Chemical Industry and Engineering Progress ›› 2024, Vol. 43 ›› Issue (11): 6533-6542.DOI: 10.16085/j.issn.1000-6613.2023-1847
• Resources and environmental engineering • Previous Articles
SHANG Gaoyuan(), YU Jinpeng, CUI Kai, GUO Kun()
Received:
2023-10-19
Revised:
2023-10-31
Online:
2024-12-07
Published:
2024-11-15
Contact:
GUO Kun
通讯作者:
郭坤
作者简介:
尚高原(1993—),女,博士研究生,研究方向为微生物电发酵。E-mail:Shang_gy@stu.xjtu.edu.cn。
基金资助:
CLC Number:
SHANG Gaoyuan, YU Jinpeng, CUI Kai, GUO Kun. Impact of cathode potentials on methane production from high-concentration potato starch wastewater in electro-fermentation systems[J]. Chemical Industry and Engineering Progress, 2024, 43(11): 6533-6542.
尚高原, 余金鹏, 崔凯, 郭坤. 外加电位对高浓度马铃薯淀粉废水电发酵产甲烷系统的影响[J]. 化工进展, 2024, 43(11): 6533-6542.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2023-1847
特性 | 马铃薯淀粉废水原水 | 接种物 | 单位 |
---|---|---|---|
总固体(TS) | 3.81 | 5.85 | % |
挥发性固体(VS) | 2.877+0.31 | 4.58 | % |
总化学需氧量(TCOD) | 20597.74 | 1426.71 | mg/L |
可溶性化学需氧量(SCOD) | 15432.71 | 365.24 | mg/L |
C/N | 5.9887 | — | — |
C/H | 6.03472 | — | — |
pH | 6.79 | 7.16 | — |
特性 | 马铃薯淀粉废水原水 | 接种物 | 单位 |
---|---|---|---|
总固体(TS) | 3.81 | 5.85 | % |
挥发性固体(VS) | 2.877+0.31 | 4.58 | % |
总化学需氧量(TCOD) | 20597.74 | 1426.71 | mg/L |
可溶性化学需氧量(SCOD) | 15432.71 | 365.24 | mg/L |
C/N | 5.9887 | — | — |
C/H | 6.03472 | — | — |
pH | 6.79 | 7.16 | — |
1 | WANG Rongmin, WANG Yan, MA Guoping, et al. Efficiency of porous burnt-coke carrier on treatment of potato starch wastewater with an anaerobic-aerobic bioreactor[J]. Chemical Engineering Journal, 2009, 148(1): 35-40. |
2 | 陈翔宇, 卞春林, 肖本益.温度分级厌氧消化工艺的研究进展[J]. 化工进展, 2023, 42(9): 4872-4881. |
CHEN Xiangyu, BIAN Chunlin, XIAO Benyi. Research progress on temperature phased anaerobic digestion technology[J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4872-4881. | |
3 | SHEN Ruixia, JING Yong, FENG Jing, et al. Performance of enhanced anaerobic digestion with different pyrolysis biochars and microbial communities[J]. Bioresource Technology, 2020, 296: 122354. |
4 | Jae Hac KO, WANG Ning, YUAN Tugui, et al. Effect of nickel-containing activated carbon on food waste anaerobic digestion[J]. Bioresource Technology, 2018, 266: 516-523. |
5 | Subhabrata DEV, SAHA Shouvik, KURADE Mayur B, et al. Perspective on anaerobic digestion for biomethanation in cold environments[J]. Renewable and Sustainable Energy Reviews, 2019, 103: 85-95. |
6 | MA Xinxin, YU Miao, SONG Na, et al. Effect of ethanol pre-fermentation on organic load rate and stability of semi-continuous anaerobic digestion of food waste[J]. Bioresource Technology, 2020, 299: 122587. |
7 | WANG Wei, CHANG Jo-Shu, LEE Duu-Jong. Integrating anaerobic digestion with bioelectrochemical system for performance enhancement: A mini review[J]. Bioresource Technology, 2022, 345: 126519. |
8 | NOORI Md T, Mung Thi VU, Rana Basit ALI, et al. Recent advances in cathode materials and configurations for upgrading methane in bioelectrochemical systems integrated with anaerobic digestion[J]. Chemical Engineering Journal, 2020, 392: 123689. |
9 | 郑小梅, 林茹晶, 周文静, 等. 微生物电解池辅助 CO2 甲烷化阴极材料的研究进展[J]. 化工进展, 2022, 41(5): 2476-2486. |
ZHENG Xiaomei, LIN Rujing, ZHOU Wenjing, et al. Review on cathode materials for CO2 methanation assisted by microbial electrolytic cell[J]. Chemical Industry and Engineering Progress, 2022, 41(5): 2476-2486. | |
10 | YU Jaecheul, KIM Sunwon, O-Seob KWON. Effect of applied voltage and temperature on methane production and microbial community in microbial electrochemical anaerobic digestion systems treating swine manure[J]. Journal of Industrial Microbiology and Biotechnology, 2019, 46(7): 911-923. |
11 | FENG Qing, SONG Young-Chae, Byung-Uk BAE. Influence of applied voltage on the performance of bioelectrochemical anaerobic digestion of sewage sludge and planktonic microbial communities at ambient temperature[J]. Bioresource Technology, 2016, 220: 500-508. |
12 | LEE Mungyu, NAGENDRANATHA REDDY C, MIN Booki. In situ integration of microbial electrochemical systems into anaerobic digestion to improve methane fermentation at different substrate concentrations[J]. International Journal of Hydrogen Energy, 2019, 44(4): 2380-2389. |
13 | BHAGCHANDANII Drishti Dinesh, BABU Rishi Pramod, SONAWANE Jayesh M, et al. A comprehensive understanding of electro-fermentation[J]. Fermentation, 2020, 6(3): 92. |
14 | WAGLAY Amanda, KARBOUNE Salwa, ALLI Inteaz. Potato protein isolates: Recovery and characterization of their properties[J]. Food Chemistry, 2014, 142: 373-382. |
15 | PAN Zeyan, LIU Zhuangzhuang, HU Xiaona, et al. Enhancement of acetate production in hydrogen-mediated microbial electrosynthesis reactors by addition of silica nanoparticles[J]. Bioresources and Bioprocessing, 2023, 10(1): 3. |
16 | 国家环境保护总局《水和废水监测分析方法》编委会. 水和废水监测分析方法[M]. 4版. 北京: 中国环境科学出版社, 2002. |
National Environmental Protection Agency, Editorial Committee of “Methods for Water and Wastewater Monitoring and Analysis.” Methods for water and wastewater monitoring and analysis[M]. 4th Edition. Beijing: China Environmental Science Press, 2002. | |
17 | CHEN Yinguang, JIANG Su, YUAN Hongying, et al. Hydrolysis and acidification of waste activated sludge at different pHs[J]. Water Research, 2007, 41(3): 683-689. |
18 | MA Rui, MA Jiangsen, CHEN Yuzhe, et al. Efficient removal of nitrogen from tidal flow constructed wetlands based on the in-situ zeolite regeneration: Measures and mechanisms[J]. Chemical Engineering Journal, 2023, 458:141298. |
19 | CAZIER E A, TRABLY E, STEYER J P, et al. Biomass hydrolysis inhibition at high hydrogen partial pressure in solid-state anaerobic digestion[J]. Bioresource Technology, 2015, 190: 106-113. |
20 | XU F, LI Y. Biomass digestion[M]//Encyclopedia of sustainable technologies. Amsterdam: Elsevier, 2017: 197-204. |
21 | LU Lu, XING Defeng, REN Nanqi. Pyrosequencing reveals highly diverse microbial communities in microbial electrolysis cells involved in enhanced H2 production from waste activated sludge[J]. Water Research, 2012, 46(7): 2425-2434. |
22 | ZHAO Lei, WANG Xueting, CHEN Keyang, et al. The underlying mechanism of enhanced methane production using microbial electrolysis cell assisted anaerobic digestion (MEC-AD) of proteins[J]. Water Research, 2021, 201: 117325. |
23 | YUE Yanan, WANG Junyu, WU Xiayuan, et al. The fate of anaerobic syntrophy in anaerobic digestion facing propionate and acetate accumulation[J]. Waste Management, 2021, 124: 128-135. |
24 | WANG Xueting, ZHANG Yifeng, WANG Bo, et al. Enhancement of methane production from waste activated sludge using hybrid microbial electrolysis cells-anaerobic digestion (MEC-AD) process—A review[J]. Bioresource Technology, 2022, 346: 126641. |
25 | FAN Qingwen, FAN Xiaojing, FU Peng, et al. Microbial community evolution, interaction, and functional genes prediction during anaerobic digestion in the presence of refractory organics[J]. Journal of Environmental Chemical Engineering, 2022, 10(3): 107789. |
26 | SRINIVAS A, RAHUL K, SASIKALA Ch, et al. Georgenia satyanarayanai sp. nov., an alkaliphilic and thermotolerant amylase-producing actinobacterium isolated from a soda lake[J]. International Journal of Systematic and Evolutionary Microbiology, 2012, 62(10): 2405-2409. |
27 | WATERS Jillian L, LEY Ruth E. The human gut bacteria Christensenellaceae are widespread, heritable, and associated with health[J]. BMC Biology, 2019, 17(1): 83. |
28 | ZHANG Kegui, SONG Lei, DONG Xiuzhu. Proteiniclasticum ruminis gen. nov., sp. nov., a strictly anaerobic proteolytic bacterium isolated from yak rumen[J]. International Journal of Systematic and Evolutionary Microbiology, 2010, 60(9): 2221-2225. |
29 | 宋亚朋, 宫徽, 苑泉, 等. 不同形态厌氧氨氧化菌处理磁分离出水脱氮性能及微生物群落结构变化分析[J]. 环境科学学报, 2021, 41(1): 70-82. |
SONG Yapeng, GONG Hui, YUAN Quan, et al. Nitrogen removal performance through different AnAOB processes treating wastewater pretreated by magnetic separation and microbial community structure shifting analysis[J]. Acta Scientiae Circumstantiae, 2021, 41(1): 70-82. | |
30 | SLEAT ROBERT, ROBERT A MAH, ROBINSON RALPH. Acetoanaerobium noterae gen. nov., sp. nov.: An anaerobic bacterium yhat forms acetate from H2 and CO2 [J]. International Journal of Systematic Bacteriology, 1985, 35(1): 10-15. |
31 | ZHAO Jing, LI Yu, DONG Renjie. Recent progress towards in-situ biogas upgrading technologies[J]. Science of the Total Environment, 2021, 800: 149667. |
32 | SOUSA Diana Z, SMIDT Hauke, Madalena ALVES M, et al. Syntrophomonas zehnderi sp. nov., an anaerobe that degrades long-chain fatty acids in co-culture with Methanobacterium formicicum [J]. International Journal of Systematic and Evolutionary Microbiology, 2007, 57(3): 609-615. |
33 | LU Yao, YUAN Hairong, ZUO Xiaoyu, et al. Biomethane yield, physicochemical structures, and microbial community characteristics of corn stover pretreated by urea combined with mild temperature hydrotherm[J]. Polymers, 2021, 13(13): 2207. |
34 | FENG Yinghong, ZHANG Yaobin, CHEN Shuo, et al. Enhanced production of methane from waste activated sludge by the combination of high-solid anaerobic digestion and microbial electrolysis cell with iron-graphite electrode[J]. Chemical Engineering Journal, 2015, 259: 787-794. |
35 | PARK Jungyu, LEE Beom, TIAN Donjie, et al. Bioelectrochemical enhancement of methane production from highly concentrated food waste in a combined anaerobic digester and microbial electrolysis cell[J]. Bioresource Technology, 2018, 247: 226-233. |
36 | KIM Kyeong-Rok, KANG Jun, CHAE Kyu-Jung. Improvement in methanogenesis by incorporating transition metal nanoparticles and granular activated carbon composites in microbial electrolysis cells[J]. International Journal of Hydrogen Energy, 2017, 42(45): 27623-27629. |
[1] | CHEN Gaoxiang, WANG Rongchang, JIANG Jiacheng. Mechanism of cathodic electron transfer and hydrogen–mediated enhanced measures in microbial electrosynthesis system [J]. Chemical Industry and Engineering Progress, 2024, 43(S1): 504-516. |
[2] | WANG Bowei, ZHENG Mingzhen, WANG Lemeng, FU Dong, WANG Shan, ZHU Shengjun, ZHAO Kun, ZHANG Pan. Preparation of NaOH for CO2 capture by electrolysis of Na2SO4 [J]. Chemical Industry and Engineering Progress, 2024, 43(S1): 604-614. |
[3] | YU Mengjie, WU Yutong, LUO Faxiang, DOU Yibo. Research progress on structural design of photocatalysts for diluted carbon dioxide reduction [J]. Chemical Industry and Engineering Progress, 2024, 43(S1): 335-350. |
[4] | LIAO Xu, ZHOU Jun, LUO Jie, ZENG Ruilin, WANG Zeyu, LI Zunhua, LIN Jinqing. Research progress on CO2 cycloaddition reaction catalyzed by porous ionic polymers [J]. Chemical Industry and Engineering Progress, 2024, 43(9): 4925-4940. |
[5] | ZHANG Yufeng, PANG Yuqian, PEI Haonan, FAN Xiaoqing. Three-way rod metal-organic frameworks for purifying of C2—C3 from natural gas [J]. Chemical Industry and Engineering Progress, 2024, 43(9): 5185-5192. |
[6] | WU Yuqi, LI Jiangtao, DING Jianzhi, SONG Xiulan, SU Bingqin. Calcined Mg/Al hydrotalcites for CO2 removal in anaerobic digestion biogas: Performances and mechanisms [J]. Chemical Industry and Engineering Progress, 2024, 43(9): 5250-5261. |
[7] | LI Yimeng, CHEN Yunquan, HE Chang, ZHANG Bingjian, CHEN Qinglin. Forward and reverse problems of methane dehydro-aromatization based on physics-informed neural network [J]. Chemical Industry and Engineering Progress, 2024, 43(9): 4817-4823. |
[8] | JIN Lijun, LIU Zhengzheng, LI Yang, YANG He, HU Haoquan. Strategy and its application to improve tar yield by coupling catalytic activation of H-rich small molecule with coal pyrolysis [J]. Chemical Industry and Engineering Progress, 2024, 43(7): 3613-3619. |
[9] | LUO Congjia, DOU Yibo, WEI Min. Research progress on structural regulation of layered double hydroxides for photocatalytic CO2 reduction [J]. Chemical Industry and Engineering Progress, 2024, 43(7): 3891-3909. |
[10] | WANG Juan, BIAN Chunlin, CHEN Xiangyu, WANG Ying, WANG Xindong, ZUO Yanxin, XIAO Benyi. Research advances of microaerobic anaerobic digestion [J]. Chemical Industry and Engineering Progress, 2024, 43(7): 4005-4014. |
[11] | MA Jiahui, WANG Yibin, FENG Jingwu, TAN Houzhang, LIN Chi. Experimental of CO2 mineralization by industrial containing calcium solid wastes [J]. Chemical Industry and Engineering Progress, 2024, 43(6): 3440-3449. |
[12] | ZHOU Aiguo, ZHENG Jiale, YANG Chuanruo, YANG Xiaoyi, ZHAO Junde, LI Xingchun. Industrial progress in direct air CO2 capture technology [J]. Chemical Industry and Engineering Progress, 2024, 43(6): 2928-2939. |
[13] | ZHANG Zhen, ZHANG Fan, YUN Zhiting. Carbon reduction and techno-economic analysis of using green hydrogen in chemical and petrochemical industry [J]. Chemical Industry and Engineering Progress, 2024, 43(6): 3021-3028. |
[14] | CHEN Fuqiang, ZHONG Zhaoping, QI Renzhi. Research progress on copper-based catalysts for electrochemical reduction of carbon dioxide to formic acid [J]. Chemical Industry and Engineering Progress, 2024, 43(6): 3051-3060. |
[15] | ZENG Zhuang, LI Kezhi, YUAN Zhiwei, DU Jintao, LI Zhuoshi, WANG Yue. Advances in modified Fischer-Tropsch synthesis catalysts for CO/CO2 hydrogenation to higher alcohols [J]. Chemical Industry and Engineering Progress, 2024, 43(6): 3061-3079. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |