Chemical Industry and Engineering Progress ›› 2025, Vol. 44 ›› Issue (11): 6301-6315.DOI: 10.16085/j.issn.1000-6613.2024-1560

• Industrial catalysis • Previous Articles    

Advances in catalysts for electrochemical ammonia oxidation

HAN Yan(), HU Xinli(), ZHENG Xiaoqin()   

  1. Suqian Unitech Co. , Ltd. , Suqian 223809, Jiangsu, China
  • Received:2024-09-25 Revised:2025-03-31 Online:2025-12-08 Published:2025-11-25

用于电化学氨氧化的催化剂研究进展

韩炎(), 胡新利(), 郑晓芹()   

  1. 宿迁联盛科技股份有限公司,江苏 宿迁 223809
  • 作者简介:韩炎(1993—),男,硕士,工程师,研究方向为有机电化学合成。E-mail:1047522239@qq.com
    胡新利(1986—),男,硕士,高级工程师,研究方向为有机电化学。E-mail:huxinli2006@126.com
    郑晓芹(1998—),女,硕士,研究方向为有机电化学。E-mail:zhengxiaoqinnjt@163.com
    第一联系人:所有作者对本文贡献相同。

Abstract:

The electrocatalytic ammonia oxidation reaction (eAOR) has important applications in the fields of clean energy conversion and wastewater denitrification. Nevertheless, challenges such as high overpotential, sluggish kinetics, and catalyst poisoning have impeded the advancement of this technology. This paper provides a systematic review of the research progress of the mechanism of eAOR, with a particular emphasis on the modification strategies and performance optimization mechanisms of platinum-based and nickel-based catalysts. Platinum-based catalysts can optimize intermediate adsorption energy, reduce reaction energy barriers, and mitigate surface toxicity through crystal surface engineering, multi-alloying, and nanostructure modulation. In contrast, nickel-based catalysts offer the advantages of low cost and high stability, with their activity arising from the in situ reconfiguration of the surface oxidation state and the synergistic effects of bimetallics. Despite advancements in activity and selectivity, challenges of reliance on precious metals, inadequate N2 selectivity, and contentious reaction pathways continue to be significant. Future research should prioritize the development of catalytic systems with non-precious metals. This can be achieved by integrating in situ spectroscopy with theoretical calculations to elucidate the dynamic reaction pathways, thereby facilitating the large-scale application of eAOR in hydrogen production, fuel cells, and wastewater treatment.

Key words: electrocatalysis, ammonia oxidation reaction, mechanism, catalyst, ammonia decomposition, electrochemistry, electrolysis

摘要:

电催化氨氧化反应(eAOR)在清洁能源转化与废水脱氮领域具有重要应用,但其高过电位、动力学缓慢及催化剂中毒等问题制约了技术发展。本文系统梳理了eAOR机理研究进展,聚焦于铂基与镍基催化剂的改性策略与性能优化机制。铂基催化剂通过晶面工程、多元合金化及纳米结构调控可优化中间体吸附能,降低反应能垒并抑制表面毒化;镍基催化剂以低成本、高稳定性为优势,其活性源于表面氧化态的原位重构与双金属协同效应。尽管研究在活性与选择性上取得突破,但贵金属依赖性、N2选择性不足及反应路径争议仍是瓶颈。未来需着力开发非贵金属催化体系,结合原位光谱与理论计算揭示动态反应路径,推动eAOR在制氢、燃料电池及废水处理中的规模化应用。

关键词: 电催化, 氨氧化反应, 机理, 催化剂, 氨分解, 电化学, 电解

CLC Number: 

京ICP备12046843号-2;京公网安备 11010102001994号
Copyright © Chemical Industry and Engineering Progress, All Rights Reserved.
E-mail: hgjz@cip.com.cn
Powered by Beijing Magtech Co. Ltd