Chemical Industry and Engineering Progress ›› 2024, Vol. 43 ›› Issue (7): 4059-4071.DOI: 10.16085/j.issn.1000-6613.2023-1007
• Resources and environmental engineering • Previous Articles Next Articles
LIU Jun1,2(
), XU Zhixiang2(
), ZHU Chunyou1, YUE Zhongqiu1, PAN Xuejun2
Received:2023-06-19
Revised:2023-09-05
Online:2024-08-14
Published:2024-07-25
Contact:
XU Zhixiang
刘君1,2(
), 胥志祥2(
), 朱春游1, 岳中秋1, 潘学军2
通讯作者:
胥志祥
作者简介:刘君(1989—),女,硕士,研发工程师,研究方向为新污染物的环境行为与污染控制。E-mail:junliu0922@163.com。
基金资助:CLC Number:
LIU Jun, XU Zhixiang, ZHU Chunyou, YUE Zhongqiu, PAN Xuejun. Microbial degradation of typical microplastics in environment: Degradation pathways and molecular mechanisms[J]. Chemical Industry and Engineering Progress, 2024, 43(7): 4059-4071.
刘君, 胥志祥, 朱春游, 岳中秋, 潘学军. 典型环境微塑料的微生物降解途径及分子机制[J]. 化工进展, 2024, 43(7): 4059-4071.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2023-1007
| 样品来源 | 环境 介质 | 类型 | 形态分布 | 尺寸/mm | 颜色 | 丰度 | 分析方法 | 参考文献 |
|---|---|---|---|---|---|---|---|---|
| 北极淡水湖 | 沉积物 | PET、PES | 纤维>碎片>薄膜>涂片>细丝 | <0.3、0.3~0.5、0.5~1、1~2、2~5、>5 | 蓝色、红色 | ②1680±440items/m2 | MR、 ATR-FTIR | [ |
南极特别 保护区 | 溪流 | PA、PES、 PTFE | 纤维>薄膜 | 长度(400~3546)×10-3、 宽度(10~1026)×10-3 | 透明、红色、黑色 | ①(0.47~1.43)×10-6 | MR、 ATR-FTIR | [ |
喜马拉雅山 (印度西北部) | 表层水、 沉积物 | PA(96%)、 PET(1.4%)、 PS(1.4%)、 PVC(0.9%)、 PP(0.7%) | 纤维>碎片>薄膜>微球 | 0.1~1、1~2、2、>5 | 绿色、红色、蓝色、白色、黄色、黑色 | ②600±360 | MR、 ATR-FTIR | [ |
青藏高原 (中国) | 湖滨沉积物 | PE、PP、PET、PVC、PS | 薄片、纤维、碎片、泡沫 | <0.5、0.5~1、1~5 | — | ②8±14~563±1219items/m2 | RS、SEM | [ |
三峡水库 (中国) | 表层水、 沉积物 | PS(38.5%)、 PP(29.4%)、 PE(21.0%) | 纤维>薄膜>碎片>微球 | <1 | 白色、蓝色、红色 | ①(1597~12611)×10-3,②25~300 | MR、RS | [ |
中国长江 中下游 (湖泊、河流、河口) | 地表水、 沉积物、 蛤蚌 | PES(33%)、 PP(19%)、 PE(9%) | 纤维>碎片>薄膜>微球 | 0.021~4.83 (0.25~1) | 白色、黑色、蓝色、绿色、黄色、红色 | ①0.5~3.1,②15~160,③0.3~4.9 | MR、 ATR-FTIR | [ |
中国珠江 (河口、城市 水体) | 地表水 | PAM(26.2%)、 Cellophane(23.1%)、 PP(13.1%)、 PE(10.0%) | 薄膜>碎片>纤维 | <0.5(80%)、0.5~5 | 蓝色、白色、绿色、红色 | ①(7850~10950)×10-3, ①(8725~53250)×10-3 | RS、SEM | [ |
西贡河 (越南) | 地表水 | PE(79%)、 PE/PP(15%)、 PP(2%)、 PET(4%) | 纤维>碎片 | 0.05~0.2 | 蓝色 | ①(172000~519000)×10-3, ①(10~223)×10-3 | MR、 ATR-FTIR | [ |
易北河 (德国) | 表层水 沉积物 | 表层水: PE(47.5%)、 PP(45.0%) 沉积物: PE(34.4%)、 PP(12.5%)、 PS(18.5%) | 表层水:纤维>碎片>微球>薄片 沉积物:微球>碎片>纤维>薄片 | 0.125~5 | — | ①(5.57±4.33)×10-3,②(3.35±6.60)×106items/m3 | MR、 ATR-FTIR、 pyr-GC-MS | [ |
莱茵河 (瑞士) | 河流 | PS(29.7%)、 PP(16.9%)、 PA(9.3%)、 PE(5.1%)、 PVC(1.7%) | 不透明微球(45.2%)、碎片(37.5%)、透明微球(13.2%)、纤维(2.5%) | 0.3~5 | — | ①892,777items/km2 | RS、SEM | [ |
| 阿托亚克河(墨西哥) | 河流沉积物 | — | 薄膜(25.9%)、 碎片(22.2%)、 纤维(14.8%) | — | 彩色(51%)、白色(49%) | ②4500±702.23 | SEM、EDX | [ |
太湖 (中国) | 表层水、沉积物、蛤蚌 | PET、PEST、PP | 纤维(48%~84%) | 0.1~1 | 蓝色(50%~63%)、白色/透明(29%~44%) | ①3.40~25.8 ②11.0~234.6 ③0.2~12.5 | MR、 FTIR、SEM、EDX | [ |
鄱阳湖 (中国) | 表层水、沉积物、鲫鱼 | PP(37%)、 PE(30%)、 PA(15%)、 PVC(8%) | 纤维>薄膜>碎片>微球 | <0.1、0.1~0.5、0.5~1、1~5、>5 表层水:<0.5(73.1%)、沉积物: <0.5(57.1%) | 透明>彩色>黑色>白色 | ①5~34②54~506 ③0~18 | MR、RS | [ |
洞庭湖 (中国) | 表层水、 沉积物 | PE(28.2%)、 PP(17.9%)、PET(12.8%)、PVC(10.3%)、PS(7.7%)、 PA(7.7%)、 PL(5.1%) | 纤维(50%~91%)、微球(5.67%~33.33%)、碎片(2.63%~20.00%) | 表层水:0.333~0.9 沉积物:<0.1 | 透明>绿色>红色>蓝色>白色 | ①0.62~4.31 ②210~520 ③0~18 | MR、FTIR | [ |
青海湖 (中国) | 湖泊沉积物 | PA、PE、PP、PET、PS、PVC | 纤维>碎片>微球>薄膜 | 0.05~0.1、0.1~0.2、0.2~0.3、0.3~0.5、0.5~1、1~2、2~5 | 透明、蓝色、红色、黑色、绿色、黄色、白色 | ②393±457 | MR、ATR-FTIR | [ |
维多利亚湖 (乌干达) | 湖泊表层水 | PE(60.5%)、PP、PS、PES | 碎片(36.7%)、 薄膜(25.0%)、 薄片(23.0%)、 细丝(15.0%)、 泡(0.3%) | 0.3~0.9、1.0~1.9、2.0~2.9、3.0~3.9、4.0~4.9 | 透明、蓝色、绿色、黑色、黄色、紫色、红色 | ①0.02±2.19 | MR、ATR-FTIR | [ |
渤海 (中国) | 海水(春>夏/冬>秋) | PE(43%)、PP(34%)、PS(19%)、PET(13%) | 细线(38%)、 碎片(5%)、 泡沫(13%)、 纤维(12%) | <0.33 | 白色、绿色 | ①(0.35±0.13)×10-3 | MR、FTIR | [ |
莱州湾 (中国) | 海水、 沉积物 | PET | 碎片>纤维 | 海水: (336.2~4997.7)×10-3 沉积物: (28.3~4933.0)×10-3 | 蓝色、白色 | a0.1±6.7,②193±1053 | MR、FTIR | [ |
| 中国(17省) | 农业土壤 | — | 薄膜 | 20~40土层 | — | ②80.3±49.3, ②308±138.1,②1075.6±346.8 | — | [ |
珠江三角洲(PRE)、 中国南海(SCS)、 东印度洋(EIO) | 大气 | PET(50.00%)、PP(22.22%) | 纤维(88.89%)、碎片(11.11%) | (851.09±578.30)×10-3 | 黑色、白色、红色、黄色、棕色、蓝色 | ④(4.2±2.5)×10-2, ④(0.8±1.3)×10-2, ④(0.4±0.6)×10-2 | MR | [ |
汉堡市 (德国) | 大气降尘 | PE(48.8%) | 碎片(95%)、 纤维(5%) | <0.063、0.063~0.3、 >0.3 | ④136.5~512.0items/(m2·d) | FM、RS | [ |
| 样品来源 | 环境 介质 | 类型 | 形态分布 | 尺寸/mm | 颜色 | 丰度 | 分析方法 | 参考文献 |
|---|---|---|---|---|---|---|---|---|
| 北极淡水湖 | 沉积物 | PET、PES | 纤维>碎片>薄膜>涂片>细丝 | <0.3、0.3~0.5、0.5~1、1~2、2~5、>5 | 蓝色、红色 | ②1680±440items/m2 | MR、 ATR-FTIR | [ |
南极特别 保护区 | 溪流 | PA、PES、 PTFE | 纤维>薄膜 | 长度(400~3546)×10-3、 宽度(10~1026)×10-3 | 透明、红色、黑色 | ①(0.47~1.43)×10-6 | MR、 ATR-FTIR | [ |
喜马拉雅山 (印度西北部) | 表层水、 沉积物 | PA(96%)、 PET(1.4%)、 PS(1.4%)、 PVC(0.9%)、 PP(0.7%) | 纤维>碎片>薄膜>微球 | 0.1~1、1~2、2、>5 | 绿色、红色、蓝色、白色、黄色、黑色 | ②600±360 | MR、 ATR-FTIR | [ |
青藏高原 (中国) | 湖滨沉积物 | PE、PP、PET、PVC、PS | 薄片、纤维、碎片、泡沫 | <0.5、0.5~1、1~5 | — | ②8±14~563±1219items/m2 | RS、SEM | [ |
三峡水库 (中国) | 表层水、 沉积物 | PS(38.5%)、 PP(29.4%)、 PE(21.0%) | 纤维>薄膜>碎片>微球 | <1 | 白色、蓝色、红色 | ①(1597~12611)×10-3,②25~300 | MR、RS | [ |
中国长江 中下游 (湖泊、河流、河口) | 地表水、 沉积物、 蛤蚌 | PES(33%)、 PP(19%)、 PE(9%) | 纤维>碎片>薄膜>微球 | 0.021~4.83 (0.25~1) | 白色、黑色、蓝色、绿色、黄色、红色 | ①0.5~3.1,②15~160,③0.3~4.9 | MR、 ATR-FTIR | [ |
中国珠江 (河口、城市 水体) | 地表水 | PAM(26.2%)、 Cellophane(23.1%)、 PP(13.1%)、 PE(10.0%) | 薄膜>碎片>纤维 | <0.5(80%)、0.5~5 | 蓝色、白色、绿色、红色 | ①(7850~10950)×10-3, ①(8725~53250)×10-3 | RS、SEM | [ |
西贡河 (越南) | 地表水 | PE(79%)、 PE/PP(15%)、 PP(2%)、 PET(4%) | 纤维>碎片 | 0.05~0.2 | 蓝色 | ①(172000~519000)×10-3, ①(10~223)×10-3 | MR、 ATR-FTIR | [ |
易北河 (德国) | 表层水 沉积物 | 表层水: PE(47.5%)、 PP(45.0%) 沉积物: PE(34.4%)、 PP(12.5%)、 PS(18.5%) | 表层水:纤维>碎片>微球>薄片 沉积物:微球>碎片>纤维>薄片 | 0.125~5 | — | ①(5.57±4.33)×10-3,②(3.35±6.60)×106items/m3 | MR、 ATR-FTIR、 pyr-GC-MS | [ |
莱茵河 (瑞士) | 河流 | PS(29.7%)、 PP(16.9%)、 PA(9.3%)、 PE(5.1%)、 PVC(1.7%) | 不透明微球(45.2%)、碎片(37.5%)、透明微球(13.2%)、纤维(2.5%) | 0.3~5 | — | ①892,777items/km2 | RS、SEM | [ |
| 阿托亚克河(墨西哥) | 河流沉积物 | — | 薄膜(25.9%)、 碎片(22.2%)、 纤维(14.8%) | — | 彩色(51%)、白色(49%) | ②4500±702.23 | SEM、EDX | [ |
太湖 (中国) | 表层水、沉积物、蛤蚌 | PET、PEST、PP | 纤维(48%~84%) | 0.1~1 | 蓝色(50%~63%)、白色/透明(29%~44%) | ①3.40~25.8 ②11.0~234.6 ③0.2~12.5 | MR、 FTIR、SEM、EDX | [ |
鄱阳湖 (中国) | 表层水、沉积物、鲫鱼 | PP(37%)、 PE(30%)、 PA(15%)、 PVC(8%) | 纤维>薄膜>碎片>微球 | <0.1、0.1~0.5、0.5~1、1~5、>5 表层水:<0.5(73.1%)、沉积物: <0.5(57.1%) | 透明>彩色>黑色>白色 | ①5~34②54~506 ③0~18 | MR、RS | [ |
洞庭湖 (中国) | 表层水、 沉积物 | PE(28.2%)、 PP(17.9%)、PET(12.8%)、PVC(10.3%)、PS(7.7%)、 PA(7.7%)、 PL(5.1%) | 纤维(50%~91%)、微球(5.67%~33.33%)、碎片(2.63%~20.00%) | 表层水:0.333~0.9 沉积物:<0.1 | 透明>绿色>红色>蓝色>白色 | ①0.62~4.31 ②210~520 ③0~18 | MR、FTIR | [ |
青海湖 (中国) | 湖泊沉积物 | PA、PE、PP、PET、PS、PVC | 纤维>碎片>微球>薄膜 | 0.05~0.1、0.1~0.2、0.2~0.3、0.3~0.5、0.5~1、1~2、2~5 | 透明、蓝色、红色、黑色、绿色、黄色、白色 | ②393±457 | MR、ATR-FTIR | [ |
维多利亚湖 (乌干达) | 湖泊表层水 | PE(60.5%)、PP、PS、PES | 碎片(36.7%)、 薄膜(25.0%)、 薄片(23.0%)、 细丝(15.0%)、 泡(0.3%) | 0.3~0.9、1.0~1.9、2.0~2.9、3.0~3.9、4.0~4.9 | 透明、蓝色、绿色、黑色、黄色、紫色、红色 | ①0.02±2.19 | MR、ATR-FTIR | [ |
渤海 (中国) | 海水(春>夏/冬>秋) | PE(43%)、PP(34%)、PS(19%)、PET(13%) | 细线(38%)、 碎片(5%)、 泡沫(13%)、 纤维(12%) | <0.33 | 白色、绿色 | ①(0.35±0.13)×10-3 | MR、FTIR | [ |
莱州湾 (中国) | 海水、 沉积物 | PET | 碎片>纤维 | 海水: (336.2~4997.7)×10-3 沉积物: (28.3~4933.0)×10-3 | 蓝色、白色 | a0.1±6.7,②193±1053 | MR、FTIR | [ |
| 中国(17省) | 农业土壤 | — | 薄膜 | 20~40土层 | — | ②80.3±49.3, ②308±138.1,②1075.6±346.8 | — | [ |
珠江三角洲(PRE)、 中国南海(SCS)、 东印度洋(EIO) | 大气 | PET(50.00%)、PP(22.22%) | 纤维(88.89%)、碎片(11.11%) | (851.09±578.30)×10-3 | 黑色、白色、红色、黄色、棕色、蓝色 | ④(4.2±2.5)×10-2, ④(0.8±1.3)×10-2, ④(0.4±0.6)×10-2 | MR | [ |
汉堡市 (德国) | 大气降尘 | PE(48.8%) | 碎片(95%)、 纤维(5%) | <0.063、0.063~0.3、 >0.3 | ④136.5~512.0items/(m2·d) | FM、RS | [ |
| 微塑料 | 生物酶 | 酶类型 | 微生物 | 菌类型 | 参考文献 |
|---|---|---|---|---|---|
| HDPE | 漆类多铜氧化酶(LMCOs) | 漆酶 | Aspergillus flavus PEDX3 | 真菌 | [ |
| PE | 锰过氧化物酶(manganese peroxidase) | 过氧化物酶 | Pestalotiopsis microspora | 真菌 | [ |
| PE | 酯酶(esterase) | 水解酶 | Rhodococcus ruber | 放线菌 | [ |
| PET | PETase、MHETase | 水解酶 | Ideonella sakaiensis 201-F6 | 细菌 | [ |
| PET | 角质酶(cutinase) | 水解酶 | Humicola insolensc | 真菌 | [ |
| PET | 脂肪酶(lipase) | 水解酶 | Candida antarctica | 真菌 | [ |
| PS | 丝氨酸水解酶(serine hydrolase) | 水解酶 | Pseudomonas sp. DSM 50071 | 细菌 | [ |
| PU | 酯酶(esterase)、脲酶(urease) | 水解酶 | Cladosporium pseudocladosporioides T1.PL.1 | 细菌 | [ |
| PU | 脂肪酶(lipase) | 水解酶 | Pseudomonas fluorescens, Serratia marcescens | 细菌 | [ |
| PU | 脲酶(urease) | 水解酶 | Trichoderma sp. | 真菌 | [ |
| PU | 丝氨酸水解酶(serine hydrolase) | 水解酶 | Pestalotiopsis microspora | 真菌 | [ |
| PLA | 解聚酶(depolymerase) | 水解酶 | Amycolatopsis sp. | 细菌 | [ |
| 微塑料 | 生物酶 | 酶类型 | 微生物 | 菌类型 | 参考文献 |
|---|---|---|---|---|---|
| HDPE | 漆类多铜氧化酶(LMCOs) | 漆酶 | Aspergillus flavus PEDX3 | 真菌 | [ |
| PE | 锰过氧化物酶(manganese peroxidase) | 过氧化物酶 | Pestalotiopsis microspora | 真菌 | [ |
| PE | 酯酶(esterase) | 水解酶 | Rhodococcus ruber | 放线菌 | [ |
| PET | PETase、MHETase | 水解酶 | Ideonella sakaiensis 201-F6 | 细菌 | [ |
| PET | 角质酶(cutinase) | 水解酶 | Humicola insolensc | 真菌 | [ |
| PET | 脂肪酶(lipase) | 水解酶 | Candida antarctica | 真菌 | [ |
| PS | 丝氨酸水解酶(serine hydrolase) | 水解酶 | Pseudomonas sp. DSM 50071 | 细菌 | [ |
| PU | 酯酶(esterase)、脲酶(urease) | 水解酶 | Cladosporium pseudocladosporioides T1.PL.1 | 细菌 | [ |
| PU | 脂肪酶(lipase) | 水解酶 | Pseudomonas fluorescens, Serratia marcescens | 细菌 | [ |
| PU | 脲酶(urease) | 水解酶 | Trichoderma sp. | 真菌 | [ |
| PU | 丝氨酸水解酶(serine hydrolase) | 水解酶 | Pestalotiopsis microspora | 真菌 | [ |
| PLA | 解聚酶(depolymerase) | 水解酶 | Amycolatopsis sp. | 细菌 | [ |
| 微塑料 | 降解菌 | 类群 | 来源 | 时间 | 降解效果 (质量损失) | 参考文献 |
|---|---|---|---|---|---|---|
| LDPE | 不动杆菌(Acinetobacterpitti IRN19) | 细菌-变形菌门 | 垃圾填埋场 | 4周 | (26.8±3.04)% | [ |
| PE | 假单胞菌(Pseudomonasknackmussii N1-2、Pseudomonasaeruginosa RD1-3) | 细菌-变形菌门 | 污水处理厂污泥 | 8周 | (5.95±0.03)%、(3.62±0.32)% | [ |
| LDPE、PET、PS | 食碱菌(Alcanivorax borkumensis) | 细菌-变形菌门 | 海洋塑料垃圾 | 80天 | (3.5±0.34)% | [ |
| PE | 芽孢杆菌(Bacillus sp.) 类芽孢杆菌(Paenibacillus sp.) | 细菌-厚壁菌门 | 城市垃圾填埋场 | 60天 | 14.7%(混合菌) | [ |
| LDPE | 鞘氨醇杆菌(Sphingobacteriummoltivourum IRN11) | 细菌-拟杆菌门 | 垃圾填埋场 | 4周 | 约18.0% | [ |
| PET | Ideonella sakaiensis 201-F6 | 细菌-变形菌门(β-变形菌纲) | 土壤 | 6周 | 100% | [ |
| PP | 芽孢杆菌(Bacillus sp. 27) | 细菌-厚壁菌门 | 红树林沉积物 | 40天 | 4.0% | [ |
| PS | 假单胞菌(Pseudomonas sp. DSM 50071) | 细菌-变形菌门 | 大麦虫肠道 | 21天 | 2g→0.22g | [ |
| PS | 不动杆菌(Acinetobacter sp. AnTc⁃1) | 细菌-变形菌门 | 赤拟谷盗幼虫肠道 | 60天 | 12.14% | [ |
| PS | 芽孢杆菌(Geobacillus stearothermophilus FAFU011) | 细菌-厚壁菌门 | 高温堆肥熟料 | 56天 | 4.2% | [ |
| LDPE | 曲霉菌(Aspergillus oryzae A5,1、Aspergillus fumigatus B2,2、Aspergillus nidulans E1,2、 Aspergillus nidulans E4,1) 镰孢菌(Fusarium sp. AF4) | 真菌-子囊菌门 | 城市垃圾处理厂土壤 | 16周 | 5%~9% | [ |
| HDPE | 黄曲霉菌(Aspergillus flavus PEDX3) | 真菌-子囊菌门 | 蜡螟肠道 | 28天 | (3.9025±1.18)% | [ |
| PU | 芽枝霉菌(Cladosporium pseudocladosporioides T1.PL.1) | 真菌-子囊菌门 | 矿场土壤 | 14天 | 65% | [ |
| LDPE | 链霉菌(Streptomyces sp. IR-SGS-T10、Streptomyces sp. IR-SGS-T4) 红球菌(Rhodococcus sp. IR-SGS-T6) 诺卡氏菌(Nocardia sp. IR-SGS-T3) | 放线菌 | 塑料垃圾填埋场 | 60天 | 约1.0mg/(g·d) (最大1.58) | [ |
| PP | 红球菌(Rhodococcus sp. 36) | 放线菌 | 红树林沉积物 | 40天 | 6.4% | [ |
| 微塑料 | 降解菌 | 类群 | 来源 | 时间 | 降解效果 (质量损失) | 参考文献 |
|---|---|---|---|---|---|---|
| LDPE | 不动杆菌(Acinetobacterpitti IRN19) | 细菌-变形菌门 | 垃圾填埋场 | 4周 | (26.8±3.04)% | [ |
| PE | 假单胞菌(Pseudomonasknackmussii N1-2、Pseudomonasaeruginosa RD1-3) | 细菌-变形菌门 | 污水处理厂污泥 | 8周 | (5.95±0.03)%、(3.62±0.32)% | [ |
| LDPE、PET、PS | 食碱菌(Alcanivorax borkumensis) | 细菌-变形菌门 | 海洋塑料垃圾 | 80天 | (3.5±0.34)% | [ |
| PE | 芽孢杆菌(Bacillus sp.) 类芽孢杆菌(Paenibacillus sp.) | 细菌-厚壁菌门 | 城市垃圾填埋场 | 60天 | 14.7%(混合菌) | [ |
| LDPE | 鞘氨醇杆菌(Sphingobacteriummoltivourum IRN11) | 细菌-拟杆菌门 | 垃圾填埋场 | 4周 | 约18.0% | [ |
| PET | Ideonella sakaiensis 201-F6 | 细菌-变形菌门(β-变形菌纲) | 土壤 | 6周 | 100% | [ |
| PP | 芽孢杆菌(Bacillus sp. 27) | 细菌-厚壁菌门 | 红树林沉积物 | 40天 | 4.0% | [ |
| PS | 假单胞菌(Pseudomonas sp. DSM 50071) | 细菌-变形菌门 | 大麦虫肠道 | 21天 | 2g→0.22g | [ |
| PS | 不动杆菌(Acinetobacter sp. AnTc⁃1) | 细菌-变形菌门 | 赤拟谷盗幼虫肠道 | 60天 | 12.14% | [ |
| PS | 芽孢杆菌(Geobacillus stearothermophilus FAFU011) | 细菌-厚壁菌门 | 高温堆肥熟料 | 56天 | 4.2% | [ |
| LDPE | 曲霉菌(Aspergillus oryzae A5,1、Aspergillus fumigatus B2,2、Aspergillus nidulans E1,2、 Aspergillus nidulans E4,1) 镰孢菌(Fusarium sp. AF4) | 真菌-子囊菌门 | 城市垃圾处理厂土壤 | 16周 | 5%~9% | [ |
| HDPE | 黄曲霉菌(Aspergillus flavus PEDX3) | 真菌-子囊菌门 | 蜡螟肠道 | 28天 | (3.9025±1.18)% | [ |
| PU | 芽枝霉菌(Cladosporium pseudocladosporioides T1.PL.1) | 真菌-子囊菌门 | 矿场土壤 | 14天 | 65% | [ |
| LDPE | 链霉菌(Streptomyces sp. IR-SGS-T10、Streptomyces sp. IR-SGS-T4) 红球菌(Rhodococcus sp. IR-SGS-T6) 诺卡氏菌(Nocardia sp. IR-SGS-T3) | 放线菌 | 塑料垃圾填埋场 | 60天 | 约1.0mg/(g·d) (最大1.58) | [ |
| PP | 红球菌(Rhodococcus sp. 36) | 放线菌 | 红树林沉积物 | 40天 | 6.4% | [ |
| 1 | ADYEL T M. Accumulation of plastic waste during COVID-19[J]. Science, 2020, 369(6509): 1314-1315. |
| 2 | THOMPSON R C, OLSEN Y, MITCHELL R P, et al. Lost at Sea: Where is all the plastic?[J]. Science, 2004, 304(5672): 838. |
| 3 | BARNES D K A, GALGANI F, THOMPSON R C, et al. Accumulation and fragmentation of plastic debris in global environments[J]. Philosophical Transactions of the Royal Society B-Biological Sciences, 2009, 364(1526): 1985-1998. |
| 4 | MAI L, SUN X F, XIA L L, et al. Global riverine plastic outflows[J]. Environmental Science & Technology, 2020, 54(16): 10049-10056. |
| 5 | HERNANDEZ L M, YOUSEFI N, TUFENKJI N. Are there nanoplastics in your personal care products ? [ J ] . Environmental Science & Technology Letters, 2017, 4(7): 280-285. |
| 6 | ZANG Huadong, ZHOU Jie, MARSHALL M R, et al. Microplastics in the agroecosystem: Are they an emerging threat to the plant-soil system?[J]. Soil Biology & Biochemistry, 2020, 148: 107926. |
| 7 | BOOTS B, RUSSELL C, GREEN D. Effects of microplastics in soil ecosystems: Above and below ground[J]. Environmental Science & Technology, 2019, 53(19): 11496-11506. |
| 8 | SCHMID C, COZZARINI L, ZAMBELLO E. Microplastic's story[J]. Marine Pollution Bulletin, 2021, 162: 111820. |
| 9 | XU Mingkai, HALIMU G, ZHANG Qianru, et al. Internalization and toxicity: A preliminary study of effects of nanoplastic particles on human lung epithelial cell[J]. Science of the Total Environment, 2019, 694: 133794. |
| 10 | WU Shijin, WU Mei, TIAN Dongcan, et al. Effects of polystyrene microbeads on cytotoxicity and transcriptomic profiles in human Caco-2 cells[J]. Environmental Toxicology, 2020, 35(4): 495-506. |
| 11 | HWANG J, CHOI D, HAN S, et al. An assessment of the toxicity of polypropylene microplastics in human derived cells[J]. Science of the Total Environment, 2019, 684: 657-669. |
| 12 | ZHANG Tian, JIANG Bo, XING Yi, et al. Current status of microplastics pollution in the aquatic environment, interaction with other pollutants, and effects on aquatic organisms[J]. Environmental Science and Pollution Research International, 2022, 29(12): 16830-16859. |
| 13 | ZHU Fengxiao, ZHU Changyin, WANG Chao, et al. Occurrence and ecological impacts of microplastics in soil systems: A review[J]. Bulletin of Environmental Contamination and Toxicology, 2019, 102(6): 741-749. |
| 14 | ZHANG G S, LIU Y F. The distribution of microplastics in soil aggregate fractions in southwestern China[J]. Science of the Total Environment, 2018, 642: 12-20. |
| 15 | CHU Junhong, LIU Haoming, SALVO A. Air pollution as a determinant of food delivery and related plastic waste[J]. Nature Human Behaviour, 2021, 5(2): 212. |
| 16 | WALDSCHLÄGER K, LECHTHALER S, STAUCH G, et al. The way of microplastic through the environment-application of the source-pathway-receptor model ( r e v i e w ) [ J ] . Science of the Total Environment2020, 713: 136584. |
| 17 | LI Yunxue, LIU Xianhua, SHINDE S, et al. Impacts of micro- and nanoplastics on photosynthesis activities of photoautotrophs: A mini-review[J]. Frontiers in Microbiology, 2021, 12: 773226. |
| 18 | CASTRO-CASTELLON A T, HORTON A A, HUGHES J M R, et al. Ecotoxicity of microplastics to freshwater biota: Considering exposure and hazard across trophic levels[J]. Science of the Total Environment, 2022, 816: 151638. |
| 19 | DANG Fei, WANG Qingyu, HUANG Yingnan, et al. Key knowledge gaps for one health approach to mitigate nanoplastic risks[J]. Eco-Environment & Health, 2022, 1(1): 11-22. |
| 20 | SRIDHARAN S, KUMAR M, SAHA M, et al. The polymers and their additives in particulate plastics: What makes them hazardous to the fauna?[J]. Science of the Total Environment, 2022, 824: 153828. |
| 21 | KUMAR G A, ANJANA K, HINDUJA M, et al. Review on plastic wastes in marine environment-Biodegradation and biotechnological solutions[J]. Marine Pollution Bulletin, 2020, 150: 110733. |
| 22 | AHMED T, SHAHID M, AZEEM F, et al. Biodegradation of plastics: Current scenario and future prospects for environmental safety[J]. Environmental Science and Pollution Research, 2018, 25(8): 7287-7298. |
| 23 | YOSHIDA S, HIRAGA K, TAKEHANA T, et al. A bacterium that degrades and assimilates poly(ethylene t e r e p h t h a l a t e ) [ J ] . Science, 2016, 351(6278): 1196-1199. |
| 24 | 张雅珊, 陈宗耀, 马伟芳. 微塑料的迁移转化及其生态风险研究进展[J]. 化工进展, 2022, 41(11): 6080-6098. |
| ZHANG Yashan, CHEN Zongyao, MA Weifang. Research progress on the migration and transformation of microplastics and environmental risks[J]. Chemical Industry and Engineering Progress, 2022, 41(11): 6080-6098. | |
| 25 | AUTA H S, EMENIKE C U, FAUZIAH S H. Distribution and importance of microplastics in the marine environment: A review of the sources, fate, effects, and potential solutions[J]. Environment International, 2017, 102: 165-176. |
| 26 | COLE M, LINDEQUE P, HALSBAND C, et al. Microplastics as contaminants in the marine environment: A review[J]. Marine Pollution Bulletin, 2011, 62(12): 2588-2597. |
| 27 | HORTON A A, WALTON A, SPURGEON D J, et al. Microplastics in freshwater and terrestrial environments: Evaluating the current understanding to identify the knowledge gaps and future research priorities[J]. Science of the Total Environment, 2017, 586: 127-141. |
| 28 | 辛颖, 王天成, 金书含, 等. 聚乳酸市场现状及合成技术进展[J]. 现代化工, 2020, 40(S1): 71-74. |
| XIN Ying, WANG Tiancheng, JIN Shuhan, et al. Present market situation and synthesis technology advances of PLA[J]. Modern Chemical Industry, 2020, 40(S1): 71-74. | |
| 29 | FAN Xiulei, ZOU Yefeng, GENG Nan, et al. Investigation on the adsorption and desorption behaviors of antibiotics by degradable MPs with or without UV ageing process[J]. Journal of Hazardous Materials, 2021, 401: 123363. |
| 30 | STOLTE A, FORSTER S, GERDTS G, et al. Microplastic concentrations in beach sediments along the German Baltic coast[J]. Marine Pollution Bulletin, 2015, 99(1): 216-229. |
| 31 | WANG Lingling, GUO Chengxin, QIAN Qianqian, et al. Adsorption behavior of UV aged microplastics on the heavy metals Pb(Ⅱ) and Cu(Ⅱ) in aqueous solutions[J]. Chemosphere, 2023, 313: 137439. |
| 32 | SUN H Y, JIAO R Y, WANG D S. The difference of aggregation mechanism between microplastics and nanoplastics: Role of Brownian motion and structural layer force[J]. Environmental Pollution, 2021, 268: 115942. |
| 33 | GIGAULT J, HADRI H EL, NGUYEN B, et al. Nanoplastics are neither microplastics nor engineered nanoparticles[J]. Nature Nanotechnology, 2021, 16(5): 501-507. |
| 34 | ALI I, DING T D, PENG C S, et al. Micro- and nanoplastics in wastewater treatment plants: Occurrence, removal, fate, impacts and remediation technologies—A critical review[J]. Chemical Engineering Journal, 2021, 423: 130205. |
| 35 | LIU L, XU K X, ZHANG B W, et al. Cellular internalization and release of polystyrene microplastics and nanoplastics[J]. Science of the Total Environment, 2021, 779: 146523. |
| 36 | LEHNER R, WEDER C, PETRI-FINK A, et al. Emergence of nanoplastic in the environment and possible impact on human health[J]. Environmental Science & Technology, 2019, 53(4): 1748-1765. |
| 37 | SRIDHARAN S, KUMAR M, BOLAN N S, et al. Are microplastics destabilizing the global network of terrestrial and aquatic ecosystem services?[J]. Environmental Research, 2021, 198: 111243. |
| 38 | 杨光蓉, 陈历睿, 林敦梅. 土壤微塑料污染现状、来源、环境命运及生态效应[J]. 中国环境科学, 2021, 41(1): 353-365. |
| YANG Guangrong, CHEN Lirui, LIN Dunmei. Status, sources, environmental fate and ecological consequences of microplastic pollution in soil[J]. China Environmental Science, 2021, 41(1): 353-365. | |
| 39 | 陈兴兴, 刘敏, 陈滢. 淡水环境中微塑料污染研究进展[J]. 化工进展, 2020, 39(8): 3333-3343. |
| CHEN Xingxing, LIU Min, CHEN Ying. Microplastics pollution in freshwater environment[J]. Chemical Industry and Engineering Progress, 2020, 39(8): 3333-3343. | |
| 40 | GONZALEZ-PLEITER M, VELAZQUEZ D, EDO C, et al. Fibers spreading worldwide: Microplastics and other anthropogenic litter in an arctic freshwater lake[J]. The Science of the Total Environment, 2020, 722: 137904. |
| 41 | GONZALEZ-PLEITER M, EDO C, VELAZQUEZ D, et al. First detection of microplastics in the freshwater of an antarctic specially protected area[J]. Marine Pollution Bulletin, 2020, 161: 111811. |
| 42 | NEELAVANNAN K, SEN I S, LONE A M, et al. Microplastics in the high-altitude Himalayas: Assessment of microplastic contamination in freshwater lake sediments, Northwest Himalaya ( I n d i a ) [ J ] . Chemosphere, 2022, 290: 133354. |
| 43 | ZHANG Kai, SU Jing, XIONG Xiong, et al. Microplastic pollution of lakeshore sediments from remote lakes in Tibet plateau, China[J]. Environmental Pollution, 2016, 219: 450-455. |
| 44 | DI Mingxiao, WANG Jun. Microplastics in surface waters and sediments of the Three Gorges Reservoir, China[J]. Science of the Total Environment, 2018, 616-617: 1620-1627. |
| 45 | SU Lei, CAI Huiwen, KOLANDHASAMY P, et al. Using the Asian clam as an indicator of microplastic pollution in freshwater ecosystems[J]. Environmental Pollution, 2018, 234: 347-355. |
| 46 | YAN Muting, NIE Huayue, XU Kaihang, et al. Microplastic abundance, distribution and composition in the Pearl River along Guangzhou city and Pearl River estuary, China[J]. Chemosphere, 2019, 217: 879-886. |
| 47 | LAHENS L, STRADY E, T-C KIEU-LE, et al. Macroplastic and microplastic contamination assessment of a tropical river (Saigon River, Vietnam) transversed by a developing megacity[J]. Environmental Pollution, 2018, 236: 661-671. |
| 48 | SCHERER C, WEBER A, STOCK F, et al. Comparative assessment of microplastics in water and sediment of a large European river[J]. Science of the Total Environment, 2020, 738: 139866. |
| 49 | MANI T, HAUK A, WALTER U, et al. Microplastics profile along the Rhine River[J]. Scientific Reports, 2015, 5: 17988. |
| 50 | SHRUTI V C, JONATHAN M P, RODRIGUEZ-ESPINOSA P F, et al. Microplastics in freshwater sediments of Atoyac River basin, Puebla City, Mexico[J]. Science of the Total Environment, 2019, 654: 154-163. |
| 51 | SU Lei, XUE Yingang, LI Lingyun, et al. Microplastics in Taihu Lake, China[J]. Environmental Pollution, 2016, 216: 711-719. |
| 52 | YUAN Wenke, LIU Xiaoning, WANG Wenfeng, et al. Microplastic abundance, distribution and composition in water, sediments, and wild fish from Poyang Lake, China[J]. Ecotoxicology and Environmental Safety, 2019, 170: 180-187. |
| 53 | HU Duofei, ZHANG Yaxin, SHEN Maocai. Investigation on microplastic pollution of Dongting Lake and its affiliated rivers[J]. Marine Pollution Bulletin, 2020, 160: 111555. |
| 54 | JIANG Ning, LUO Wei, ZHAO Pin, et al. Distribution of microplastics in benthic sediments of Qinghai Lake on the Tibetan Plateau, China[J]. Science of the Total Environment, 2022, 835: 155434. |
| 55 | EGESSA R, NANKABIRWA A, OCAYA H, et al. Microplastic pollution in surface water of Lake Victoria[J]. Science of the Total Environment, 2020, 741: 140201. |
| 56 | ZHANG Weiwei, ZHANG Shoufeng, ZHAO Qian, et al. Spatio-temporal distribution of plastic and microplastic debris in the surface water of the Bohai Sea, China[J]. Marine Pollution Bulletin, 2020, 158: 111343. |
| 57 | MENDOZA A, OSA J L, BASURKO O C, et al. Microplastics in the Bay of Biscay: An overview[J]. Marine Pollution Bulletin, 2020, 153: 110996. |
| 58 | WANG X H, LI C J, LIU K, et al. Atmospheric microplastic over the South China Sea and East Indian Ocean: abundance, distribution and source[J]. Journal of Hazardous Materials, 2020, 389: 121846. |
| 59 | HUANG Yi, LIU Qin, JIA Weiqian, et al. Agricultural plastic mulching as a source of microplastics in the terrestrial environment[J]. Environmental Pollution, 2020, 260: 114096. |
| 60 | WAZNE M, MERMILLOD-BLONDIN F, VALLIER M, et al. Microplastics in freshwater sediments impact the role of a main bioturbator in ecosystem functioning[J]. Environmental Science & Technology, 2023. DOI: 10. 1021/acs. est. 2c05662 . |
| 61 | HE Liuyue, LI Zhongbin, JIA Qian, et al. Soil microplastics pollution in agriculture[J]. Science, 2023, 379(6632): 547-547. |
| 62 | 李爱峰, 李方晓, 邱江兵, 等. 水环境中微塑料的污染现状、生物毒性及控制策略[J]. 中国海洋大学学报, 2021, 49(10): 88-100. |
| LI Aifeng, LI Fangxiao, QIU Jiangbing, et al. Pollution status, biological toxicity and control strategy of microplastics in water environments: A review[J]. Periodical of Ocean University of China, 2019, 49(10): 88-100. | |
| 63 | QI Kun, LU Nan, ZHANG Shunqing, et al. Uptake of Pb(II) onto microplastic-associated biofilms in freshwater: Adsorption and combined toxicity in comparison to natural solid substrates[J]. Journal of Hazardous Materials, 2021, 411: 125115. |
| 64 | PATHAN S I, ARFAIOLI P, BARDELLI T, et al. Soil pollution from micro- and nanoplastic debris: A hidden and unknown biohazard[J]. Sustainability, 2020, 12(18): 7255. |
| 65 | WANG Ting, HU Menghong, SONG Lili, et al. Coastal zone use influences the spatial distribution of microplastics in Hangzhou Bay, China[J]. Environmental Pollution, 2020, 266: 115137. |
| 66 | ATUGODA T, VITHANAGE M, WIJESEKARA H, et al. Interactions between microplastics, pharmaceuticals and personal care products: Implications for vector transport[J]. Environment International, 2021, 149: 106367. |
| 67 | VIRSEK M K, LOVSIN M N, KOREN S, et al. Microplastics as a vector for the transport of the bacterial fish pathogen species Aeromonas salmonicida[J]. Marine Pollution Bulletin, 2017, 125(1/2): 301-309. |
| 68 | BAUDRIMONT M, ARINI A, GUÉGAN C, et al. Ecotoxicity of polyethylene nanoplastics from the North Atlantic oceanic gyre on freshwater and marine organisms (microalgae and filter-feeding bivalves)[J]. Environmental Science and Pollution Research, 2020, 27(4): 3746-3755. |
| 69 | 邵雪纯, 胡双庆, 张琪, 等. 聚乳酸微塑料及其复合污染的生物毒性效应与机制研究进展[J]. 中国环境科学, 2023, 43(2): 935-945. |
| SHAO Xuechun, HU Shuangqing, ZHANG Qi, et al. Research progress on biotoxicological effects and mechanism of polylactic acid microplastics and their combined pollution[J]. China Environmental Science, 2023, 43(2): 935-945. | |
| 70 | SUN Peipei, LIU Xuemin, ZHANG Minghui, et al. Sorption and leaching behaviors between aged MPs and BPA in water: The role of BPA binding modes within plastic matrix[J]. Water Research, 2021, 195: 116956. |
| 71 | BARHOUMI B, SANDER S G, TOLOSA I. A review on per- and polyfluorinated alkyl substances (PFASs) in microplastic and food-contact materials[J]. Environmental Research, 2022, 206: 112595. |
| 72 | BRINGER A, LE FLOCH S, KERSTAN A, et al. Coastal ecosystem inventory with characterization and identification of plastic contamination and additives from aquaculture materials[J]. Marine Pollution Bulletin, 2021, 167: 112286. |
| 73 | KLEIN M, FISCHER E K. Microplastic abundance in atmospheric deposition within the Metropolitan area of Hamburg, Germany[J]. Science of the Total Environment, 2019, 685: 96-103. |
| 74 | LUCAS N, BIENAIME C, BELLOY C, et al. Polymer biodegradation: mechanisms and estimation techniques[J]. Chemosphere, 2008, 73(4): 429-442. |
| 75 | MONTAZER Z, HABIBI-NAJAFI M B, MOHEBBI M, et al. Microbial degradation of UV-pretreated low-density polyethylene films by novel polyethylene-degrading bacteria isolated from plastic-dump soil[J]. Journal of Polymers and the Environment, 2018, 26(9): 3613-3625. |
| 76 | ZHANG Junqing, GAO Danling, LI Quanhao, et al. Biodegradation of polyethylene microplastic particles by the fungus Aspergillus flavus from the guts of wax moth Galleria mellonella [J]. Science of the Total Environment, 2020, 704: 135931. |
| 77 | BHARDWAJ H, GUPTA R, TIWARI A. Communities of microbial enzymes associated with biodegradation of plastics[J]. Journal of Polymers and the Environment, 2012, 21(2): 575-579. |
| 78 | FOLINO A, KARAGEORGIOU A, CALABRÒ P S, et al. Biodegradation of wasted bioplastics in natural and industrial environments: A review[J]. Sustainability, 2020, 12(15): 7255. |
| 79 | EMADIAN S M, ONAY T T, DEMIREL B. Biodegradation of bioplastics in natural environments[J]. Waste Management, 2017, 59: 526-536. |
| 80 | HARRISON J P, BOARDMAN C, O'CALLAGHAN K, et al. Biodegradability standards for carrier bags and plastic films in aquatic environments: a critical review[J]. Royal Society Open Science, 2018, 5(5): 171792. |
| 81 | HOU Lijun, XI Jiao, LIU Jiaxi, et al. Biodegradability of polyethylene mulching film by two Pseudomonas bacteria and their potential degradation mechanism[J]. Chemosphere, 2022, 286: 131758. |
| 82 | PARK S Y, KIM C G. Biodegradation of micro-polyethylene particles by bacterial colonization of a mixed microbial consortium isolated from a landfill site[J]. Chemosphere, 2019, 222: 527-533. |
| 83 | KIM H R, LEE H M, YU H C, et al. Biodegradation of polystyrene by Pseudomonas sp. Isolated from the gut of superworms (Larvae of Zophobas atratus)[J]. Environmental Science & Technology, 2020, 54(11): 6987-6996. |
| 84 | AUTA H S, EMENIKE C U, JAYANTHI B, et al. Growth kinetics and biodeterioration of polypropylene microplastics by Bacillus sp.and Rhodococcus sp.isolated from mangrove sediment[J]. Marine Pollution Bulletin, 2018, 127: 15-21. |
| 85 | YANG J, YANG Y, WU W M, et al. Evidence of polyethylene biodegradation by bacterial strains from the guts of plastic-eating waxworms[J]. Environmental Science & Technology, 2014, 48(23): 13776-13784. |
| 86 | PEIXOTO J, SILVA L P, KRÜGER R H. Brazilian Cerrado soil reveals an untapped microbial potential for unpretreated polyethylene biodegradation[J]. Journal of Hazardous Materials, 2017, 324: 634-644. |
| 87 | AUTA H S, EMENIKE C U, FAUZIAH S H. Screening of Bacillus strains isolated from mangrove ecosystems in Peninsular Malaysia for microplastic degradation[J]. Environmental Pollution, 2017, 231: 1552-1559. |
| 88 | CARNIEL A, VALONI E, NICOMEDES JUNIOR J, et al. Lipase from Candida antarctica (CALB) and cutinase from Humicola insolens act synergistically for PET hydrolysis to terephthalic acid[J]. Process Biochemistry, 2017, 59: 84-90. |
| 89 | SKARIYACHAN S, TASKEEN N, KISHORE A P, et al. Novel consortia of Enterobacter and Pseudomonas formulated from cow dung exhibited enhanced biodegradation of polyethylene and polypropylene[J]. Journal of Environmental Management, 2021, 284: 112030. |
| 90 | YUAN Jianhua, MA Jie, SUN Yiran, et al. Microbial degradation and other environmental aspects of microplastics/plastics[J]. Science of the Total Environment, 2020, 715: 136968. |
| 91 | SANCHEZ C. Fungal potential for the degradation of petroleum-based polymers: An overview of macro- and microplastics biodegradation[J]. Biotechnology Advances, 2020, 40: 107501. |
| 92 | MUHONJA C N, MAKONDE H, MAGOMA G, et al. Biodegradability of polyethylene by bacteria and fungi from Dandora dumpsite Nairobi-Kenya[J]. PLoS One, 2018, 13(7): e0198446. |
| 93 | SOLEIMANI Z, GHARAVI S, SOUDI M, et al. A survey of intact low-density polyethylene film biodegradation by terrestrial Actinobacterial species[J]. International Microbiology, 2021, 24(1): 65-73. |
| 94 | HABIB S, IRUTHAYAM A, SHUKOR M Y ABD, et al. Biodeterioration of untreated polypropylene microplastic particles by Antarctic bacteria[J]. Polymers, 2020, 12(11): 2616. |
| 95 | WANG Jianlong, GUO Xuan, XUE Jianming. Biofilm-developed microplastics as vectors of pollutants in aquatic environments[J]. Environmental Science & Technology, 2021, 55(19): 12780-12790. |
| 96 | CUNHA C, SILVA L, PAULO J, et al. Microalgal-based biopolymer for nano- and microplastic removal: A possible biosolution for wastewater treatment[J]. Environmental Pollution, 2020, 263: 114385. |
| 97 | CHEN Zhi, ZHAO Wenqi, XING Ruizhi, et al. Enhanced in situ biodegradation of microplastics in sewage sludge using hyperthermophilic composting technology[J]. Journal of Hazardous Materials, 2020, 384. |
| 98 | 邢睿智, 赵子强, 赵文琪, 等. 嗜热脂肪地芽胞杆菌对聚苯乙烯的降解性能[J]. 环境科学, 2021, 42(6): 3056-3062. |
| XING Ruizhi, ZHAO Ziqiang, ZHAO Wenqi, et al. Biodegradation of polystyrene by Geobacillus stearothermophilus [J]. Environmental Science, 2021, 42(6): 3056-3062. | |
| 99 | CARUSO G. Plastic degrading microorganisms as a tool for bioremediation of plastic contamination in aquatic environments[J]. Journal of Pollution Effects & Control, 2015, 03(03). |
| 100 | Xuemin LYU, DONG Qian, ZUO Zhiqiang, et al. Microplastics in a municipal wastewater treatment plant: Fate, dynamic distribution, removal efficiencies, and control strategies[J]. Journal of Cleaner Production, 2019, 225: 579-586. |
| 101 | WAN X, HUANG H Y, LIAO Z C, et al. The distribution and risk of microplastics discharged from sewage treatment plants in terrestrial and aquatic compartment[J]. Journal of Environmental Management, 2022, 314. |
| 102 | ZHANG Xiaolei, CHEN Jiaxin, LI Ji. The removal of microplastics in the wastewater treatment process and their potential impact on anaerobic digestion due to pollutants association[J]. Chemosphere, 2020, 251: 126360. |
| 103 | GILAN I, HADAR Y, SIVAN A. Colonization, biofilm formation and biodegradation of polyethylene by a strain of Rhodococcus ruber [J]. Applied Microbiology and Biotechnology, 2004, 65(1): 97-104. |
| 104 | ALVAREZ-BARRAGAN J, DOMINGUEZ-MALFAVON L, VARGAS-SUAREZ M, et al. Biodegradative activities of selected environmental fungi on a polyester polyurethane varnish and polyether polyurethane foams[J]. Applied and Environmental Microbiology, 2016, 82(17): 5225-5235. |
| 105 | HOWARD G T. Biodegradation of polyurethane: a review[J]. International Biodeterioration & Biodegradation, 2002, 49(4): 245-252. |
| 106 | KAWAI F. Polylactic acid (PLA)-degrading microorganisms and PLA depolymerases[M]//Green Polymer Chemistry: Biocatalysis and Biomaterials, 2010, 405-414. |
| 107 | OTHMAN A R, HASAN H A, MUHAMAD M H, et al. Microbial degradation of microplastics by enzymatic processes: a review[J]. Environmental Chemistry Letters, 2021, 19(4): 3057-3073. |
| 108 | SHIN J, KIM J E, LEE Y W, et al. Fungal cytochrome P450s and the P450 complement (CYPome) of Fusarium graminearum [J]. Toxins, 2018, 10(3): 112. |
| 109 | DELACUVELLERIE A, CYRIAQUE V, GOBERT S, et al. The plastisphere in marine ecosystem hosts potential specific microbial degraders including Alcanivorax borkumensis as a key player for the low-density polyethylene degradation[J]. Journal of Hazardous Materials, 2019, 380: 120899. |
| 110 | WANG Zhe, XIN Xin, SHI Xiaofan, et al. A polystyrene-degrading Acinetobacter bacterium isolated from the larvae of Tribolium castaneum [J]. Science of the Total Environment, 2020, 726: 138564. |
| 111 | ABRUSCI C, PABLOS J L, CORRALES T, et al. Biodegradation of photo-degraded mulching films based on polyethylenes and stearates of calcium and iron as pro-oxidant additives[J]. International Biodeterioration & Biodegradation, 2011, 65(3): 451-459. |
| [1] | HUANG Hong, OUYANG Haomin, YANG Yijing, LI Changlin, CHEN Shuona. Adsorption-degradation mechanism of tris(2-chloroethyl)phosphate by a composite adsorbent of zero-valent iron sulfide and microorganism [J]. Chemical Industry and Engineering Progress, 2024, 43(8): 4704-4713. |
| [2] | CAO Jingpei, YAO Naiyu, PANG Xinbo, ZHAO Xiaoyan, ZHAO Jingping, CAI Shijie, XU Min, FENG Xiaobo, YI Fengjiao. Research progress and development history of coal pyrolysis [J]. Chemical Industry and Engineering Progress, 2024, 43(7): 3620-3636. |
| [3] | QI Yabing, WU Zibo, YANG Qingcui. Research advances of preparation of Pickering emulsions and their stability [J]. Chemical Industry and Engineering Progress, 2024, 43(4): 2017-2030. |
| [4] | MA Xianggang, DING Yuan, ZHANG Junge, LIU Yingliang, XU Shengang, CAO Shaokui. Progress of photocatalytic degradation of bisphenol A by modified g-C3N4 [J]. Chemical Industry and Engineering Progress, 2024, 43(11): 6271-6292. |
| [5] | GAO Wenfang, WANG Jiaqing, WANG Zhongqiang, WANG Zeng, WANG Zhaolong, CUI Han, ZENG Xianju, WANG Gaohan, LYU Longyi, SUN Zhi. Analysis of national and local policies on recycling of spent power batteries in China [J]. Chemical Industry and Engineering Progress, 2024, 43(10): 5820-5836. |
| [6] | XU Zhongshuo, ZHOU Panpan, WANG Yuhui, HUANG Wei, SONG Xinshan. Advances in sulfur iron ore mediated autotrophic denitrification [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4863-4871. |
| [7] | ZHU Zixuan, CHEN Junjiang, ZHANG Xingxing, LI Xiang, LIU Wenru, WU Peng. Research advances on novel wastewater biological nitrogen removal technology by partial denitrification coupled with Anammox [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 2091-2100. |
| [8] | HU Xuan, CHEN Ying. Effects of exposure of polyester fiber microplastics on activated sludge system performance and microbial community structure [J]. Chemical Industry and Engineering Progress, 2023, 42(2): 1051-1060. |
| [9] | ZHOU Hongyang, ZHOU Yihuan, ZHANG Lianxiu, LIANG Dingcheng, XIE Qiang. Heel of VOCs in activated carbon: Formation mechanism and influencing factors [J]. Chemical Industry and Engineering Progress, 2023, 42(11): 5969-5980. |
| [10] | WU Shiyu, DU Zhiping, SHEN Jing, LI Jianfeng, CHENG Fangqin, ZHAO Huazhang. Treatment of wastewater by bio-electro-Fenton system: a review [J]. Chemical Industry and Engineering Progress, 2023, 42(11): 5929-5942. |
| [11] | SU Jingzhen, ZHAN Jian. Research progress of microplastic removal from water environment by biochar [J]. Chemical Industry and Engineering Progress, 2023, 42(10): 5445-5458. |
| [12] | LIU Yajuan. Research status of membrane fouling mitigation by PAC in submerged PAC-AMBRs [J]. Chemical Industry and Engineering Progress, 2023, 42(1): 457-468. |
| [13] | FU Jia, CHEN Lunjian, XU Bing, HUA Shaofeng, LI Congqiang, YANG Mingkun, XING Baolin, YI Guiyun. Microbial degradation of phenol in simulated coal gasification wastewater [J]. Chemical Industry and Engineering Progress, 2023, 42(1): 526-537. |
| [14] | LIU Yali, ZHANG Hongwei, KANG Xiaorong. Effect and mechanisms of microplastics on anaerobic digestion of sludge [J]. Chemical Industry and Engineering Progress, 2022, 41(9): 5037-5046. |
| [15] | GUO Zhihan, XU Yunxiang, LI Tianhao, HUANG Zichuan, LIU Wenru, SHEN Yaoliang. Research progress on long-term stable operation of aerobic granular sludge [J]. Chemical Industry and Engineering Progress, 2022, 41(5): 2686-2697. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
|
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |