Chemical Industry and Engineering Progress ›› 2025, Vol. 44 ›› Issue (7): 3757-3769.DOI: 10.16085/j.issn.1000-6613.2024-0731
• Chemical processes and equipment • Previous Articles Next Articles
SUN Jinlei1,2(
), LIAO Dankui1,2(
), CHEN Xiaopeng1,2, TONG Zhangfa1,2
Received:2024-05-06
Revised:2024-07-03
Online:2025-08-04
Published:2025-07-25
Contact:
LIAO Dankui
孙金磊1,2(
), 廖丹葵1,2(
), 陈小鹏1,2, 童张法1,2
通讯作者:
廖丹葵
作者简介:孙金磊(1996—),男,硕士研究生,研究方向为无机材料。E-mail:1251029055@qq.com。
基金资助:CLC Number:
SUN Jinlei, LIAO Dankui, CHEN Xiaopeng, TONG Zhangfa. Preparation of spheroidal nano-calcium carbonate via high gravity-microinterface method[J]. Chemical Industry and Engineering Progress, 2025, 44(7): 3757-3769.
孙金磊, 廖丹葵, 陈小鹏, 童张法. 超重力-微界面法制备类球形纳米碳酸钙[J]. 化工进展, 2025, 44(7): 3757-3769.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2024-0731
| 反应器类型 | 反应时间/min | CO2气体流量/m3·h-1 | CO2利用率/% |
|---|---|---|---|
| 鼓泡碳化塔 | 50 | 1.4 | 10.39 |
| 超重力-微界面碳化反应装置 | 50 | 0.5 | 58.06 |
| 反应器类型 | 反应时间/min | CO2气体流量/m3·h-1 | CO2利用率/% |
|---|---|---|---|
| 鼓泡碳化塔 | 50 | 1.4 | 10.39 |
| 超重力-微界面碳化反应装置 | 50 | 0.5 | 58.06 |
| 序号 | 温度/℃ | PEI添加量/% | 甲醇体积分数/% | CO2流量/L·min-1 | 氢氧化钙质量分数/% | 球形度 | |||
|---|---|---|---|---|---|---|---|---|---|
| 1 | 2 | 3 | 均值 | ||||||
| a | 12 | 4 | 25 | 2 | 6 | 0.91 | 0.912 | 0.902 | 0.908 |
| b | 12 | 5 | 15 | 2.5 | 7 | 0.929 | 0.914 | 0.923 | 0.922 |
| c | 12 | 6 | 20 | 3 | 8 | 0.947 | 0.944 | 0.947 | 0.946 |
| d | 12 | 7 | 30 | 3.5 | 9 | 0.847 | 0.858 | 0.851 | 0.852 |
| e | 15 | 4 | 15 | 3 | 9 | 0.916 | 0.925 | 0.922 | 0.921 |
| f | 15 | 5 | 25 | 3.5 | 8 | 0.888 | 0.883 | 0.887 | 0.886 |
| g | 15 | 6 | 30 | 2 | 7 | 0.882 | 0.885 | 0.882 | 0.883 |
| h | 15 | 7 | 20 | 2.5 | 6 | 0.918 | 0.911 | 0.916 | 0.915 |
| i | 18 | 4 | 20 | 3.5 | 7 | 0.888 | 0.889 | 0.884 | 0.887 |
| j | 18 | 5 | 30 | 3 | 6 | 0.93 | 0.929 | 0.925 | 0.928 |
| k | 18 | 6 | 25 | 2.5 | 9 | 0.916 | 0.919 | 0.916 | 0.917 |
| l | 18 | 7 | 15 | 2 | 8 | 0.869 | 0.864 | 0.868 | 0.867 |
| m | 21 | 4 | 30 | 2.5 | 8 | 0.879 | 0.872 | 0.871 | 0.874 |
| n | 21 | 5 | 20 | 2 | 9 | 0.848 | 0.853 | 0.855 | 0.852 |
| o | 21 | 6 | 15 | 3.5 | 6 | 0.814 | 0.821 | 0.816 | 0.817 |
| p | 21 | 7 | 25 | 3 | 7 | 0.802 | 0.809 | 0.807 | 0.806 |
| K1 | 3.628 | 3.59 | 3.517 | 3.51 | 3.568 | ||||
| K2 | 3.605 | 3.588 | 3.527 | 3.628 | 3.498 | ||||
| K3 | 3.599 | 3.563 | 3.6 | 3.601 | 3.573 | ||||
| K4 | 3.349 | 3.44 | 3.537 | 3.442 | 3.542 | ||||
| k1 | 1.209 | 1.197 | 1.172 | 1.170 | 1.189 | ||||
| k2 | 1.207 | 1.196 | 1.176 | 1.209 | 1.166 | ||||
| k3 | 1.200 | 1.188 | 1.200 | 1.200 | 1.191 | ||||
| k4 | 1.116 | 1.147 | 1.179 | 1.147 | 1.181 | ||||
| R | 0.093 | 0.050 | 0.028 | 0.062 | 0.025 | ||||
| 序号 | 温度/℃ | PEI添加量/% | 甲醇体积分数/% | CO2流量/L·min-1 | 氢氧化钙质量分数/% | 球形度 | |||
|---|---|---|---|---|---|---|---|---|---|
| 1 | 2 | 3 | 均值 | ||||||
| a | 12 | 4 | 25 | 2 | 6 | 0.91 | 0.912 | 0.902 | 0.908 |
| b | 12 | 5 | 15 | 2.5 | 7 | 0.929 | 0.914 | 0.923 | 0.922 |
| c | 12 | 6 | 20 | 3 | 8 | 0.947 | 0.944 | 0.947 | 0.946 |
| d | 12 | 7 | 30 | 3.5 | 9 | 0.847 | 0.858 | 0.851 | 0.852 |
| e | 15 | 4 | 15 | 3 | 9 | 0.916 | 0.925 | 0.922 | 0.921 |
| f | 15 | 5 | 25 | 3.5 | 8 | 0.888 | 0.883 | 0.887 | 0.886 |
| g | 15 | 6 | 30 | 2 | 7 | 0.882 | 0.885 | 0.882 | 0.883 |
| h | 15 | 7 | 20 | 2.5 | 6 | 0.918 | 0.911 | 0.916 | 0.915 |
| i | 18 | 4 | 20 | 3.5 | 7 | 0.888 | 0.889 | 0.884 | 0.887 |
| j | 18 | 5 | 30 | 3 | 6 | 0.93 | 0.929 | 0.925 | 0.928 |
| k | 18 | 6 | 25 | 2.5 | 9 | 0.916 | 0.919 | 0.916 | 0.917 |
| l | 18 | 7 | 15 | 2 | 8 | 0.869 | 0.864 | 0.868 | 0.867 |
| m | 21 | 4 | 30 | 2.5 | 8 | 0.879 | 0.872 | 0.871 | 0.874 |
| n | 21 | 5 | 20 | 2 | 9 | 0.848 | 0.853 | 0.855 | 0.852 |
| o | 21 | 6 | 15 | 3.5 | 6 | 0.814 | 0.821 | 0.816 | 0.817 |
| p | 21 | 7 | 25 | 3 | 7 | 0.802 | 0.809 | 0.807 | 0.806 |
| K1 | 3.628 | 3.59 | 3.517 | 3.51 | 3.568 | ||||
| K2 | 3.605 | 3.588 | 3.527 | 3.628 | 3.498 | ||||
| K3 | 3.599 | 3.563 | 3.6 | 3.601 | 3.573 | ||||
| K4 | 3.349 | 3.44 | 3.537 | 3.442 | 3.542 | ||||
| k1 | 1.209 | 1.197 | 1.172 | 1.170 | 1.189 | ||||
| k2 | 1.207 | 1.196 | 1.176 | 1.209 | 1.166 | ||||
| k3 | 1.200 | 1.188 | 1.200 | 1.200 | 1.191 | ||||
| k4 | 1.116 | 1.147 | 1.179 | 1.147 | 1.181 | ||||
| R | 0.093 | 0.050 | 0.028 | 0.062 | 0.025 | ||||
| 因素 | 离差平方和 | 自由度 | 均方 | F值 | 显著性 |
|---|---|---|---|---|---|
| 温度 | 0.039 | 3 | 0.013 | 846.053 | ** |
| PEI | 0.011 | 3 | 0.004 | 248.535 | ** |
| 甲醇体积分数 | 0.003 | 3 | 0.001 | 68.518 | ** |
| CO2流量 | 0.016 | 3 | 0.005 | 356.878 | ** |
| 氢氧化钙浓度 | 0.003 | 3 | 0.001 | 57.635 | ** |
| 误差 | 0 | 32 | 0 | — | — |
| 因素 | 离差平方和 | 自由度 | 均方 | F值 | 显著性 |
|---|---|---|---|---|---|
| 温度 | 0.039 | 3 | 0.013 | 846.053 | ** |
| PEI | 0.011 | 3 | 0.004 | 248.535 | ** |
| 甲醇体积分数 | 0.003 | 3 | 0.001 | 68.518 | ** |
| CO2流量 | 0.016 | 3 | 0.005 | 356.878 | ** |
| 氢氧化钙浓度 | 0.003 | 3 | 0.001 | 57.635 | ** |
| 误差 | 0 | 32 | 0 | — | — |
| [1] | KEZUKA Yuki, KUMA Yoshiki, NAKAI Shinsuke, et al. Calcium carbonate chain-like nanoparticles: Synthesis, structural characterization, and dewaterability[J]. Powder Technology, 2018, 335: 195-203. |
| [2] | SANTOS Samuel S M, MARCONDES Michel L, JUSTO João F, et al. Calcium carbonate at high pressures and high temperatures: A first-principles investigation[J]. Physics of the Earth and Planetary Interiors, 2020, 299: 106327. |
| [3] | WANG Yang, SHENG Jie, CHENG Zheng, et al. Effective improvement of the Chinese ink diffusion properties of Xuan paper by cellulose microfibrils-precipitated calcium carbonate composite filler[J]. Cellulose, 2020, 27(3): 1695-1704. |
| [4] | 周绿山, 赖川, 王芬, 等. 多孔碳酸钙的制备及应用研究进展[J]. 化工进展, 2018, 37(1): 159-167. |
| ZHOU Lüshan, LAI Chuan, WANG Fen, et al. Progress in fabrication and applications of porous calcium carbonate[J]. Chemical Industry and Engineering Progress, 2018, 37(1): 159-167. | |
| [5] | BAHROM Hani, GONCHARENKO Alexander A, FATKHUTDINOVA Landysh I, et al. Controllable synthesis of calcium carbonate with different geometry: Comprehensive analysis of particle formation, cellular uptake, and biocompatibility[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(23): 19142-19156. |
| [6] | MA Liang, ZHAO Long, LI Yun, et al. Controllable crystallization of pure vaterite using CO2-storage material and different Ca2+ sources[J]. Journal of CO2 Utilization, 2021, 48: 101520. |
| [7] | SHEN Yuke, HAO Shuang, SUONAN Angqian, et al. Controllable synthesis of nano-micro calcium carbonate mediated by additive engineering[J]. Crystals, 2023, 13(10) : 1432. |
| [8] | 谭婷婷,仲剑初.球形碳酸钙的控制合成研究[J].无机盐工业,2019, 51(12): 30-34. |
| TAN Tingting, ZHONG Jianchu. Study on controllable synthesis of spherical calcium carbonate[J]. Inorganic Chemicals Industry, 2019, 51(12): 30-34. | |
| [9] | 刘晨民, 刘曦曦, 陈小鹏, 等. 超重力反应结晶碳化法制备球形碳酸钙[J]. 化工进展, 2021, 40(11): 6323-6331. |
| LIU Chenmin, LIU Xixi, CHEN Xiaopeng, et al. Preparation of spherical calcium carbonate by high-gravity reaction crystallization carbonization[J]. Chemical Industry and Engineering Progress, 2021, 40(11): 6323-6331. | |
| [10] | 黄富宁, 王彩霞, 高健强, 等. 碳酸钙的形貌可控制备和性能研究[J]. 化学工程, 2020, 48(8): 7-11. |
| HUANG Funing, WANG Caixia, GAO Jianqiang, et al. Study on preparation and properties of calcium carbonate with controlled morphologies[J]. Chemical Engineering (China), 2020, 48(8): 7-11. | |
| [11] | XU Shengjie, WU Peiyi. Monodisperse spherical CaCO3 superstructure self-assembled by vaterite lamella under control of regenerated silk fibroin via compressed CO2 [J]. CrystEngComm, 2013, 15(25): 5179-5188. |
| [12] | 刁润丽. 纳米碳酸钙的制备研究进展[J]. 现代盐化工, 2020, 47(2): 19-20. |
| DIAO Runli. Research progress of preparation of nanometer calcium carbonate[J]. Modern Salt and Chemical Industry, 2020, 47(2): 19-20. | |
| [13] | 向乐凯, 李枫, 赵宁, 等. 二氧化碳鼓泡碳化法制备碳酸钙的研究[J]. 无机盐工业, 2016, 48(8): 46-51. |
| XIANG Lekai, LI Feng, ZHAO Ning, et al. Study on preparation of calcium carbonate by carbon dioxide bubbling carbonation[J]. Inorganic Chemicals Industry, 2016, 48(8): 46-51. | |
| [14] | MA Jianping, JI Junrong, YASEEN Muhammad, et al. A promising strategy for the large-scale preparation of spherical calcium carbonate by efficiently using carbon dioxide[J]. Journal of CO2 Utilization, 2022, 63: 102136. |
| [15] | GUO Yanling, WEI Yan, CHANG Miao, et al. A universal strategy for efficient synthesis of Zr-based MOF nanoparticles for enhanced water adsorption[J]. AIChE Journal, 2023, 69(9): e18181. |
| [16] | LIAO Hailong, WANG Baoju, LIU Yazhao, et al. Preparation of Pd/γ- Al2O3/nickel foam monolithic catalyst and its performance for selective hydrogenation in a rotating packed bed reactor[J]. Chinese Journal of Chemical Engineering, 2022, 41: 311-319. |
| [17] | LIN Chia-Chang, LIN Junhong, WU Kuanyi. Preparation of nanostructured goethite by chemical precipitation in a rotating packed bed[J]. Ceramics International, 2023, 49(2): 1874-1879. |
| [18] | 王淼, 曾晓飞, 王洁欣, 等. 超重力法纳米材料的可控制备与应用[J]. 新材料产业, 2015(8): 52-57. |
| WANG Miao, ZENG Xiaofei, WANG Jiexin, et al. Controllable preparation and application of nano-materials by high gravity method[J]. Advanced Materials Industry, 2015(8): 52-57. | |
| [19] | 张志炳, 田洪舟, 张锋, 等. 多相反应体系的微界面强化简述[J]. 化工学报, 2018, 69(1): 44-49. |
| ZHANG Zhibing, TIAN Hongzhou, ZHANG Feng, et al. Overview of microinterface intensification in multiphase reaction systems[J]. CIESC Journal, 2018, 69(1): 44-49. | |
| [20] | 陆小华, 陈义峰, 董依慧, 等. 纳微界面增强CO2吸收及机理分析[J]. 化工学报, 2020, 71(1): 34-42. |
| LU Xiaohua, CHEN Yifeng, DONG Yihui, et al. Nano-interface enhanced CO2 absorption and mechanism analysis[J]. CIESC Journal, 2020, 71(1): 34-42. | |
| [21] | ZENG Wei, JIA Chao, LUO Huaxun, et al. Microbubble-dominated mass transfer intensification in the process of ammonia-based flue gas desulfurization[J]. Industrial & Engineering Chemistry Research, 2020, 59(44): 19781-19792. |
| [22] | WANG Su, PATEHEBIEKE Yeersen, ZHOU Zheng, et al. Catalyst-free biphasic oxidation of Thiophenes in continuous-flow[J]. Journal of Flow Chemistry, 2020, 10(4): 597-603. |
| [23] | QIAN Hongliang, TIAN Hongzhou, YANG Guoqiang, et al. Microinterface intensification in hydrogenation and air oxidation processes[J]. Chinese Journal of Chemical Engineering, 2022, 50: 292-300. |
| [24] | 邱金锋, 王建. 消化工艺参数对氢氧化钙粒径的影响[J]. 中国造纸学报, 2014, 29(4): 35-39. |
| QIU Jinfeng, WANG Jian. Effects of slaking parameters on the particle size of calcium hydroxide[J]. Transactions of China Pulp and Paper, 2014, 29(4): 35-39. | |
| [25] | SARKAR Arpita, DUTTA Kingshuk, MAHAPATRA Samiran. Polymorph control of calcium carbonate using Insoluble layered double hydroxide[J]. Crystal Growth and Design, 2013, 13(1): 204-211. |
| [26] | 张志炳, 田洪舟, 王丹亮, 等. 气液反应体系相界面传质强化研究[J]. 化学工程, 2016, 44(3): 1-8. |
| ZHANG Zhibing, TIAN Hongzhou, WANG Danliang, et al. Intensification of interfacial mass transfer in gas-liquid reaction systems[J]. Chemical Engineering(China), 2016, 44(3): 1-8. | |
| [27] | 张同旺, 靳海波, 何广湘, 等. 加压大型鼓泡床反应器内大小气泡气含率研究[J]. 化学工程, 2004, 32(5): 29-33, 49. |
| ZHANG Tongwang, JIN Haibo, HE Guangxiang, et al. Large bubble and small bubble holdups in large-scale pressurized bubble column reactor[J]. Chemical Engineering(China), 2004, 32(5): 29-33, 49. | |
| [28] | GIRSHICK Steven L. Theory of nucleation from the gas phase by a sequence of reversible chemical reactions[J]. The Journal of Chemical Physics, 1997, 107(6): 1948-1952. |
| [29] | 王立恒, 管小平, 杨宁, 等. CO2微气泡强化纳米碳酸钙的制备及传递-反应分析[J]. 过程工程学报, 2023, 23(9): 1313-1324. |
| WANG Liheng, GUAN Xiaoping, YANG Ning, et al. Preparation of nano-calcium carbonate intensified by CO2 micro bubble and transfer-reaction analysis[J]. The Chinese Journal of Process Engineering, 2023, 23(9): 1313-1324. | |
| [30] | ZHANG Zhi, YANG Baojun, TANG Huawei, et al. High-yield synthesis of vaterite CaCO3 microspheres in ethanol/water: Structural characterization and formation mechanisms[J]. Journal of Materials Science, 2015, 50(16): 5540-5548. |
| [31] | MA Liang, YANG Tingyu, WU Yu, et al. CO2 capture and preparation of spindle-like CaCO3 crystals for papermaking using calcium carbide residue waste via an atomizing approach[J]. Korean Journal of Chemical Engineering, 2019, 36(9): 1432-1440. |
| [32] | 脱文刚, 洪瑞金, 张大伟, 等. Al、Sn掺杂对于ZnO薄膜微结构及光学特性的影响[J]. 光学仪器, 2015, 37(3): 278-282. |
| Wengang TUO, HONG Ruijin, ZHANG Dawei, et al. The microstrcuture and optical properties of Al, Sn doped ZnO thin film[J]. Optical Instruments, 2015, 37(3): 278-282. | |
| [33] | Adaris LÓPEZ-MARZO, PONS Josefina, Arben MERKOÇI. Controlled formation of nanostructured CaCO3-PEI microparticles with high biofunctionalizing capacity[J]. Journal of Materials Chemistry, 2012, 22(30): 15326-15335. |
| [34] | CHEN Youming, YANG Shengrong, ZHANG Junyan. The chemical composition and bonding structure of B-C-N-H thin films deposited by reactive magnetron sputtering[J]. Surface and Interface Analysis, 2009, 41(11): 865-871. |
| [35] | THRIVENI Thenepalli, Ji Whan AHN, RAMAKRISHNA Chilakala, et al. Synthesis of nano precipitated calcium carbonate by using a carbonation process through a closed loop reactor[J]. Journal of the Korean Physical Society, 2016, 68(1): 131-137. |
| [36] | SUN Yidi, ZOU Haifeng, ZHANG Bowen, et al. Luminescent properties and energy transfer of Gd3+/Eu3+ co-doped cubic CaCO3 [J]. Journal of Luminescence, 2016, 178: 307-313. |
| [37] | YANG Bo, Zhaodong NAN. Abnormal polymorph conversion of calcium carbonate from calcite to vaterite[J]. Materials Research Bulletin, 2012, 47(3): 521-526. |
| [38] | 李娜, 柴春鹏, 甘志勇, 等. 含能离子化合物的分子设计与性能研究进展[J]. 含能材料, 2010, 18(4): 467-475. |
| LI Na, CHAI Chunpeng, GAN Zhiyong, et al. Review on molecular design and performance of energetic ionic compounds[J]. Chinese Journal of Energetic Materials, 2010, 18(4): 467-475. | |
| [39] | DALAS E, KOKLAS S N. The overgrowth of vaterite on functionalized styrene-butadiene copolymer[J]. Journal of Crystal Growth, 2003, 256(3/4): 401-406. |
| [1] | ZHENG Huizhe, WANG Haoze, JIANG Jie, ZHAO Ling, XI Zhenhao. Modeling and simulation of PCTG copolymer rotating disc reactor based on the coupling of reaction and mass transfer [J]. Chemical Industry and Engineering Progress, 2025, 44(6): 3372-3381. |
| [2] | MA Zixuan, SHI Ruichen, LIU Mingjie, YANG Yingjie, SONG Ziyu, MEI Xiaopeng, GAO Xiaofeng, HONG Longcheng, YAO Siyu, ZHANG Zhiguo, REN Qilong. Design and performance optimization of reactors for catalytic hydrogen production from cycloalkanes: Frontline progress and challenges [J]. Chemical Industry and Engineering Progress, 2025, 44(5): 2919-2937. |
| [3] | CHEN Aohui, SONG Yanfang, CHEN Wei, WEI Wei. Self-supported porous electrodes for efficient electrocatalytic CO2 reduction [J]. Chemical Industry and Engineering Progress, 2025, 44(5): 2806-2810. |
| [4] | DING Hongbing, CHAI Xutian, WANG Shiwei, SONG Xinyu, SUN Hongjun. Experimental investigation on single and successive droplet impacts on flowing liquid film [J]. Chemical Industry and Engineering Progress, 2025, 44(4): 1888-1897. |
| [5] | WANG Jiaqi, LIU Jiaxing, WEI Haoqi, ZHOU Xinlin, CHENG Chuanxiao, GE Kun. Rhamnolipid-enhanced CO2 hydrate production [J]. Chemical Industry and Engineering Progress, 2025, 44(4): 1998-2007. |
| [6] | SHE Yonglu, XU Qiang, LUO Xinyi, NIE Tengfei, GUO Liejin. Effect of reaction temperature on bubble dynamics and mass transfer characteristics on photoanode surface [J]. Chemical Industry and Engineering Progress, 2025, 44(3): 1243-1252. |
| [7] | LUO Xiaoping, JIA Mengfan, LI Shizhen. Pressure drop characteristics of countercurrent microfluidic channels under synergistic effect of electric field and modified PVDF membrane phase separation structure [J]. Chemical Industry and Engineering Progress, 2025, 44(2): 646-659. |
| [8] | LI Haoyang, LI Hongwei, TAN Jianyu. Dynamic characteristics of boiling bubbles under transient oscillating heating conditions [J]. Chemical Industry and Engineering Progress, 2025, 44(2): 735-742. |
| [9] | BAI Yiran, ZHAI Yuling, DAI Jinghui, LI Zhouhang. Mechanisms of bubble nucleation and heat transfer enhancement in micro/nano-scale pooling boiling [J]. Chemical Industry and Engineering Progress, 2025, 44(2): 743-751. |
| [10] | LI Yi, LIANG Lisi, ZHANG Lixing, QIAO Jiangyu, CUI Zhongyi, CHEN Jin, XU Qiang, ZHAO Chen. Simultaneous desulfurization and denitrification with hypochlorite oxidant [J]. Chemical Industry and Engineering Progress, 2024, 43(9): 5282-5289. |
| [11] | SONG Zhanlong, TANG Tao, PAN Wei, ZHAO Xiqiang, SUN Jing, MAO Yanpeng, WANG Wenlong. Micro-nano bubbles enhance ozone oxidation and degradation of wastewater containing phenol [J]. Chemical Industry and Engineering Progress, 2024, 43(8): 4614-4623. |
| [12] | ZHENG Qingyu, JIN Guangyuan, FENG Wenkai, ZHU Zhengshan, ZHOU Yifan, TENG Houchang, LI Zhenfeng, SONG Chunfang, SONG Feihu, LI Jing. Numerical analysis of mixed characteristics of chaotic C-type geometric flows coupling electromagnetic thermal characteristics [J]. Chemical Industry and Engineering Progress, 2024, 43(8): 4262-4272. |
| [13] | ZHAO Wei, JIANG Yuhan, LI Zhen, LI Yihong, ZHOU Anning, WANG Hong. Mechanism of the impact of hydrogen/oxygen bubbles in the separation and hydrogen production of coal macerals electroflotation [J]. Chemical Industry and Engineering Progress, 2024, 43(5): 2428-2435. |
| [14] | XIE Xiaojin, ZHANG Xiaoxue, LIU Xiaoling, CHONG Mingben, CHENG Dangguo, CHEN Fengqiu. Effect of acidic properties of single-crystalline hierarchical ZSM-5 zeolite on its activity and mass transfer in n-heptane catalytic cracking [J]. Chemical Industry and Engineering Progress, 2024, 43(5): 2661-2672. |
| [15] | WU Xining, ZHANG Ning, QIN Jiamin, XU Long, WEI Chaoyang, MA Xiaoxun. Performance of methanol-based nanofluids with enhanced CO2 absorption under low cooling demand [J]. Chemical Industry and Engineering Progress, 2024, 43(5): 2811-2822. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
|
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |