Chemical Industry and Engineering Progress ›› 2025, Vol. 44 ›› Issue (1): 66-74.DOI: 10.16085/j.issn.1000-6613.2023-2224
• Chemical processes and equipment • Previous Articles Next Articles
LIU Dongmei1,2(), ZHUANG Zhaolin1,2, WANG Qing1,2(
), DIAO Huali1,2, XU Gang1,2, PENG Yanzhou1,2, BAO Hao1,2, LI Dongsheng3
Received:
2023-12-19
Revised:
2024-05-07
Online:
2025-02-13
Published:
2025-01-15
Contact:
WANG Qing
刘冬梅1,2(), 庄昭霖1,2, 王青1,2(
), 刁华利1,2, 徐港1,2, 彭艳周1,2, 鲍浩1,2, 李东升3
通讯作者:
王青
作者简介:
刘冬梅(1977—),女,副教授,硕士生导师,研究方向为工业固体废弃物在水泥混凝土中的应用。E-mail:58983701@qq.com。
基金资助:
CLC Number:
LIU Dongmei, ZHUANG Zhaolin, WANG Qing, DIAO Huali, XU Gang, PENG Yanzhou, BAO Hao, LI Dongsheng. Preparation of calcium carbonate powder by phosphogypsum mineralization for CO2 capture[J]. Chemical Industry and Engineering Progress, 2025, 44(1): 66-74.
刘冬梅, 庄昭霖, 王青, 刁华利, 徐港, 彭艳周, 鲍浩, 李东升. 磷石膏矿化固定CO2制备碳酸钙微粉[J]. 化工进展, 2025, 44(1): 66-74.
化学成分 | 质量分数/% |
---|---|
SO3 | 54.683 |
CaO | 34.334 |
SiO2 | 8.841 |
Fe2O3 | 0.614 |
K2O | 0.539 |
CuO | 0.015 |
BaO | 0.171 |
TiO2 | 0.112 |
SrO | 0.371 |
P2O5 | 0.32 |
化学成分 | 质量分数/% |
---|---|
SO3 | 54.683 |
CaO | 34.334 |
SiO2 | 8.841 |
Fe2O3 | 0.614 |
K2O | 0.539 |
CuO | 0.015 |
BaO | 0.171 |
TiO2 | 0.112 |
SrO | 0.371 |
P2O5 | 0.32 |
1 | 崔荣政, 白海丹, 高永峰, 等. 磷石膏综合利用现状及“十四五”发展趋势[J]. 无机盐工业, 2022, 54(4): 1-4. |
CUI Rongzheng, BAI Haidan, GAO Yongfeng, et al. Current situation of comprehensive utilization of phosphogypsum and its development trend of 14th Five-Year Plan[J]. Inorganic Chemicals Industry, 2022, 54(4): 1-4. | |
2 | 许金辉, 邵龙义, 侯海海, 等. 磷石膏综合利用背景下的环境影响研究现状[J]. 矿业科学学报, 2023, 8(1): 115-126. |
XU Jinhui, SHAO Longyi, HOU Haihai, et al. Review of environmental impact of comprehensive utilization of phosphogypsum[J]. Journal of Mining Science and Technology, 2023, 8(1): 115-126. | |
3 | 张贤, 李凯, 马乔, 等. 碳中和目标下CCUS技术发展定位与展望[J]. 中国人口·资源与环境, 2021, 31(9): 29-33. |
ZHANG Xian, LI Kai, MA Qiao, et al. Orientation and prospect of CCUS development under carbon neutrality target[J]. China Population, Resources and Environment, 2021, 31(9): 29-33. | |
4 | KOBELEVA A R, POILOV V Z. Technology for production of calcium carbonate with prescribed properties[J]. Russian Journal of Applied Chemistry, 2007, 80(9): 1447-1452. |
5 | FADIA Preksha, TYAGI Simona, BHAGAT Stuti, et al. Calcium carbonate nano- and microparticles: Synthesis methods and biological applications[J]. 3 Biotech, 2021, 11(11): 457. |
6 | JIMOH Onimisi A, ARIFFIN Kamar Shah, HUSSIN Hashim Bin, et al. Synthesis of precipitated calcium carbonate: A review[J]. Carbonates and Evaporites, 2018, 33(2): 331-346. |
7 | ZHAO Hongtao, LI Huiquan, BAO Weijun, et al. Experimental study of enhanced phosphogypsum carbonation with ammonia under increased CO2 pressure[J]. Journal of CO2 Utilization, 2015, 11: 10-19. |
8 | 贺翩翩, 刘晓静, 范勇, 等. 磷石膏固碳制备CaCO3的实验研究[J]. 非金属矿, 2015, 38(2): 28-30. |
HE Pianpian, LIU Xiaojing, FAN Yong, et al. Study on the preparation of CaCO3 by phosphogypsum solid carbon through orthogonal experiment[J]. Non-Metallic Mines, 2015, 38(2): 28-30. | |
9 | BAO Weijun, ZHAO Hongtao, LI Huiquan, et al. Process simulation of mineral carbonation of phosphogypsum with ammonia under increased CO2 pressure[J]. Journal of CO2 Utilization, 2017, 17: 125-136. |
10 | LEE Myung gyu, JANG Young Nam, Kyung won RYU, et al. Mineral carbonation of flue gas desulfurization gypsum for CO2 sequestration[J]. Energy, 2012, 47(1): 370-377. |
11 | ZHANG Man, FAN Xing. Preparation of gypsum with high purity and whiteness from phosphogypsum for CO2 mineral sequestration[J]. Scientific Reports, 2023, 13(1): 4156. |
12 | WU Baizhi, WANG Haibin, LI Chunlei, et al. Progress in the preparation of calcium carbonate by indirect mineralization of industrial by-product gypsum[J]. Sustainability, 2023, 15(12): 9629. |
13 | 刘健, 解田, 朱云勤, 等. 硝酸浸取磷石膏钙渣制备高品质轻质碳酸钙[J]. 环境化学, 2010, 29(4): 772-773. |
LIU Jian, XIE Tian, ZHU Yunqin, et al. Preparation of high quality light calcium carbonate by leaching phosphogypsum calcium slag with nitric acid[J]. Environmental Chemistry, 2010, 29(4): 772-773. | |
14 | RAHMANI Omeid, JUNIN Radzuan, TYRER Mark, et al. Mineral carbonation of red gypsum for CO2 sequestration[J]. Energy & Fuels, 2014, 28(9): 5953-5958. |
15 | ALTINER Mahmut. Effect of alkaline types on the production of calcium carbonate particles from gypsum waste for fixation of CO2 by mineral carbonation[J]. International Journal of Coal Preparation and Utilization, 2019, 39(3): 113-131. |
16 | LACHEHAB Adil, MERTAH Oumaima, KHERBECHE Abdelhak, et al. Utilization of phosphogypsum in CO2 mineral sequestration by producing potassium sulphate and calcium carbonate[J]. Materials Science for Energy Technologies, 2020, 3: 611-625. |
17 | ZDAH Ilham, ALAOUI-BELGHITI Hanan EL, CHERRAT Ayoub, et al. Temperature effect on phosphogypsum conversion into potassium fertilizer K2SO4 and portlandite[J]. Nanotechnology for Environmental Engineering, 2021, 6(2): 27. |
18 | 田萍, 宁朋歌, 曹宏斌, 等. 二水硫酸钙在铵盐溶液中溶解度测定及热力学计算[J]. 过程工程学报, 2012, 12(4): 625-630. |
TIAN Ping, NING Pengge, CAO Hongbin, et al. Solubility measurement of calcium sulfate dihydrate in NH4Cl-(NH4)2SO4 solutions and thermodynamic calculation[J]. The Chinese Journal of Process Engineering, 2012, 12(4): 625-630. | |
19 | LIANG Ya qing, SUN Hong juan, PENG Tong Jiang. Effect of pH and concentration of Ca2+ on spherical calcium carbonate crystallization by continuous CO2 gas bubbling into phosphogypsum leaching solution[J]. Materials Science Forum, 2015, 814: 552-558. |
20 | 乔静怡, 陈秋菊, 刘卓齐, 等. 磷石膏矿化CO2制备球霰石型碳酸钙试验研究[J]. 化工矿物与加工, 2023, 52(9): 14-18, 25. |
QIAO Jingyi, CHEN Qiuju, LIU Zhuoqi, et al. Experimental study on preparation of vaterite-based calcium carbonate by CO2 mineralization with phosphogypsum[J]. Industrial Minerals & Processing, 2023, 52(9): 14-18, 25. | |
21 | 梁亚琴, 孙红娟, 彭同江. 磷石膏固碳制备不同球形碳酸钙的实验研究[J]. 宁夏大学学报(自然科学版), 2015, 36(1): 51-55. |
LIANG Yaqin, SUN Hongjuan, PENG Tongjiang. Experimental study on preparation different spherical calcium carbonate with ardealite carbon sequestration[J]. Journal of Ningxia University (Natural Science Edition), 2015, 36(1): 51-55. | |
22 | 时婷, 王新刚, 巫建锋, 等. 磷石膏脱硫钙渣制备轻质碳酸钙[J]. 化工进展, 2015, 34(1): 178-182. |
SHI Ting, WANG Xingang, WU Jianfeng, et al. Preparation of light calcium carbonate from phosphorus gypsum desulfurization slag[J]. Chemical Industry and Engineering Progress, 2015, 34(1): 178-182. | |
23 | DING Wenjin, CHEN Qiuju, SUN Hongjuan, et al. Modified mineral carbonation of phosphogypsum for CO2 sequestration[J]. Journal of CO2 Utilization, 2019, 34: 507-515. |
24 | CHEN Qiuju, DING Wenjin, SUN Hongjuan, et al. Indirect mineral carbonation of phosphogypsum for CO2 sequestration[J]. Energy, 2020, 206: 118148. |
25 | 刘禄, 乔静怡, 刘卓齐, 等. 磷石膏制备高纯碳酸钙的试验研究[J]. 矿产保护与利用, 2022, 42(5): 126-131. |
LIU Lu, QIAO Jingyi, LIU Zhuoqi, et al. Experimental study on preparation of high-purity CaCO3 from phosphogypsum[J]. Conservation and Utilization of Mineral Resources, 2022, 42(5): 126-131. | |
26 | QI Huahui, MA Baoguo, TAN Hongbo, et al. Effect of sodium gluconate on molecular conformation of polycarboxylate superplasticizer studied by the molecular dynamics simulation[J]. Journal of Molecular Modeling, 2020, 26(3): 45. |
27 | Xingdong LYU, LI Jiazheng, LU Chao, et al. The effect of sodium gluconate on pastes’ performance and hydration behavior of ordinary Portland cement[J]. Advances in Materials Science and Engineering, 2020(1): 9231504. |
28 | 史刘宾, 唐名德, 汤勇, 等. 高压碳化法可控制备微纳米分级结构中空棒状碳酸钙及其表征[J]. 化工进展, 2020, 39(11): 4742-4748. |
SHI Liubin, TANG Mingde, TANG Yong, et al. Preparation and characterization of micro-nano hierarchical hollow rod-like calcium carbonate by high pressure carbonization[J]. Chemical Industry and Engineering Progress, 2020, 39(11): 4742-4748. | |
29 | 杨敏. 磷石膏的溶解度研究[J]. 广州化工, 2016, 44(15): 62-63, 72. |
YANG Min. Study on solubility of phosphogypsum[J]. Guangzhou Chemical Industry, 2016, 44(15): 62-63, 72. | |
30 | 李美, 彭家惠, 张欢, 等. 共晶磷对石膏性能的影响及其作用机理[J]. 四川大学学报(工程科学版), 2012, 44(3): 200-204. |
LI Mei, PENG Jiahui, ZHANG Huan, et al. Influence of P2O5 in crystal lattice on gypsum properties and its mechanisms[J]. Journal of Sichuan University (Engineering Science Edition), 2012, 44(3): 200-204. | |
31 | 梁玺, 赵改菊, 路春美, 等. 葡萄糖酸钙结晶的热力学特性[J]. 化学工程, 2021, 49(3): 22-27. |
LIANG Xi, ZHAO Gaiju, LU Chunmei, et al. Thermodynamic properties of calcium gluconate crystallization[J]. Chemical Engineering (China), 2021, 49(3): 22-27. | |
32 | DE LUNA Mark Daniel G, SIOSON Arianne S, CHOI Angelo Earvin Sy, et al. Operating pH influences homogeneous calcium carbonate granulation in the frame of CO2 capture[J]. Journal of Cleaner Production, 2020, 272: 122325. |
33 | HU Yubin, WOLTHERS Mariëtte, WOLF-GLADROW Dieter A, et al. Effect of pH and phosphate on calcium carbonate polymorphs precipitated at near-freezing temperature[J]. Crystal Growth & Design, 2015, 15(4): 1596-1601. |
34 | 丁光月, 李岳, 樊彩梅, 等. 杂质对磷石膏与碳酸铵反应及产物碳酸钙结晶的影响[J]. 太原理工大学学报, 2011, 42(6): 593-597. |
DING Guangyue, LI Yue, FAN Caimei, et al. Effect of impurities on conversion of gypsum and crystallization of calcium carbonate[J]. Journal of Taiyuan University of Technology, 2011, 42(6): 593-597. | |
35 | 钟汝永. 扑朔迷离的碳酸氢钙[J]. 化学教学, 2014(10): 78-79. |
ZHONG Ruyong. The confusing calcium bicarbonate[J]. Education in Chemistry, 2014(10): 78-79. | |
36 | Donata KONOPACKA-ŁYSKAWA, CZAPLICKA Natalia, Barbara KOŚCIELSKA, et al. Influence of selected saccharides on the precipitation of calcium-vaterite mixtures by the CO2 bubbling method[J]. Crystals, 2019, 9(2): 117. |
37 | Romuald BABOU-KAMMOE, HAMOUDI Safia, LARACHI Faïçal, et al. Synthesis of CaCO3 nanoparticles by controlled precipitation of saturated carbonate and calcium nitrate aqueous solutions[J]. The Canadian Journal of Chemical Engineering, 2012, 90(1): 26-33. |
38 | 陈秋鸽, 王戬, 张志业, 等. 磷石膏脱硫钙渣浸取液中杂质对碳酸钙晶型的影响[J]. 化工进展, 2016, 35(11): 3714-3719. |
CHEN Qiuge, WANG Jian, ZHANG Zhiye, et al. Effects of impurities in leaching liquid of phosphogypsum desulfurization slag on crystal form of calcium carbonate[J]. Chemical Industry and Engineering Progress, 2016, 35(11): 3714-3719. | |
39 | RODRIGUEZ-BLANCO Juan Diego, SHAW Samuel, BENNING Liane G. The kinetics and mechanisms of amorphous calcium carbonate (ACC) crystallization to calcite, via vaterite[J]. Nanoscale, 2011, 3(1): 265-271. |
40 | Donata KONOPACKA-ŁYSKAWA. Synthesis methods and favorable conditions for spherical vaterite precipitation: A review[J]. Crystals, 2019, 9(4): 223. |
41 | Donata KONOPACKA-ŁYSKAWA, CZAPLICKA Natalia, Marcin ŁAPIŃSKI, et al. Precipitation and transformation of vaterite calcium carbonate in the presence of some organic solvents[J]. Materials, 2020, 13(12):2742. |
[1] | MA Dong, XIE Guilin, TIAN Zhihua, WANG Qinhui, ZHANG Jianguo, SONG Huilin, ZHONG Jin. Analysis of high temperature reduction process of phosphogypsum by coal gasification fine slag in fluidized bed [J]. Chemical Industry and Engineering Progress, 2024, 43(6): 3479-3491. |
[2] | LIU Yang, WANG Yungang, XIU Haoran, ZOU Li, BAI Yanyuan. Optimal carbonization process of walnut shell based on dynamic analysis [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 94-103. |
[3] | DING Wenjin, LIU Zhuoqi, LU Haichen, SUN Hongjuan, PENG Tongjiang. Preparation of high-purity CaCO3 from phosphogypsum for CO2 mineralization in CH3COONa-NH4OH-H2O system [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3824-3833. |
[4] | WANG Xue, XU Qiyong, ZHANG Chao. Hydrothermal carbonization of the lignocellulosic biomass and application of the hydro-char [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2536-2545. |
[5] | WANG Hao, DI Lu, WANG Fang, ZHANG Deli, YI Weiming, LI Yongjun, SHEN Xiuli. Organic matter conversion and methane production characteristics during anaerobic co-digestion of corn stover and aqueous phase derived from cellulose hydrothermal carbonization [J]. Chemical Industry and Engineering Progress, 2023, 42(12): 6666-6675. |
[6] | FAN Xuyang, CHEN Yanxin, ZHAO Bo, ZHANG Leilei. Numerical simulation of pre-reduction for a new process of acid production from phosphogypsum by gas sulfur reduction [J]. Chemical Industry and Engineering Progress, 2023, 42(10): 5414-5426. |
[7] | BI Qiang, MEI Yi, XIA Jupei. Basic research on preparation and activity combined excitation of anhydrite-Ⅱ phosphogypsum [J]. Chemical Industry and Engineering Progress, 2023, 42(10): 5427-5435. |
[8] | LI Yeqing, YANG Xingru, LIANG Zhuo, JIANG Hao, XU Quan, ZHOU Hongjun, FENG Lu. Impact of exogenous additives on hydrothermal dechlorination performance of polyvinyl chloride [J]. Chemical Industry and Engineering Progress, 2022, 41(5): 2706-2712. |
[9] | WANG Yujuan, TANG Jianfeng, HUA Yihuai, CHEN Jing, SANG Wei, LIU Yunfei. Influence of different start-up conditions on response characteristics of natural gas decarbonization device [J]. Chemical Industry and Engineering Progress, 2022, 41(4): 1770-1780. |
[10] | ZHANG Yu, YANG Jiahao, LIU Yu, SONG Ziyu, HE Hanxiao, ZHAO Fengqing. Regulating technology of setting and hardening process of anhydrite-Ⅱphosphogypsum [J]. Chemical Industry and Engineering Progress, 2022, 41(10): 5637-5644. |
[11] | TIAN Xiaohua, ZHANG Yu, ZHAO Fengqing. Mechanism of steel slag-phosphoric acid system regulating the setting performance of phosphogypsum based building gypsum [J]. Chemical Industry and Engineering Progress, 2021, 40(8): 4438-4444. |
[12] | XU Jie, HUANG Qunxing, MENG Xiangdong, GAO Huaping. Effect of calcium-based additive on phosphorus form and bioavailability during hydrothermal carbonization of sewage sludge [J]. Chemical Industry and Engineering Progress, 2021, 40(6): 3507-3514. |
[13] | Jianfeng TANG, Yujuan WANG, Yue WANG, Yihuai HUA, Jie CHU, Wei SANG, Jing CHEN. Applicability of Aspen HYSYS for simulation of amine decarbonization regeneration process [J]. Chemical Industry and Engineering Progress, 2021, 40(2): 747-754. |
[14] | Xiaoyuan ZHENG, Zhengwei JIANG, Wei CHEN, Yutong YE, Zhi YING, Shasha JI, Bo WANG. Migration and transformation of phosphorus in sewage sludge during hydrothermal carbonization process [J]. Chemical Industry and Engineering Progress, 2020, 39(5): 2017-2025. |
[15] | Zheng TANG,Song ZHAO,Yajie QIAN,Gang XUE,Hanzhong JIA,Pin GAO. Formation mechanisms and environmental applications of persistent free radicals in biochar: a review [J]. Chemical Industry and Engineering Progress, 2020, 39(4): 1521-1527. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 33
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 108
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |