Chemical Industry and Engineering Progress ›› 2023, Vol. 42 ›› Issue (11): 5956-5968.DOI: 10.16085/j.issn.1000-6613.2022-2344
• Resources and environmental engineering • Previous Articles
CHEN Yanrui(), ZHANG Xingran(), LI Fang
Received:
2022-12-21
Revised:
2023-01-13
Online:
2023-12-15
Published:
2023-11-20
Contact:
ZHANG Xingran
通讯作者:
张星冉
作者简介:
陈彦睿(1999—),男,硕士研究生,研究方向为膜法污水处理与资源化技术。E-mail:chyanrui@126.com。
基金资助:
CLC Number:
CHEN Yanrui, ZHANG Xingran, LI Fang. Research progress of antifouling membranes based on layer-by-layer self-assembly technique[J]. Chemical Industry and Engineering Progress, 2023, 42(11): 5956-5968.
陈彦睿, 张星冉, 李方. 基于层层自组装技术的抗污染膜研究进展[J]. 化工进展, 2023, 42(11): 5956-5968.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2022-2344
类别 | 聚电解质名称 | 结构式 | 主要功能基团 | 功能基团电负性XG[ | 特点 | 参考文献 |
---|---|---|---|---|---|---|
阴离子聚电解质 | 聚苯乙烯磺酸钠,PSS | 磺酸基 | 3.07 | 亲水性强,与其他的磺酸系物相比,毒性低,阴离子电解活化较好 | [ | |
木质素磺酸钠,SL | 自然界含量丰富,成本低廉,对环境友好 | [ | ||||
聚4-苯乙烯磺酸-马来酸,PSSMA | 磺酸基/羧基 | 3.07/2.69 | 亲水性强,能与水中Ca2+、Mg2+等金属离子形成稳定的络合物 | [ | ||
海藻酸钠,SA | 羧基 | 2.69 | 价格低廉,亲水性强 | [ | ||
聚丙烯酸,PAA | 亲水性强,能与水中Ca2+、Mg2+等金属离子形成稳定的络合物 | [ | ||||
聚甲基丙烯酸,PMAA | 甲氧基酰胺基 | 2.56 | 亲水性强,能与水中Ca2+、Mg2+等金属离子形成稳定的络合物 | [ | ||
羧甲基壳聚糖,NO-CMC | 羧基/氨基 | 2.69/2.61 | 成本低廉,亲水性强,具有良好抑菌作用 | [ | ||
阳离子聚电解质 | 聚乙烯亚胺,PEI | 氨基 | 2.61 | 亲水性强,分子量小,具有较高的电荷密度和反应活性 | [ | |
聚丙烯胺盐酸盐,PAH | 亲水性强,对pH变化不敏感,有抗氯性 | [ | ||||
壳聚糖,CS | 成本低廉、来源广泛,亲水性强,无毒性 | [ | ||||
聚二烯丙基二甲基氯化铵,PDDA | 季铵基 | — | 亲水性强,对pH变化不敏感,有抗氯性 | [ |
类别 | 聚电解质名称 | 结构式 | 主要功能基团 | 功能基团电负性XG[ | 特点 | 参考文献 |
---|---|---|---|---|---|---|
阴离子聚电解质 | 聚苯乙烯磺酸钠,PSS | 磺酸基 | 3.07 | 亲水性强,与其他的磺酸系物相比,毒性低,阴离子电解活化较好 | [ | |
木质素磺酸钠,SL | 自然界含量丰富,成本低廉,对环境友好 | [ | ||||
聚4-苯乙烯磺酸-马来酸,PSSMA | 磺酸基/羧基 | 3.07/2.69 | 亲水性强,能与水中Ca2+、Mg2+等金属离子形成稳定的络合物 | [ | ||
海藻酸钠,SA | 羧基 | 2.69 | 价格低廉,亲水性强 | [ | ||
聚丙烯酸,PAA | 亲水性强,能与水中Ca2+、Mg2+等金属离子形成稳定的络合物 | [ | ||||
聚甲基丙烯酸,PMAA | 甲氧基酰胺基 | 2.56 | 亲水性强,能与水中Ca2+、Mg2+等金属离子形成稳定的络合物 | [ | ||
羧甲基壳聚糖,NO-CMC | 羧基/氨基 | 2.69/2.61 | 成本低廉,亲水性强,具有良好抑菌作用 | [ | ||
阳离子聚电解质 | 聚乙烯亚胺,PEI | 氨基 | 2.61 | 亲水性强,分子量小,具有较高的电荷密度和反应活性 | [ | |
聚丙烯胺盐酸盐,PAH | 亲水性强,对pH变化不敏感,有抗氯性 | [ | ||||
壳聚糖,CS | 成本低廉、来源广泛,亲水性强,无毒性 | [ | ||||
聚二烯丙基二甲基氯化铵,PDDA | 季铵基 | — | 亲水性强,对pH变化不敏感,有抗氯性 | [ |
类型 | 聚电解质名称 | 结构式 | 参考文献 |
---|---|---|---|
季铵类阳离子聚电解质 | 2-羟丙基三甲基氯化铵壳聚糖,HACC | [ | |
两亲性季铵壳聚糖,CS612 | [ | ||
胍类阳离子聚电解质 | 聚六亚甲基胍盐酸盐,PHGH | [ | |
聚胍-六亚甲基二胺-PEI,GHPEI | [ |
类型 | 聚电解质名称 | 结构式 | 参考文献 |
---|---|---|---|
季铵类阳离子聚电解质 | 2-羟丙基三甲基氯化铵壳聚糖,HACC | [ | |
两亲性季铵壳聚糖,CS612 | [ | ||
胍类阳离子聚电解质 | 聚六亚甲基胍盐酸盐,PHGH | [ | |
聚胍-六亚甲基二胺-PEI,GHPEI | [ |
1 | LI Xianhui, MO Yinghui, QING Weihua, et al. Membrane-based technologies for lithium recovery from water lithium resources: A review[J]. Journal of Membrane Science, 2019, 591: 117317. |
2 | YUE Xuejie, LI Zhangdi, ZHANG Tao, et al. Design and fabrication of superwetting fiber-based membranes for oil/water separation applications[J]. Chemical Engineering Journal, 2019, 364: 292-309. |
3 | Ahmed AL-AMOUDI, LOVITT Robert W. Fouling strategies and the cleaning system of NF membranes and factors affecting cleaning efficiency[J]. Journal of Membrane Science, 2007, 303(1/2): 4-28. |
4 | WENTEN I G, KHOIRUDDIN. Reverse osmosis applications: Prospect and challenge[J]. Desalination, 2016, 391: 112-125. |
5 | ZHANG Runnan, LIU Yanan, HE Mingrui, et al. Antifouling membranes for sustainable water purification: strategies and mechanisms[J]. Chemical Society Reviews, 2016, 45(21): 5888-5924. |
6 | SHE Qianhong, WANG Rong, FANE Anthony G, et al. Membrane fouling in osmotically driven membrane processes: A review[J]. Journal of Membrane Science, 2016, 499: 201-233. |
7 | SHAHKARAMIPOUR N, TRAN T N, RAMANAN S, et al. Membranes with surface-enhanced antifouling properties for water purification[J]. Membranes, 2017, 7(1): 13. |
8 | LEE S, KWEON J H, CHOI Y H, et al. Effects of flocculent aggregates on microfiltration with coagulation pretreatment of high turbidity waters[J]. Water Science and Technology, 2006, 53(7): 191-197. |
9 | VAN DER BRUGGEN B, VANDECASTEELE C. Distillation vs. membrane filtration: Overview of process evolutions in seawater desalination[J]. Desalination, 2002, 143(3): 207-218. |
10 | MANNINA G, COSENZA A. The fouling phenomenon in membrane bioreactors: Assessment of different strategies for energy saving[J]. Journal of Membrane Science, 2013, 444: 332-344. |
11 | KIM J, HONG S. Optimizing seawater reverse osmosis with internally staged design to improve product water quality and energy efficiency[J]. Journal of Membrane Science, 2018, 568: 76-86. |
12 | LEBRON Y A R, MOREIRA V R, COSTA P R DA, et al. Chemical cleaning procedures on permeability recovery and lifespan of MBR membranes treating petroleum refinery wastewater: From bench- to pilot-scale applications[J]. Journal of Water Process Engineering, 2021, 44: 102411. |
13 | SALEEM H, ZAIDI S J. Nanoparticles in reverse osmosis membranes for desalination: A state of the art review[J]. Desalination, 2020, 475: 114171. |
14 | GAN Xinyan, LIN Tao, JIANG Fuchun, et al. Impacts on characteristics and effluent safety of PVDF ultrafiltration membranes aged by different chemical cleaning types[J]. Journal of Membrane Science, 2021, 640: 119770. |
15 | ABID H S, JOHNSON D J, HASHAIKEH R, et al. A review of efforts to reduce membrane fouling by control of feed spacer characteristics[J]. Desalination, 2017, 420: 384-402. |
16 | HWANG T, PARK S J, OH Y K, et al. Harvesting of Chlorella sp. KR-1 using a cross-flow membrane filtration system equipped with an anti-fouling membrane[J]. Bioresource Technology, 2013, 139: 379-382. |
17 | XU Jun, WANG Zhi, WANG Jixiao, et al. Positively charged aromatic polyamide reverse osmosis membrane with high anti-fouling property prepared by polyethylenimine grafting[J]. Desalination, 2015, 365: 398-406. |
18 | CHENG Chong, MA Lang, WU Danfeng, et al. Remarkable pH-sensitivity and anti-fouling property of terpolymer blended polyethersulfone hollow fiber membranes[J]. Journal of Membrane Science, 2011, 378(1/2): 369-381. |
19 | SHEN Jiangnan, LI Dandan, JIANG Feiyan, et al. Purification and concentration of collagen by charged ultrafiltration membrane of hydrophilic polyacrylonitrile blend[J]. Separation and Purification Technology, 2009, 66(2): 257-262. |
20 | GHIORGHITA C A, MIHAI M. Recent developments in layer-by-layer assembled systems application in water purification[J]. Chemosphere, 2021, 270: 129477. |
21 | DECHER G, HONG J D. Buildup of ultrathin multilayer films by a self-assembly process, 1 Consecutive adsorption of anionic and cationic bipolar amphiphiles on charged surfaces[J]. Makromolekulare Chemie Macromolecular Symposia, 1991, 46(1): 321-327. |
22 | RICHARDSON J J, BJORNMALM M, CARUSO F. Technology-driven layer-by-layer assembly of nanofilms[J]. Science, 2015, 348(6233). |
23 | DECHER G. Fuzzy nanoassemblies: toward layered polymeric multicomposites[J]. Science, 1997, 277(5330): 1232-1237. |
24 | 仝维鋆, 高长有. 层层组装微胶囊的制备及其智能响应与物质包埋释放性能[J]. 高等学校化学学报, 2008, 29(7): 1285-1298. |
TONG Weijun, GAO Changyou. Layer-by-layer assembled microcapsules: Fabrication, stimuli-responsivity, loading and release[J]. Chemical Journal of Chinese Universities, 2008, 29(7): 1285-1298. | |
25 | WANG L Y, WANG Z Q, ZHANG X, et al. A new approach for the fabrication of an alternating multilayer film of poly(4-vinylpyridine) and poly(acrylic acid) based on hydrogen bonding[J]. Macromolecular Rapid Communications, 1997, 18(6): 509-514. |
26 | SUKHISHVILI S A, GRANICK S. Layered, erasable, ultrathin polymer films[J]. Journal of the American Chemical Society, 2000, 122(39): 9550-9551. |
27 | SUKHISHVILI S A, GRANICK S. Layered, erasable polymer multilayers formed by hydrogen-bonded sequential self-assembly[J]. Macromolecules, 2002, 35(1): 301-310. |
28 | AMIGONI S, DE GIVENCHY E T, DUFAY M, et al. Covalent layer-by-Layer assembled superhydrophobic organic-inorganic hybrid films[J]. Langmuir, 2009, 25(18): 11073-11077. |
29 | ZHAO Yunong, HUANG Ying, HU Wei, et al. Highly sensitive flexible strain sensor based on threadlike spandex substrate coating with conductive nanocomposites for wearable electronic skin[J]. Smart Materials and Structures, 2019, 28(3): 035004. |
30 | RICHARDSON J J, CUI J, BJORNMALM M, et al. Innovation in layer-by-layer assembly[J]. Chemical Reviews, 2016, 116(23): 14828-14867. |
31 | LI Meng, LU Kang jia, WANG Lianjun, et al. Janus membranes with asymmetric wettability via a layer-by-layer coating strategy for robust membrane distillation[J]. Journal of Membrane Science, 2020, 603: 118031. |
32 | BASSIL J, ALEM H, HENRION G, et al. Tailored adhesion behavior of polyelectrolyte thin films deposited on plasma-treated poly(dimethylsiloxane) for functionalized membranes[J]. Applied Surface Science, 2016, 369: 482-491. |
33 | OMI F R, CHOUDHURY M R, ANWAR N, et al. Highly conductive ultrafiltration membrane via vacuum filtration assisted layer-by-layer deposition of functionalized carbon nanotubes[J]. Industrial & Engineering Chemistry Research, 2017, 56(30): 8474-8484. |
34 | GUO Hongxia, MA Yiwen, SUN Pengzhi, et al. Self-cleaning and antifouling nanofiltration membranes—Superhydrophilic multilayered polyelectrolyte/CSH composite films towards rejection of dyes[J]. RSC Advances, 2015, 5(78): 63429-63438. |
35 | WANG Lin, WANG Naixin, LI Jie, et al. Layer-by-layer self-assembly of polycation/GO nanofiltration membrane with enhanced stability and fouling resistance[J]. Separation and Purification Technology, 2016, 160: 123-131. |
36 | ASADI A, ZINATIZADEH A A, VAN LOOSDRECHT M. Hygienic water production in an innovative air lift bioreactor followed by high antifouling ultrafiltration membranes modified by layer-by-layer assembly[J]. Journal of Cleaner Production, 2018, 182: 27-37. |
37 | PRASANNAN Adhimoorthy, UDOMSIN Jittrakorn, TSAI Hsieh-Chih, et al. Robust underwater superoleophobic membranes with bio-inspired carrageenan/laponite multilayers for the effective removal of emulsions, metal ions, and organic dyes from wastewater[J]. Chemical Engineering Journal, 2020, 391: 123585. |
38 | FENG Qingying, ZHAN Yingqing, YANG Wei, et al. Layer-by-layer construction of super-hydrophilic and self-healing polyvinylidene fluoride composite membrane for efficient oil/water emulsion separation[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 629: 127462. |
39 | GAO Shoujian, ZHU Yuzhang, WANG Jinliang, et al. Layer-by-layer construction of Cu2+/alginate multilayer modified ultrafiltration membrane with bioinspired superwetting property for high-efficient crude-oil-in-water emulsion separation[J]. Advanced Functional Materials, 2018, 28(49): 1801944. |
40 | HUANG Rui, LIU Zhiquan, YAN Boyin, et al. Layer-by-layer assembly of high negatively charged polycarbonate membranes with robust antifouling property for microalgae harvesting[J]. Journal of Membrane Science, 2020, 595: 117488. |
41 | GAO Chunmei, CHEN Hongyu, LIU Shenghui, et al. Preparing hydrophilic and antifouling polyethersulfone membrane with metal-polyphenol networks based on reverse thermally induced phase separation method[J]. Surfaces and Interfaces, 2021, 25: 101301. |
42 | GUO Dongxue, XIAO Yirong, LI Tong, et al. Fabrication of high-performance composite nanofiltration membranes for dye wastewater treatment: Mussel-inspired layer-by-layer self-assembly[J]. Journal of Colloid and Interface Science, 2020, 560: 273-283. |
43 | HUHEEY J E. The electronegativity of multiply bonded groups[J]. The Journal of Physical Chemistry, 1966, 70(7): 2086-2092. |
44 | BRATSCH S G. Electronegativity equalization with Pauling units[J]. Journal of Chemical Education, 1984, 61(7): 588. |
45 | HUHEEY J E. The electronegativity of groups[J]. The Journal of Physical Chemistry, 1965, 69(10): 3284-3291. |
46 | SANDERSON R T. Relation of stability ratios to Pauling electronegativities[J]. The Journal of Chemical Physics, 1955, 23(12): 2467-2468. |
47 | SANDERSON R T. Principles of electronegativity part I. General nature[J]. Journal of Chemical Education, 1988, 65(2): 112. |
48 | SANDERSON R T. Principles of electronegativity.2. Applications[J]. Journal of chemical education, 1988, 65(3): 227-231. |
49 | 李鹏. 超原子理论计算基团电负性的研究[J]. 广州化学, 2016, 41(05): 42-45. |
LI Peng. Calculating group electronegativity with ultra-atom thought[J]. Guangzhou Chemistry, 2016, 41(5): 42-45. | |
50 | BRATSCH S G. A group electronegativity method with Pauling units[J]. Journal of Chemical Education, 1985, 62(2): 101. |
51 | ZHAO Zhijuan, SHI Shaoyuan, CAO Hongbin, et al. Layer-by-layer assembly of anion exchange membrane by electrodeposition of polyelectrolytes for improved antifouling performance[J]. Journal of Membrane Science, 2018, 558: 1-8. |
52 | LIU Lifen, GU Xingling, QI Saren, et al. Modification of polyamide-urethane (PAUt) thin film composite membrane for improving the reverse osmosis performance[J]. Polymers, 2018, 10(4): 346. |
53 | ZHANG Guangyu, LI Longbiao, HUANG Yan, et al. Fouling-resistant membranes for separation of oil-in-water emulsions[J]. RSC Advances, 2018, 8(10): 5306-5311. |
54 | LIANG Yuanzhe, LIN Shihong. Intercalation of zwitterionic surfactants dramatically enhances the performance of low-pressure nanofiltration membrane[J]. Journal of Membrane Science, 2020, 596: 117726. |
55 | LI Qiang, ZHANG Na, LI Zhenghua, et al. Brush assisted layer-by-layer assembled lignin/polyelectrolyte membrane[J]. Materials Letters, 2021, 292: 129650. |
56 | SHAMAEI L, KHORSHIDI B, ISLAM M A, et al. Industrial waste lignin as an antifouling coating for the treatment of oily wastewater: Creating wealth from waste[J]. Journal of Cleaner Production, 2020, 256: 120304. |
57 | XIA Yu, WANG Zegang, CHEN Liye, et al. Nanoscale polyelectrolyte/metal ion hydrogel modified RO membrane with dual anti-fouling mechanism and superhigh transport property[J]. Desalination, 2020, 488: 114510. |
58 | MA W, RAHAMAN M, THERIEN-AUBIN H. Controlling biofouling of reverse osmosis membranes through surface modification via grafting patterned polymer brushes[J]. Journal of Water Reuse and Desalination, 2015, 5(3): 326-334. |
59 | GUO J, WANG C, CHEN S, et al. Highly efficient self-cleaning of heavy polyelectrolyte coated electrospun polyacrylonitrile nanofibrous membrane for separation of oil/water emulsions with intermittent pressure[J]. Separation and Purification Technology, 2020, 234: 116106. |
60 | CAI Yahui, CHEN Dongyun, LI Najun, et al. Self-healing and superwettable nanofibrous membranes for efficient separation of oil-in-water emulsions[J]. Journal of Materials Chemistry A, 2019, 7(4): 1629-1637. |
61 | XIONG Caihua, HUANG Zhonghua, OUYANG Zhiyu, et al. Improvement of the separation and antibiological fouling performance using layer-by-layer self-assembled nanofiltration membranes[J]. Journal of Coatings Technology and Research, 2020, 17(3): 731-746. |
62 | LI Qiang, ZHANG Xiaotai, ZHOU Lianwen, et al. Polypeptide modified polyelectrolyte-based membrane with excellent antimicrobial property and permeability via brush assisted assembly and chlorination treatment[J]. Reactive and Functional Polymers, 2021, 162: 104870. |
63 | Minju CHA, Chanhee BOO, SONG In-Hyuck, et al. Investigating the potential of ammonium retention by graphene oxide ceramic nanofiltration membranes for the treatment of semiconductor wastewater[J]. Chemosphere, 2022, 286: 131745. |
64 | MA Wenjing, LI Yuansheng, GAO Shuting, et al. Self-healing and superwettable nanofibrous membranes with excellent stability toward multifunctional applications in water purification[J]. ACS Applied Materials & Interfaces, 2020, 12(20): 23644-23654. |
65 | BAIG U, WAHEED A, SALIH H A, et al. Facile modification of NF membrane by multi-layer deposition of polyelectrolytes for enhanced fouling resistance[J]. Polymers, 2021, 13(21): 3728. |
66 | LI Qiang, CHEN George Q, LIU Liang, et al. Spray assisted layer-by-layer assembled one-bilayer polyelectrolyte reverse osmosis membranes[J]. Journal of Membrane Science, 2018, 564: 501-507. |
67 | WANG Yuqi, HE Yi, LI Hongjie, et al. Layer-by-layer construction of CS-CNCs multilayer modified mesh with robust anti-crude-oil-fouling performance for efficient oil/water separation[J]. Journal of Membrane Science, 2021, 639: 119776. |
68 | ZHANG Hao, YU Li, MA Xiaohong, et al. Self-cleaning poly(L-dopa)-based coatings with exceptional underwater oil repellency for crude oil/water separation[J]. Applied Surface Science, 2020, 510: 145402. |
69 | HELALI Nusrat, SHAMAEI Laleh, RASTGAR Masoud, et al. Development of layer-by-layer assembled polyamide-imide membranes for oil sands produced water treatment[J]. Scientific Reports, 2021, 11: 8098. |
70 | SHEN Liguo, CUI Xia, YU Genying, et al. Thermodynamic assessment of adsorptive fouling with the membranes modified via layer-by-layer self-assembly technique[J]. Journal of Colloid and Interface Science, 2017, 494: 194-203. |
71 | BABA A, KANEKO F, ADVINCULA R C. Polyelectrolyte adsorption processes characterized in situ using the quartz crystal microbalance technique: Alternate adsorption properties in ultrathin polymer films[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2000, 173(1/2/3): 39-49. |
72 | MALAISAMY R, BRUENING M L. High-flux nanofiltration membranes prepared by adsorption of multilayer polyelectrolyte membranes on polymeric supports[J]. Langmuir, 2005, 21(23): 10587-10592. |
73 | ZHAO Yan, GAO Congjie, VAN DER BRUGGEN Bart. Technology-driven layer-by-layer assembly of a membrane for selective separation of monovalent anions and antifouling[J]. Nanoscale, 2019, 11(5): 2264-2274. |
74 | NEMATI M, HOSSEINI S M, SHABANIAN M. Developing thin film heterogeneous ion exchange membrane modified by 2-acrylamido-2-methylpropanesulfonic acid hydrogel-co-super activated carbon nanoparticles coating layer[J]. Korean Journal of Chemical Engineering, 2017, 34(6): 1813-1821. |
75 | SALEHI H, RASTGAR M, SHAKERI A. Anti-fouling and high water permeable forward osmosis membrane fabricated via layer by layer assembly of chitosan/graphene oxide[J]. Applied Surface Science, 2017, 413: 99-108. |
76 | ZHAO Jingjing, YANG Yu, LI Chen, et al. Fabrication of GO modified PVDF membrane for dissolved organic matter removal: Removal mechanism and antifouling property[J]. Separation and Purification Technology, 2019, 209: 482-490. |
77 | YUE Rengyu, GUAN Jing, ZHANG Chunmiao, et al. Photoinduced superwetting membranes for separation of oil-in-water emulsions[J]. Separation and Purification Technology, 2020, 241: 116536. |
78 | JANUARIO E F D, CALSAVARA M A, VIDOVIX T B, et al. Membrane surface functionalization by the deposition of polyvinyl alcohol and graphene oxide for dyes removal and treatment of a simulated wastewater[J]. Chemical Engineering and Processing-Process Intensification, 2022, 170: 108725. |
79 | WANG Haiye, ZHAO Xinzhen, HE Chunju. Constructing a novel zwitterionic surface of PVDF membrane through the assembled chitosan and sodium alginate[J]. International Journal of Biological Macromolecules, 2016, 87: 443-448. |
80 | ZIROFF J, FORSTER F, SCHOELL A, et al. Hybridization of organic molecular orbitals with substrate states at interfaces: PTCDA on silver[J]. Physical Review Letters, 2010, 104(23): 233004. |
81 | LI Renjie, WANG Xuena, CAI Xiang, et al. A facile strategy to prepare superhydrophilic polyvinylidene fluoride (PVDF) based membranes and the thermodynamic mechanisms underlying the improved performance[J]. Separation and Purification Technology, 2018, 197: 271-280. |
82 | QI Yunlong, TONG Tiezheng, ZHAO Song, et al. Reverse osmosis membrane with simultaneous fouling- and scaling-resistance based on multilayered metal-phytic acid assembly[J]. Journal of Membrane Science, 2020, 601: 117888. |
83 | XIONG Shu, XU Sheng, Phommachanh Anny, et al. Versatile surface modification of TFC membrane by layer-by-layer assembly of phytic acid-metal complexes for comprehensively enhanced FO performance[J]. Environmental Science & Technology, 2019, 53(6): 3331-3341. |
84 | 李琪, 高昌录, 孙秀花. 两性离子聚合物防污涂层研究进展[J]. 合成材料老化与应用, 2018, 47(3): 94-99. |
LI Qi, GAO Changlu, SUN Xiuhua. Research progress of zwitterionic polymer antifouling coatings[J]. Synthetic Materials Aging and Application, 2018, 47(3): 94-99. | |
85 | ZHU Yadong, YU Xufeng, ZHANG Tonghui, et al. Constructing zwitterionic coatings on thin-film nanofibrous composite membrane substrate for multifunctionality[J]. Applied Surface Science, 2019, 483: 979-990. |
86 | SHEN Si, WANG Ning, JIA Jing, et al. Constructing the basal nanofibers suit of layer-by-layer self-assembly membranes as anion exchange membranes[J]. Journal of Molecular Liquids, 2022, 350: 118536. |
87 | JUNG J, LI L, YEH C K, et al. Amphiphilic quaternary ammonium chitosan/sodium alginate multilayer coatings kill fungal cells and inhibit fungal biofilm on dental biomaterials[J]. Materials Science & Engineering C, Materials for Biological Applications, 2019, 104: 109961. |
88 | ALLEN M J, MORBY A P, WHITE G F. Cooperativity in the binding of the cationic biocide polyhexamethylene biguanide to nucleic acids[J]. Biochemical and Biophysical Research Communications, 2004, 318(2): 397-404. |
89 | MEI Yan, YAO Chen, LI Xinsong. A simple approach to constructing antibacterial and anti-biofouling nanofibrous membranes[J]. Biofouling, 2014, 30(3): 313-322. |
90 | ZHAO Liman, CHEN Rongrong, LOU Liangjie, et al. Layer-by-Layer-Assembled antifouling films with surface microtopography inspired by Laminaria japonica[J]. Applied Surface Science, 2020, 511: 145564. |
91 | PAN Yuanfeng, XIAO Huining. Rendering rayon fibres antimicrobial and thermal-responsive via layer-by-layer self-assembly of functional polymers[J]. Advanced Materials Research, 2011, 236/237/238: 1103-1106. |
92 | TONG Tiezheng, ZHAO Song, Boo Chanhee, et al. Relating silica scaling in reverse osmosis to membrane surface properties[J]. Environmental Science & Technology, 2017, 51(8): 4396-4406. |
93 | QUAY A N, TONG Tiezheng, HASHMI S M, et al. Combined organic fouling and inorganic scaling in reverse osmosis: role of protein-silica interactions[J]. Environmental Science & Technology, 2018, 52(16): 9145-9153. |
94 | NNEBUO C S, HAMBSCH D, NIR O. Elucidating morphological effects in membrane mineral fouling using real-time particle imaging and impedance spectroscopy[J]. Environmental Science: Water Research & Technology, 2022, 8(7): 1444-1457. |
95 | LI Mengna, SUN Xuefei, WANG Lin, et al. Forward osmosis membranes modified with laminar MoS2 nanosheet to improve desalination performance and antifouling properties[J]. Desalination, 2018, 436: 107-113. |
96 | HAN Yilong, GIORNO L, GUGLIUZZA A. Photoactive gel for assisted cleaning during olive mill wastewater membrane microfiltration[J]. Membranes, 2017, 7(4): 66. |
97 | YIN Yingying, ZHU Lei, CHANG Xiao, et al. Bioinspired anti-oil-fouling hierarchical structured membranes decorated with urchin-like α-FeOOH particles for efficient oil/water mixture and crude oil-in-water emulsion separation[J]. ACS Applied Materials & Interfaces, 2020, 12(45): 50962-50970. |
98 | AHMAD J, WEN Xianghua, LI Fengjuan, et al. Novel triangular silver nanoparticle modified membranes for enhanced antifouling performance[J]. RSC Advances, 2019, 9(12): 6733-6744. |
99 | LI Xin, XU Yilin, Kunli GOH, et al. Layer-by-layer assembly based low pressure biocatalytic nanofiltration membranes for micropollutants removal[J]. Journal of Membrane Science, 2020, 615: 118514. |
100 | KAZEMI M, JAHANSHAHI M, PEYRAVI M. Hexavalent chromium removal by multilayer membrane assisted by photocatalytic couple nanoparticle from both permeate and retentate[J]. Journal of Hazardous Materials, 2018, 344: 12-22. |
101 | IZQUIERDO A, ONO S S, VOEGEL J C, et al. Dipping versus spraying: Exploring the deposition conditions for speeding up layer-by-layer assembly[J]. Langmuir, 2005, 21(16): 7558-7567. |
102 | MERRILL M H, SUN C T. Fast, simple and efficient assembly of nanolayered materials and devices[J]. Nanotechnology, 2009, 20(7): 075606. |
103 | ALONGI J, CAROSIO F, FRACHE A, et al. Layer by Layer coatings assembled through dipping, vertical or horizontal spray for cotton flame retardancy[J]. Carbohydrate Polymers, 2013, 92(1): 114-119. |
104 | CHIARELLI P A, JOHAL M S, CASSON J L, et al. Controlled fabrication of polyelectrolyte multilayer thin films using spin-assembly[J]. Advanced Materials, 2001, 13(15): 1167-1171. |
105 | SEO J, LUTKENHAUS J L, KIM J, et al. Effect of the layer-by-layer (LbL) deposition method on the surface morphology and wetting behavior of hydrophobically modified PEO and PAA LbL films[J]. Langmuir, 2008, 24(15): 7995-8000. |
106 | MENG Yingshuang, SHU Lun, XIE Linhua, et al. High performance nanofiltration in BUT-8(A)/PDDA mixed matrix membrane fabricated by spin-assisted layer-by-layer assembly[J]. Journal of the Taiwan Institute of Chemical Engineers, 2020, 115: 331-338. |
107 | SUN J Q, GAO M Y, FELDMANN J. Electric field directed layer-by-layer assembly of highly fluorescent CdTe nanoparticles[J]. Journal of Nanoscience and Nanotechnology, 2001, 1(2): 133-136. |
[1] | ZHANG Zuoqun, GAO Yang, BAI Chaojie, XUE Lixin. Thin-film nanocomposite (TFN) mixed matrix reverse osmosis (MMRO) membranes from secondary interface polymerization containing in situ grown ZIF-8 nano-particles [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 364-373. |
[2] | XU Chunshu, YAO Qingda, LIANG Yongxian, ZHOU Hualong. Research progress on functionalization strategies of covalent organic frame materials and its adsorption properties for Hg(Ⅱ) and Cr(Ⅵ) [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 461-478. |
[3] | WANG Chen, BAI Haoliang, KANG Xue. Performance study of high power UV-LED heat dissipation and nano-TiO2 photocatalytic acid red 26 coupling system [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4905-4916. |
[4] | LI Xuejia, LI Peng, LI Zhixia, JIN Dunshang, GUO Qiang, SONG Xufeng, SONG Peng, PENG Yuelian. Experimental comparation on anti-scaling and anti-wetting ability of hydrophilic and hydrophobic modified membranes [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4458-4464. |
[5] | XU Jie, XIA Longbo, LUO Ping, ZOU Dong, ZHONG Zhaoxiang. Progress in preparation and application of omniphobic membranes for membrane distillation process [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 3943-3955. |
[6] | WANG Baoying, WANG Huangying, YAN Junying, WANG Yaoming, XU Tongwen. Research progress of polymer inclusion membrane in metal separation and recovery [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 3990-4004. |
[7] | PAN Yichang, ZHOU Rongfei, XING Weihong. Advanced microporous membranes for efficient separation of same-carbon-number hydrocarbon mixtures: State-of-the-art and challenges [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 3926-3942. |
[8] | LU Shijian, LIU Miaomiao, YANG Fei, ZHANG Junjie, CHEN Siming, LIU Ling, KANG Guojun, LI Qingfang. Gas-liquid two-phase flow and mass transfer characteristics in an improved CO2 wet-wall column [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3457-3467. |
[9] | FENG Jianghan, SONG Fang. Research progress of anion exchange membrane water electrolysis cells [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3501-3509. |
[10] | CHEN Xiangli, LI Qianqian, ZHANG Tian, LI Biao, LI Kangkang. Research progress on self-healing oil/water separation membranes [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3600-3610. |
[11] | YANG Hongmei, GAO Tao, YU Tao, QU Chengtun, GAO Jiapeng. Treatment of refractory organics sulfonated phenolic resin with ferrate [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3302-3308. |
[12] | REN Zhongyuan, HE Jinlong, YUAN Qing. Research progress on intercrystalline defects control and remediation technologies for zeolite membranes [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2454-2463. |
[13] | SUN Luqin, LU Huixia, WANG Jianyou. Separation of lysozyme from egg white by electrodialysis with ultrafiltration membrane(EDUF) process [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2262-2271. |
[14] | YU Jie, ZHANG Wenlong. Development status and progress of lithium ion battery separator [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 1760-1768. |
[15] | ZHAO Zhenzhen, ZHENG Xi, WANG Xueqi, WANG Tao, FENG Yingnan, REN Yongsheng, ZHAO Zhiping. Research progress on microporous supporting substrate of polyamide composite membrane [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 1917-1933. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |