrane[J]. Journal of Power Sources, 2017, 342: 956-963.
|
| [14] |
ZHANG Liang, LI Yanxiang, ZHU Xun, et al. Copper foam electrodes for increased power generation in thermally regenerative ammonia-based batteries for low-grade waste heat recovery[J]. Industrial & Engineering Chemistry Research, 2019, 58(17): 7408-7415.
|
| [15] |
SHI Yu, ZHANG Liang, LI Jun, et al. 3-D printed gradient porous composite electrodes improve anodic current distribution and performance in thermally regenerative flow battery for low-grade waste heat recovery[J]. Journal of Power Sources, 2020, 473: 228525.
|
| [16] |
SPRINGER Renaldo, CROSS Nicholas R, LVOV Serguei N, et al. An all-aqueous thermally regenerative ammonia battery chemistry using Cu(Ⅰ, Ⅱ) redox reactions[J]. Journal of the Electrochemical Society, 2021, 168(7): 070523.
|
| [17] |
CROSS Nicholas R, Matthew J RAU, LVOV Serguei N, et al. Power and energy capacity tradeoffs in an all-aqueous copper thermally regenerative ammonia battery[J]. Journal of Power Sources, 2022, 531: 231339.
|
| [18] |
CROSS Nicholas R, Matthew J RAU, LVOV Serguei N, et al. System efficiency and power assessment of the all-aqueous copper thermally regenerative ammonia battery[J]. Applied Energy, 2023, 339:120959.
|
| [19] |
李春龚, 王翔. 不同干燥方式及存储时间对壳聚糖气凝材料孔结构的影响[J]. 医用生物力学, 2021, 36(S1): 404.
|
|
LI Chungong, WANG Xiang. Microstructure and micromechanical properties of chitosan filmsunder different drying conditions[J]. Journal of Medical Biomechanics, 2021, 36(S1): 404.
|
| [20] |
周亚丽, 雷西萍, 樊凯, 等. 冷冻干燥辅助一步碳化-活化壳聚糖基多孔碳的制备及电化学性能[J]. 材料导报, 2023, 37(5): 213-220.
|
|
ZHOU Yali, LEI Xiping, FAN Kai, et al. Preparation and electrochemical properties of freeze-drying-assisted one.step carbonization-activated chitosan-based porous carbon[J]. Materials Reports, 2023, 37(5): 213-220.
|
| [21] |
SHANG Wei, LIU Yuanhui, HE Qiping, et al. Efficient adsorption of organic matters and ions by porous biochar aerogel as pre-treatment of ultrafiltration for shale gas wastewater reuse[J]. Chemical Engineering Journal Advances, 2020, 2:100011.
|
| [22] |
LU Zhiqiang, SHI Yu, ZHANG Liang, et al. Ammonia crossover in thermally regenerative ammonia-based batteries for low-grade waste heat recovery[J]. Journal of Power Sources, 2022, 548: 232085.
|
| [23] |
卢志强, 张亮, 李俊, 等. 不同负载下热再生氨电池产电及Cu2+去除特性[J]. 化工进展, 2022, 41(6): 3341-3349.
|
|
LU Zhiqiang, ZHANG Liang, LI Jun, et al. Effects of load on power generation and copper removal rate of thermally regenerative ammonia-based batteries[J]. Chemical Industry and Engineering Progress, 2022, 41(6): 3341-3349.
|
| [24] |
KANNAN Aravindaraj G, SAMUTHIRAPANDIAN Amaresh, KIM Dong-Won. Electric double layer capacitors employing nitrogen and sulfur co-doped, hierarchically porous graphene electrodes with synergistically enhanced performance[J]. Journal of Power Sources, 2017, 337: 65-72.
|
| [25] |
OUYANG Bo, ZHANG Yongqi, WANG Ying, et al. Plasma surface functionalization induces nanostructuring and nitrogen-doping in carbon cloth with enhanced energy storage performance[J]. Journal of Materials Chemistry A, 2016, 4(45): 17801-17808.
|
| [26] |
Sung Hyun NOH, LEE Hak Bong, LEE Kyong Sub, et al. Sub-second joule-heated RuO2-decorated nitrogen-and sulfur-doped graphene fibers for flexible fiber-type supercapacitors[J]. ACS Applied Materials & Interfaces, 2022, 14(26): 29867-29877.
|
| [27] |
BAI Xiaojie, WANG Junhui, HAO Huiying, et al. Magnetic field-enhanced performance of superparamagnetic LiMn2O4-based composite slurry electrode for semisolid flow battery[J]. Small Methods, 2023, 7(9): 2300548.
|