Chemical Industry and Engineering Progress ›› 2024, Vol. 43 ›› Issue (7): 4043-4058.DOI: 10.16085/j.issn.1000-6613.2023-0990
• Resources and environmental engineering • Previous Articles
ZHANG Shirui(), FAN Zhenlian, SONG Huiping(), ZHANG Lina, GAO Hongyu, CHENG Shuyan, CHENG Fangqin
Received:
2023-06-16
Revised:
2023-08-12
Online:
2024-08-14
Published:
2024-07-10
Contact:
SONG Huiping
张世蕊(), 范朕连, 宋慧平(), 张丽娜, 高宏宇, 程淑艳, 程芳琴
通讯作者:
宋慧平
作者简介:
张世蕊(1998—),女,硕士研究生,研究方向为固废资源化利用。E-mail:1755203788@qq.com。
基金资助:
CLC Number:
ZHANG Shirui, FAN Zhenlian, SONG Huiping, ZHANG Lina, GAO Hongyu, CHENG Shuyan, CHENG Fangqin. Research progress of fly ash supported photocatalytic materials[J]. Chemical Industry and Engineering Progress, 2024, 43(7): 4043-4058.
张世蕊, 范朕连, 宋慧平, 张丽娜, 高宏宇, 程淑艳, 程芳琴. 粉煤灰负载光催化材料的研究进展[J]. 化工进展, 2024, 43(7): 4043-4058.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2023-0990
参数 | 范围 | 平均值 |
---|---|---|
密度/g·cm-3 | 1.9~2.9 | 2.1 |
原灰标准稠度/% | 27.3~66.7 | 48 |
需水量/% | 89~130 | 106 |
28d抗压强度比/% | 37~85 | 66 |
参数 | 范围 | 平均值 |
---|---|---|
密度/g·cm-3 | 1.9~2.9 | 2.1 |
原灰标准稠度/% | 27.3~66.7 | 48 |
需水量/% | 89~130 | 106 |
28d抗压强度比/% | 37~85 | 66 |
参数 | 范围 | 平均值 |
---|---|---|
ω(SiO2) | 33.9~59.7 | 50.6 |
ω(Al2O3) | 16.5~35.4 | 27.2 |
ω(Fe2O3) | 1.50~6.22 | 6.2 |
ω(CaO) | 0.8~9.4 | 2.8 |
ω(MgO) | 0.7~1.9 | 1.2 |
ω(K2O) | 0.7~2.9 | 1.3 |
参数 | 范围 | 平均值 |
---|---|---|
ω(SiO2) | 33.9~59.7 | 50.6 |
ω(Al2O3) | 16.5~35.4 | 27.2 |
ω(Fe2O3) | 1.50~6.22 | 6.2 |
ω(CaO) | 0.8~9.4 | 2.8 |
ω(MgO) | 0.7~1.9 | 1.2 |
ω(K2O) | 0.7~2.9 | 1.3 |
项目 | TiO2 | ZnO | BiOX(X=F、Cl、Br、I) | α-Fe2O3 | g-C3N4 | |||
---|---|---|---|---|---|---|---|---|
BiOF | BiOCl | BiOBr | BiOI | |||||
禁带宽度/eV | 3.2 | 3.2 | 3.6 | 3.5 | 2.6 | 1.8~1.9 | 2.0~2.2 | 2.7 |
优点 | 化学稳定性好;抗光腐蚀能力强 | 化学稳定性好;抗光腐蚀能力强 | 具有特殊稳定的晶型结构;具有可见光响应性能;光催化活性高 | 具有高化学稳定性;耐酸碱性;耐光腐蚀;无毒廉价;具有可见光响应性能 | 化学稳定性好;具有可见光响应性能;制备方法简单;无重金属污染 | |||
缺点 | 仅对紫外光有响应;光生载流子复合率高 | 仅对紫外光有响应;光生载流子复合率高 | 可见光的能量较低;光生载流子复合率高 | 光生载流子复合率高;光催化活性低 | 光生载流子复合率高;比表面积低;可见光利用率低 |
项目 | TiO2 | ZnO | BiOX(X=F、Cl、Br、I) | α-Fe2O3 | g-C3N4 | |||
---|---|---|---|---|---|---|---|---|
BiOF | BiOCl | BiOBr | BiOI | |||||
禁带宽度/eV | 3.2 | 3.2 | 3.6 | 3.5 | 2.6 | 1.8~1.9 | 2.0~2.2 | 2.7 |
优点 | 化学稳定性好;抗光腐蚀能力强 | 化学稳定性好;抗光腐蚀能力强 | 具有特殊稳定的晶型结构;具有可见光响应性能;光催化活性高 | 具有高化学稳定性;耐酸碱性;耐光腐蚀;无毒廉价;具有可见光响应性能 | 化学稳定性好;具有可见光响应性能;制备方法简单;无重金属污染 | |||
缺点 | 仅对紫外光有响应;光生载流子复合率高 | 仅对紫外光有响应;光生载流子复合率高 | 可见光的能量较低;光生载流子复合率高 | 光生载流子复合率高;光催化活性低 | 光生载流子复合率高;比表面积低;可见光利用率低 |
制备方法 | 光催化材料 | 目标降解物 | 降解效率 | 优缺点 | 参考文献 |
---|---|---|---|---|---|
溶胶-凝胶法 | Fe3+-TiO2/粉煤灰 | 亚甲基蓝 | 加入粉煤灰后降解率提高了30%左右 | 反应简单且易控制;反应均匀;薄膜容易发生龟裂;易团聚 | [ |
TiO2-磁性Fe3O4/粉煤灰漂珠 | 盐酸恩诺沙星 | 75.32%,60min | [ | ||
TiO2/粉煤灰多孔陶瓷 | 亚甲基蓝 | 50%左右,240min | [ | ||
BiOBr-BiOI/粉煤灰 | — | 99%,70 min | [ | ||
Cu-TiO2/粉煤灰 | 甲基橙 | 可见光:99.1%,2h,紫外光可实现完全降解 | [ | ||
水热法 | TiO2/粉煤灰珠 | 罗丹明B | 99%,90min | 样品性能良好(结晶性好、尺寸小、分散性好);可控制颗粒的晶型;需要高温高压 | [ |
ZnO/粉煤灰 | 氮染料活性橙4、罗丹明B和台盼蓝 | 98%,90min | [ | ||
CoFe2O4/粉煤灰 | 亚甲基蓝 | 99%,60min | [ | ||
TiO2/粉煤灰基X沸石 | NO | 75%,60min | [ | ||
液相沉淀法 | ZnCr层状双氧化物/粉煤灰 | 环丙沙星 | 98%,120 min | 制备方法简单;样品成分均匀 | [ |
N、S共掺杂TiO2/粉煤灰漂珠 | 甲基橙 | 65%,60min | [ | ||
Ag2O-TiO2/FACs | 亚甲基蓝 | 100%,30min | [ | ||
TiO2-Cu x S/粉煤灰 | 亚甲基蓝 | 99%,360min | [ |
制备方法 | 光催化材料 | 目标降解物 | 降解效率 | 优缺点 | 参考文献 |
---|---|---|---|---|---|
溶胶-凝胶法 | Fe3+-TiO2/粉煤灰 | 亚甲基蓝 | 加入粉煤灰后降解率提高了30%左右 | 反应简单且易控制;反应均匀;薄膜容易发生龟裂;易团聚 | [ |
TiO2-磁性Fe3O4/粉煤灰漂珠 | 盐酸恩诺沙星 | 75.32%,60min | [ | ||
TiO2/粉煤灰多孔陶瓷 | 亚甲基蓝 | 50%左右,240min | [ | ||
BiOBr-BiOI/粉煤灰 | — | 99%,70 min | [ | ||
Cu-TiO2/粉煤灰 | 甲基橙 | 可见光:99.1%,2h,紫外光可实现完全降解 | [ | ||
水热法 | TiO2/粉煤灰珠 | 罗丹明B | 99%,90min | 样品性能良好(结晶性好、尺寸小、分散性好);可控制颗粒的晶型;需要高温高压 | [ |
ZnO/粉煤灰 | 氮染料活性橙4、罗丹明B和台盼蓝 | 98%,90min | [ | ||
CoFe2O4/粉煤灰 | 亚甲基蓝 | 99%,60min | [ | ||
TiO2/粉煤灰基X沸石 | NO | 75%,60min | [ | ||
液相沉淀法 | ZnCr层状双氧化物/粉煤灰 | 环丙沙星 | 98%,120 min | 制备方法简单;样品成分均匀 | [ |
N、S共掺杂TiO2/粉煤灰漂珠 | 甲基橙 | 65%,60min | [ | ||
Ag2O-TiO2/FACs | 亚甲基蓝 | 100%,30min | [ | ||
TiO2-Cu x S/粉煤灰 | 亚甲基蓝 | 99%,360min | [ |
光催化材料 | 光源 | 制备方法 | 目标降解物及降解效率 | 参考文献 |
---|---|---|---|---|
聚吡咯(PPy)-TiO2/粉煤灰 | 可见光 | — | 亚甲基蓝; 75%,5h,循环4次仍能保持70%左右 | [ |
Cu-TiO2/粉煤灰 | 紫外光/可见光 | 溶胶-凝胶法 | 甲基橙; 可见光:99.1%,2h, 紫外光可实现完全降解 | [ |
BiOBr-BiOI/粉煤灰 | 蓝色LED灯 | 水热法 | 罗丹明B; 99%,70min,循环5次后仍达90% | [ |
Ag-TiO2/粉煤灰 | 可见光 | 溶胶-凝胶法 | 活性染料; 85%~95%,3~4h | [ |
TiO2/粉煤灰微球 | 可见光 | 水热法 | 罗丹明B; 99%,90min | [ |
ZnCr层状双氧化物/粉煤灰 | 模拟太阳光 | 简单沉淀法 | 环丙沙星; 98%,120min | [ |
光催化材料 | 光源 | 制备方法 | 目标降解物及降解效率 | 参考文献 |
---|---|---|---|---|
聚吡咯(PPy)-TiO2/粉煤灰 | 可见光 | — | 亚甲基蓝; 75%,5h,循环4次仍能保持70%左右 | [ |
Cu-TiO2/粉煤灰 | 紫外光/可见光 | 溶胶-凝胶法 | 甲基橙; 可见光:99.1%,2h, 紫外光可实现完全降解 | [ |
BiOBr-BiOI/粉煤灰 | 蓝色LED灯 | 水热法 | 罗丹明B; 99%,70min,循环5次后仍达90% | [ |
Ag-TiO2/粉煤灰 | 可见光 | 溶胶-凝胶法 | 活性染料; 85%~95%,3~4h | [ |
TiO2/粉煤灰微球 | 可见光 | 水热法 | 罗丹明B; 99%,90min | [ |
ZnCr层状双氧化物/粉煤灰 | 模拟太阳光 | 简单沉淀法 | 环丙沙星; 98%,120min | [ |
1 | 李树志, 李学良, 尹大伟. 碳中和背景下煤炭矿山生态修复的几个基本问题[J]. 煤炭科学技术, 2022, 50(1): 286-292. |
LI Shuzhi, LI Xueliang, YIN Dawei. Several basic issues of ecological restoration of coal mines under background of carbon neutrality[J]. Coal Science and Technology, 2022, 50(1): 286-292. | |
2 | LI Quansheng. The view of technological innovation in coal industry under the vision of carbon neutralization[J]. International Journal of Coal Science & Technology, 2021, 8(6): 1197-1207. |
3 | DING Jian, MA Shuhua, SHEN Shirley, et al. Research and industrialization progress of recovering alumina from fly ash: A concise review[J]. Waste Management, 2017, 60: 375-387. |
4 | 张祥成, 孟永彪. 浅析中国粉煤灰的综合利用现状[J]. 无机盐工业, 2020, 52(2): 1-5. |
ZHANG Xiangcheng, MENG Yongbiao. Brief analysis on present situation of comprehensive utilization of fly ash in China[J]. Inorganic Chemicals Industry, 2020, 52(2): 1-5. | |
5 | KUMAR Kuldeep, KUMAR Ashok. Empirical use of fly ash for rhizobial population and yield of some legume crops for sustainable agriculture[J].Biomass Conversion and Biorefinery, 2023, 13(17): 15421-15433. |
6 | TAKANABE Kazuhiro. Photocatalytic water splitting: Quantitative approaches toward photocatalyst by design[J]. ACS Catalysis, 2017, 7(11): 8006-8022. |
7 | GUO Qingfeng, SUN Hongrui, ZHANG Liying, et al. Cotton fabric-based RGO/BiVO4 recyclable photocatalytic nanocomposites for dye degradation under visible light[J]. Composites Communications, 2021, 27: 100846. |
8 | ZHANG Fubao, WANG Xianming, LIU Haonan, et al. Recent advances and applications of semiconductor photocatalytic technology[J]. Applied Sciences, 2019, 9(12): 2489. |
9 | TU Hu, LI Dan, YI Yang, et al. Incorporation of rectorite into porous polycaprolactone/TiO2 nanofibrous mats for enhancing photocatalysis properties towards organic dye pollution[J]. Composites Communications, 2019, 15: 58-63. |
10 | NI Yongheng, YAN Kun, XU Feiyang, et al. Synergistic effect on TiO2 doped poly (vinyl alcohol-co-ethylene) nanofibrous film for filtration and photocatalytic degradation of methylene blue[J]. Composites Communications, 2019, 12: 112-116. |
11 | MAGNONE Edoardo, KIM Min-Kwang, LEE Hong Joo, et al. Testing and substantial improvement of TiO2/UV photocatalysts in the degradation of Methylene Blue[J]. Ceramics International, 2019, 45(3): 3359-3367. |
12 | VIBULYASEAK Kasimanat Guy), DEEPRACHA Siwada Benz), OGAWA Makoto. Immobilization of titanium dioxide in mesoporous silicas: Structural design and characterization[J]. Journal of Solid State Chemistry, 2019, 270: 162-172. |
13 | WANG Bing, LI Qin, WANG Wei, et al. Preparation and characterization of Fe3+-doped TiO2 on fly ash cenospheres for photocatalytic application[J]. Applied Surface Science, 2011, 257(8): 3473-3479. |
14 | FUKASAWA Tomonori, KARISMA Achmad Dwitama, SHIBATA Daiki, et al. Synthesis of zeolite from coal fly ash by microwave hydrothermal treatment with pulverization process[J]. Advanced Powder Technology, 2017, 28(3): 798-804. |
15 | 赵泽森, 崔莉, 郭彦霞, 等. 粉煤灰中战略金属镓的提取与回收研究进展[J]. 化工学报, 2021, 72(6): 3239-3251. |
ZHAO Zesen, CUI Li, GUO Yanxia, et al. Research progress on extraction and recovery of strategic metal gallium from coal fly ash[J]. CIESC Journal, 2021, 72(6): 3239-3251. | |
16 | 宋伟涛, 宋慧平, 范朕连, 等. 粉煤灰在防腐涂料中的研究进展[J]. 化工进展, 2023, 42(9): 4894-4904. |
SONG Weitao, SONG Huiping, FAN Zhenlian, et al. Research progress of fly ash in anticorrosive coatings[J]. Progress in Chemical Industry, 2023, 42(9): 4894-4904. | |
17 | CHUAICHAM Chitiphon, INOUE Takumi, BALAKUMAR Vellaichamy, et al. Visible light-driven ZnCr double layer oxide photocatalyst composites with fly ashes for the degradation of ciprofloxacin[J]. Journal of Environmental Chemical Engineering, 2022, 10(1): 106970. |
18 | BRADLEY Robert H. Recent developments in the physical adsorption of toxic organic vapours by activated carbons[J]. Adsorption Science & Technology, 2011, 29(1): 1-28. |
19 | KAEWMEE Patcharanat, SONG Mengzhu, IWANAMI Mitsuyasu, et al. Porous and reusable potassium-activated geopolymer adsorbent with high compressive strength fabricated from coal fly ash wastes[J]. Journal of Cleaner Production, 2020, 272: 122617. |
20 | ILERI Burcu, SANLIYUKSEL YUCEL Deniz. Metal removal from acid mine lake using ultrasound-assisted modified fly ash at different frequencies[J].Environmental Monitoring and Assessment, 2020, 192(3): 1-18. |
21 | YANG Guiyun, REN Qiangqiang, XU Jing, et al. Co-melting properties and mineral transformation behavior of mixtures by MSWI fly ash and coal ash[J]. Journal of the Energy Institute, 2021, 96: 148-157. |
22 | 王伟, 龙悦, 吕鹏刚. 粉煤灰改性为水处理化学品的研究进展[J]. 精细与专用化学品, 2017, 25(7): 35-37. |
WANG Wei, LONG Yue, Penggang LYU. Research progress on modified cocl ash as water management chemicals[J]. Fine and Specialty Chemicals, 2017, 25(7): 35-37. | |
23 | 张鹏, 李大鹏, 马军涛. 粉煤灰基催化剂在环境污染物治理方面的应用[J]. 环境科学与技术, 2021, 44(7): 180-188. |
ZHANG Peng, LI Dapeng, MA Juntao. Application of fly ash-based catalysts in the environmental pollutants control[J]. Environmental Science & Technology, 2021, 44(7): 180-188. | |
24 | FUJISHIMA A, HONDA K. Photocatalysis-decomposition of water at the surface of an irradiated semiconductoe[J]. Nature, 1972, 238(5383): 37-38. |
25 | CAREY John H, LAWRENCE John, TOSINE Helle M. Photodechlorination of PCB’s in the presence of titanium dioxide in aqueous suspensions[J]. Bulletin of Environmental Contamination and Toxicology, 1976, 16(6): 697-701. |
26 | PI Yunhong, LI Xiyi, XIA Qibin, et al. Adsorptive and photocatalytic removal of Persistent Organic Pollutants (POPs) in water by metal-organic frameworks (MOFs)[J]. Chemical Engineering Journal, 2018, 337: 351-371. |
27 | HAGFELDT Anders, WALDER Lorenz, GRAETZEL Michael. Nanostructured TiO2 semiconductor electrodes modified with surface-attached viologens: Applications for displays and smart windows[J]. Proceedings of Spie the International Society for Optical Engineering, 1995, 2531: 1-10. |
28 | KUDO Akihiko, MISEKI Yugo. Heterogeneous photocatalyst materials for water splitting[J]. Chemical Society Reviews, 2009, 38(1): 253-278. |
29 | LIANG Shijing, WANG Jiangpeng, WU Xiuqin, et al. Phase transformation synthesis of a new Bi2SeO5 flower-like microsphere for efficiently photocatalytic degradation of organic pollutants[J]. Catalysis Today, 2019, 327: 357-365. |
30 | YANG Yajing, BIAN Zhaoyong. Oxygen doping through oxidation causes the main active substance in g-C3N4 photocatalysis to change from holes to singlet oxygen[J]. Science of the Total Environment, 2021, 753: 141908. |
31 | CHANG Fei, LEI Bin, ZHANG Xiaoya, et al. The reinforced photocatalytic performance of binary-phased composites Bi-Bi12O17Cl2 fabricated by a facile chemical reduction protocol[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 572: 290-298. |
32 | XU Hua, OUYANG Shuxin, LIU Lequan, et al. Recent advances in TiO2-based photocatalysis[J]. Journal of Materials Chemistry A, 2014, 2(32): 12642-12661. |
33 | THIRUMALAI Kuppulingam, BALACHANDRAN Subramanian, SWAMINATHAN Meenakshisundaram. Superior photocatalytic, electrocatalytic, and self-cleaning applications of fly ash supported ZnO nanorods[J]. Materials Chemistry and Physics, 2016, 183: 191-200. |
34 | WANG Zhiyu, LUAN Deyan, MADHAVI Srinivasan, et al. Assembling carbon-coated α-Fe2O3 hollow nanohorns on the CNT backbone for superior lithium storage capability[J]. Energy & Environmental Science, 2012, 5(1): 5252-5256. |
35 | WANG Yingying, YANG Wenjuan, CHEN Xianjie, et al. Photocatalytic activity enhancement of core-shell structure g-C3N4@TiO2 via controlled ultrathin g-C3N4 layer[J]. Applied Catalysis B: Environmental, 2018, 220: 337-347. |
36 | LI Yunfeng, XIA Zhiling, YANG Qing, et al. Review on g-C3N4-based S-scheme heterojunction photocatalysts[J]. Journal of Materials Science & Technology, 2022, 125: 128-144. |
37 | HE Rong'an, CAO Shaowen, ZHOU Peng, et al. Recent advances in visible light Bi-based photocatalysts[J]. Chinese Journal of Catalysis, 2014, 35(7): 989-1007. |
38 | SHEHU Imam Saifullahi, ROHANA Adnan, HAIDA Mohd KAUS Noor. The photocatalytic potential of BiOBr for wastewater treatment: A mini-review[J]. Journal of Environmental Chemical Engineering, 2021, 9(4): 105404. |
39 | GANOSE Alex M, CUFF Madeleine, BUTLER Keith T, et al. Interplay of orbital and relativistic effects in bismuth oxyhalides: BiOF, BiOCl, BiOBr, and BiOI[J]. Chemistry of Materials: a Publication of the American Chemical Society, 2016, 28(7): 1980-1984. |
40 | UNWISET Preeya, MAKDEE Ammarika, CHANAPATTHARAPOL Kingkaew Chayakul, et al. Effect of Cu addition on TiO2 surface properties and photocatalytic performance: X-ray absorption spectroscopy analysis[J]. Journal of Physics and Chemistry of Solids, 2018, 120: 231-240. |
41 | Beatriz PAVA-GÓMEZ, Ximena VARGAS-RAMÍREZ, Carlos DÍAZ-URIBE. Physicochemical study of adsorption and photodegradation processes of methylene blue on copper-doped TiO2 films[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2018, 360: 13-25. |
42 | Gladis PEDROZA-HERRERA, MEDINA-RAMÍREZ Iliana E, LOZANO-ÁLVAREZ Juan Antonio, et al. Evaluation of the photocatalytic activity of copper doped TiO2 nanoparticles for the purification and/or disinfection of industrial effluents[J]. Catalysis Today, 2020, 341: 37-48. |
43 | WU Ming-Chung, WU Po-Yeh, LIN Tinghan, et al. Photocatalytic performance of Cu-doped TiO2 nanofibers treated by the hydrothermal synthesis and air-thermal treatment[J]. Applied Surface Science, 2018, 430: 390-398. |
44 | SHAFEI A, SHEIBANI S. Visible light photocatalytic activity of Cu doped TiO2-CNT nanocomposite powder prepared by Sol–gel method[J]. Materials Research Bulletin, 2019, 110: 198-206. |
45 | KANAKARAJU Devagi, Muhamad Hazim BIN YA, Ying-Chin LIM, et al. Combined adsorption/photocatalytic dye removal by copper-titania-fly ash composite[J]. Surfaces and Interfaces, 2020, 19: 100534. |
46 | LU Ziyang, ZHOU Weichao, HUO Pengwei, et al. Performance of a novel TiO2 photocatalyst based on the magnetic floating fly-ash cenospheres for the purpose of treating waste by waste[J]. Chemical Engineering Journal, 2013, 225: 34-42. |
47 | ÖZCAN MÜCAHID, BURAK Birol, FIGEN Kaya. Investigation of photocatalytic properties of TiO2 nanoparticle coating on fly ash and red mud based porous ceramic substrate[J]. Ceramics International, 2021, 47(17): 24270-24280. |
48 | LIN Li, HUANG Manhong, CHEN Donghui. BiOBr/BiOI photocatalyst based on fly ash cenospheres with improved photocatalytic performance[J]. Molecules, 2016, 21(5): 666. |
49 | YANG Lu, WANG Fazhou, HAKKI Amer, et al. The influence of zeolites fly ash bead/TiO2 composite material surface morphologies on their adsorption and photocatalytic performance[J]. Applied Surface Science, 2017, 392: 687-696. |
50 | NADEEM Nimra, YASEEN Muhammad, AHMAD REHAN Zulfiqar, et al. Coal fly ash supported CoFe2O4 nanocomposites: Synergetic Fenton-like and photocatalytic degradation of methylene blue[J]. Environmental Research, 2022, 206: 112280. |
51 | 韩建丽, 王连勇, 杨义凡. 粉煤灰基TiO2/X沸石制备及其光催化氧化NO[J]. 材料与冶金学报, 2022, 21(3): 184-188. |
HAN Jianli, WANG Lianyong, YANG Yifan. Preparation of fly ash based TiO2/X zeolite and its photocatalytic oxidation NO[J]. Journal of Materials and Metallurgy, 2022, 21(3): 184-188. | |
52 | Jun LYU, SHENG Tong, SU Lili, et al. N,S co-doped-TiO2/fly ash beads composite material and visible light photocatalytic activity[J]. Applied Surface Science, 2013, 284: 229-234. |
53 | SHI Tengteng, HAO Xiangyang, MA Jiayi, et al. Preparation of Ag2O/TiO2/fly-ash cenospheres composite photocatalyst[J]. Materials Letters, 2016, 183: 444-447. |
54 | ANDRONIC Luminita, ISAC Luminita, CAZAN Cristina, et al. Simultaneous adsorption and photocatalysis processes based on ternary TiO2-Cu x S-fly ash hetero-structures[J]. Applied Sciences, 2020, 10(22): 8070. |
55 | MINAS Fenta, CHANDRAVANSHI B, LETA S. Chemical precipitation method for chromium removal and its recovery from tannery wastewater in Ethiopia[J]. Chemistry International, 2018, 3(4): 291-305. |
56 | MICHEL Magdalena, TYTKOWSKA Marta, RECZEK Lidia, et al. Technological conditions for the coagulation of wastewater from cosmetic industry[J]. Journal of Ecological Engineering, 2019, 20(5): 78-85. |
57 | REZAKAZEMI Mashallah, KHAJEH Afsaneh, MESBAH Mohammad. Membrane filtration of wastewater from gas and oil production[J]. Environmental Chemistry Letters, 2018, 16(2): 367-388. |
58 | CHENG Yunlang, ZHANG Miao, YAO Guang, et al. Band gap manipulation of cerium doping TiO2 nanopowders by hydrothermal method[J]. Journal of Alloys and Compounds, 2016, 662: 179-184. |
59 | Hüseyin KARACA, Esra ALTıNTıĞ, Devrim TÜRKER, et al. An evaluation of coal fly ash as an adsorbent for the removal of methylene blue from aqueous solutions: Kinetic and thermodynamic studies[J]. Journal of Dispersion Science and Technology, 2018, 39(12): 1800-1807. |
60 | MUSHTAQ Farwa, ZAHID Muhammad, AHMAD BHATTI Ijaz, et al. Possible applications of coal fly ash in wastewater treatment[J]. Journal of Environmental Management, 2019, 240: 27-46. |
61 | WANG Bing, LI Chuang, PANG Jianfeng, et al. Novel polypyrrole-sensitized hollow TiO2/fly ash cenospheres: Synthesis, characterization, and photocatalytic ability under visible light[J]. Applied Surface Science, 2012, 258(24): 9989-9996. |
62 | PATIL Bhumika P, JAYARAM Radha V. Photocatalytic degradation of reactive dyes using flyash supported Ag-TiO2 photocatalysts[J]. Chemistry Select, 2022, 7(5): 1-15. |
63 | CHEN Feng, ZOU Weiwei, QU Wenwu, et al. Photocatalytic performance of a visible light TiO2 photocatalyst prepared by a surface chemical modification process[J]. Catalysis Communications, 2009, 10(11): 1510-1513. |
64 | MALENGREAUX Charline M, PIRARD Sophie L, Géraldine LÉONARD, et al. Study of the photocatalytic activity of Fe3+, Cr3+, La3+ and Eu3+ single-doped and co-doped TiO2 catalysts produced by aqueous Sol-gel processing[J]. Journal of Alloys and Compounds, 2017, 69: 726-738. |
65 | WANG Lizhuo, ZHAO Jinhui, LIU Huimin, et al. Design, modification and application of semiconductor photocatalysts[J]. Journal of the Taiwan Institute of Chemical Engineers, 2018, 93: 590-602. |
66 | Jennyfer DIAZ-ANGULO, Jose LARA-RAMOS, MUESES Miguel, et al. Enhancement of the oxidative removal of diclofenac and of the TiO2 rate of photon absorption in dye-sensitized solar pilot scale CPC photocatalytic reactors[J]. Chemical Engineering Journal, 2020, 381: 122520. |
67 | MEDINETS Sergiy, SKIBA Ute, RENNENBERG Heinz, et al. A review of soil NO transformation: Associated processes and possible physiological significance on organisms[J]. Soil Biology and Biochemistry, 2015, 80: 92-117. |
68 | LI Nan, WANG Chuanyi, ZHANG Ke, et al. Progress and prospects of photocatalytic conversion of low-concentration NO x [J]. Chinese Journal of Catalysis, 2022, 43(9): 2363-2387. |
69 | HUANG Yu, AI Zhihui, Wingkei HO, et al. Ultrasonic spray pyrolysis synthesis of porous Bi2WO6 microspheres and their visible-light-induced photocatalytic removal of NO[J]. The Journal of Physical Chemistry C, 2010, 114(14): 6342-6349. |
70 | TAHIR Muhammad Suleman, MANZOOR Numair, SAGIR Muhammad, et al. RETRACTED: Fabrication of ZnFe2O4 modified TiO2 hybrid composites for photocatalytic reduction of CO2 into methanol[J]. Fuel, 2021, 285: 119206. |
71 | LIU Dongni, CHEN Dongyun, LI Najun, et al. Integration of 3D macroscopic graphene aerogel with 0D-2D AgVO3-g-C3N4 heterojunction for highly efficient photocatalytic oxidation of nitric oxide[J]. Applied Catalysis B: Environmental, 2019, 243: 576-584. |
72 | LI Xuewen, CHEN Dongyun, LI Najun, et al. One-step synthesis of honeycomb-like carbon nitride isotype heterojunction as low-cost, high-performance photocatalyst for removal of NO[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(8): 11063-11070. |
73 | ZHANG Bo, ZHONG Zhaoping, FU Zongming, et al. Experimental studies on photocatalytic oxidation of nitric oxides using titanium dioxide[J]. Journal of Southeast University (English Edition), 2012, 28(2): 179-183. |
74 | WANG Haiqiang, WU Zhongbiao, ZHAO Weirong, et al. Photocatalytic oxidation of nitrogen oxides using TiO2 loading on woven glass fabric[J]. Chemosphere, 2007, 66(1): 185-190. |
75 | GUO Mingzhi, LING Tung-Chai, POON Chi Sun. Photocatalytic NO x degradation of concrete surface layers intermixed and spray-coated with nano-TiO2: Influence of experimental factors[J]. Cement and Concrete Composites, 2017, 83: 279-289. |
76 | YAMAZAKI Suzuko, TANAKA Satoru, TSUKAMOTO Hidekazu. Kinetic studies of oxidation of ethylene over a TiO2 photocatalyst[J]. Journal of Photochemistry and Photobiology A: Chemistry, 1999, 121(1): 55-61. |
77 | XU Mingfeng, CLACK Herek, XIA Tian, et al. Effect of TiO2 and fly ash on photocatalytic NO x abatement of engineered cementitious composites[J]. Construction and Building Materials, 2020, 236: 117559. |
78 | ZOU Weixin, GAO Bin, Yong Sik OK, et al. Integrated adsorption and photocatalytic degradation of volatile organic compounds (VOCs) using carbon-based nanocomposites: A critical review[J]. Chemosphere, 2019, 218: 845-859. |
79 | XUE Juanqin, SHI Long, WANG Peng, et al. Efficient degradation of VOCs using semi-coke activated carbon loaded 2D Z-scheme g-C3N4-Bi2WO6 photocatalysts composites under visible light irradiation[J]. Separation and Purification Technology, 2023, 305: 122535. |
80 | GAO Xue, ZHENG Kai, ZHANG Qiyan, et al. Self-assembly TiO2-RGO/LDHs nanocomposite: Photocatalysis of VOCs degradation in simulation air[J]. Applied Surface Science, 2022, 586: 152882. |
81 | SHAYEGAN Zahra, LEE Chang-Seo, HAGHIGHAT Fariborz. TiO2 photocatalyst for removal of volatile organic compounds in gas phase-A review[J]. Chemical Engineering Journal, 2018, 334: 2408-2439. |
82 | LUÉVANO-HIPÓLITO E, TORRES-MARTÍNEZ L M, CANTÚ-CASTRO L V F. Self-cleaning coatings based on fly ash and bismuth-photocatalysts: Bi2O3, Bi2O2CO3, BiOI, BiVO4, BiPO4 [J]. Construction and Building Materials, 2019, 220: 206-213. |
83 | VEGA-MENDOZA M S, LUÉVANO-HIPÓLITO E, TORRES-MARTÍNEZ Leticia M. Design and fabrication of photocatalytic coatings with α / β - B i 2 O 3 and recycled-fly ash for environmental remediation and solar fuel generation[J]. Ceramics International, 2021, 47(19): 26907-26918. |
84 | 黄玉飞, 李子怡, 黄杨强, 等. 光催化CO2和CH4重整催化剂研究进展[J]. 化工进展, 2023, 42(8): 4247-4263. |
HUANG Yufei, LI Ziyi, HUANG Yangqiang, et al. Research progress of photocatalytic catalysts for reforming CO2 and CH4 [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4247-4263. | |
85 | LI Kan, PENG Bosi, PENG Tianyou. Recent advances in heterogeneous photocatalytic CO2 conversion to solar fuels[J]. ACS Catalysis, 2016, 6(11): 7485-7527. |
86 | LIU Lizhen, WANG Shuobo, HUANG Hongwei, et al. Surface sites engineering on semiconductors to boost photocatalytic CO2 reduction[J]. Nano Energy, 2020, 75: 104959. |
87 | 张睿哲, 李可可, 张凯博, 等. 煤基碳量子点/氮化碳复合材料制备及其光催化还原CO2性能[J]. 化工学报, 2020, 71(6): 2788-2794. |
ZHANG Ruizhe, LI Keke, ZHANG Kaibo, et al. Coal-based carbon quantum dots/carbon nitride composites for photocatalytic CO2 reduction[J]. CIESC Journal, 2020, 71(6): 2788-2794. |
[1] | GUO Peng, LI Hongwei, LI Guixian, JI Dong, WANG Dongliang, ZHAO Xinhong. Mechanisms and coping strategies on deactivation of anode catalysts for direct methanol fuel cells [J]. Chemical Industry and Engineering Progress, 2024, 43(7): 3812-3823. |
[2] | JIANG Huizhen, LUO Kai, WANG Yan, FEI Hua, WU Dengke, YE Zhuocheng, CAO Xiongjin. Construction and application of waste biomass composite phase change materials [J]. Chemical Industry and Engineering Progress, 2024, 43(7): 3934-3945. |
[3] | HUANG Jun, ZHANG Yingjuan, LIN Yintong, WEI Xuechun, WU Yutong, WU Gaobo, MO Junlin, ZHAO Zhenxia, ZHAO Zhongxing. Preparation of silkworm excrement-based porous biocarbon and synergistic adsorption and slow-release performance for monosultap and dinotefuran [J]. Chemical Industry and Engineering Progress, 2024, 43(7): 3964-3971. |
[4] | ZHU Lianyan, ZHOU Xingfu. Mn-doped DSA electrode and optimized application in wastewater treatment process [J]. Chemical Industry and Engineering Progress, 2024, 43(6): 3459-3467. |
[5] | LIU Mengfan, WANG Huawei, WANG Yanan, ZHANG Yanru, JIANG Xutong, SUN Yingjie. Efficiency and mechanism of Bio-FeMnCeO x activated PMS for degradation of tetracycline [J]. Chemical Industry and Engineering Progress, 2024, 43(6): 3492-3502. |
[6] | LIU Kefeng, LIU Taoran, CAI Yong, HU Xuesheng, DONG Weigang, ZHOU Huaqun, GAO Fei. Progress in research and engineering demonstration of CO2 capture technology [J]. Chemical Industry and Engineering Progress, 2024, 43(6): 2901-2914. |
[7] | ZHOU Aiguo, ZHENG Jiale, YANG Chuanruo, YANG Xiaoyi, ZHAO Junde, LI Xingchun. Industrial progress in direct air CO2 capture technology [J]. Chemical Industry and Engineering Progress, 2024, 43(6): 2928-2939. |
[8] | WAN Chengfeng, LI Zhida, ZHANG Chunyue, LU Lu. Highly efficient electrocatalytic water splitting by MXene supported CoP nanorods [J]. Chemical Industry and Engineering Progress, 2024, 43(6): 3232-3239. |
[9] | YANG Lei, QIU Guangwei, LI Siyan, GE Hongcheng, SUN Yuanyuan, WANG Fei, FAN Xiaoguang. Insulin controlled release carriers based on temperature and glucose dual-response copolymer microcapsules [J]. Chemical Industry and Engineering Progress, 2024, 43(6): 3277-3284. |
[10] | LI Siwen, LEI Min, LIU Yushuang, DONG Zhaoqi, XUE Lili, ZHAO Jianshe. Research progress of ionic liquid-based heteropolyacids in fuel oxidation desulfurization [J]. Chemical Industry and Engineering Progress, 2024, 43(6): 3322-3335. |
[11] | YAO Xue, WU Shuhui, YANG Yang, WANG Xiao, FENG Lei, FENG Xuedong, MA Yanfei. Treatment of oily wastewater by oily sludge-based biochar [J]. Chemical Industry and Engineering Progress, 2024, 43(6): 3398-3409. |
[12] | XIE Zhongkai, SHI Weidong. Research progress of charge polarized photocatalysts in photoconversion carbon dioxide into multi-carbon chemicals [J]. Chemical Industry and Engineering Progress, 2024, 43(5): 2714-2722. |
[13] | ZHOU Yuntao, WANG Hongxing, LI Xingang, CUI Lifeng. Application and research progress of CeO2 support in CO2 hydrogenation to methanol [J]. Chemical Industry and Engineering Progress, 2024, 43(5): 2723-2738. |
[14] | WU Chenhe, LIU Yumin, YANG Xinmin, CUI Jiwei, JIANG Shaokun, YE Jinhua, LIU Lequan. Particulate photocatalysts for light-driven overall water splitting [J]. Chemical Industry and Engineering Progress, 2024, 43(4): 1810-1822. |
[15] | LIU Yurong, WANG Xingbao, LI Wenying. Regulation of catalyst acid sites and its effect on the deep hydrogenation performance of anthracene [J]. Chemical Industry and Engineering Progress, 2024, 43(4): 1832-1839. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |