Chemical Industry and Engineering Progress ›› 2023, Vol. 42 ›› Issue (11): 5920-5928.DOI: 10.16085/j.issn.1000-6613.2022-2313
• Resources and environmental engineering • Previous Articles
ZHAO Dongsheng1(), SONG Jiyu1, LIN Zhiquan2, LIU Guicai2(), WU Yibo1, HUANG Li1
Received:
2022-12-13
Revised:
2023-02-13
Online:
2023-12-15
Published:
2023-11-20
Contact:
LIU Guicai
赵东升1(), 宋基瑜1, 林治全2, 刘贵彩2(), 吴怡波1, 黄立1
通讯作者:
刘贵彩
作者简介:
赵东升(1984—),男,博士,副教授,研究方向为膜分离技术。E-mail:zds123123@yeah.net。
基金资助:
CLC Number:
ZHAO Dongsheng, SONG Jiyu, LIN Zhiquan, LIU Guicai, WU Yibo, HUANG Li. Research progress on influencing factors and control strategies of silica scale formation in nanofiltration/reverse osmosis membranes[J]. Chemical Industry and Engineering Progress, 2023, 42(11): 5920-5928.
赵东升, 宋基瑜, 林治全, 刘贵彩, 吴怡波, 黄立. 纳滤/反渗透膜硅垢形成影响因素及控制策略研究进展[J]. 化工进展, 2023, 42(11): 5920-5928.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2022-2313
1 | 王志伟, 戴若彬, 张星冉, 等. 膜法污水处理技术研究应用动态与未来可持续发展思考[J]. 土木与环境工程学报(中英文), 2022, 44(3): 86-103. |
WANG Zhiwei, DAI Ruobin, ZHANG Xingran, et al. Recent advances and overview on sustainable development of membrane-based wastewater treatment technology[J]. Journal of Civil and Environmental Engineering, 2022, 44(3): 86-103. | |
2 | ZHAO Yang, GU Yuna, LIU Bin, et al. Pulsed hydraulic-pressure-responsive self-cleaning membrane[J]. Nature, 2022, 608(7921): 69-73. |
3 | 王志伟. 膜法污水处理技术的绿色低碳化发展思考[J]. 给水排水, 2022, 58(7): 1-10. |
WANG Zhiwei. Thoughts on the green and low-carbon development of membrane-based wastewater treatment technology[J]. Water & Wastewater Engineering, 2022, 58(7): 1-10. | |
4 | THOMPSON John, RAHARDIANTO Anditya, KIM Soomin, et al. Real-time direct detection of silica scaling on RO membranes[J]. Journal of Membrane Science, 2017, 528: 346-358. |
5 | MATIN Asif, RAHMAN Faizur, SHAFI Hafiz Zahid, et al. Scaling of reverse osmosis membranes used in water desalination: Phenomena, impact, and control; future directions[J]. Desalination, 2019, 455: 135-157. |
6 | MI Baoxia, ELIMELECH Menachem. Silica scaling and scaling reversibility in forward osmosis[J]. Desalination, 2013, 312: 75-81. |
7 | SAHACHAIYUNTA P, KOO T, SHEIKHOLESLAMI R. Effect of several inorganic species on silica fouling in RO membranes[J]. Desalination, 2002, 144(1/2/3): 373-378. |
8 | QI Yarong, TONG Tiezheng, LIU Xitong. Mechanisms of silica scale formation on organic macromolecule-coated surfaces[J]. ACS ES&T Water, 2021, 1(8): 1826-1836. |
9 | WU Zhihua, CHEN Hongbing, DONG Yaming, et al. Cleaning using nanobubbles: Defouling by electrochemical generation of bubbles[J]. Journal of Colloid and Interface Science, 2008, 328(1): 10-14. |
10 | LIU Guangming, CRAIG Vincent S J. Improved cleaning of hydrophilic protein-coated surfaces using the combination of nanobubbles and SDS[J]. ACS Applied Materials & Interfaces, 2009, 1(2): 481-487. |
11 | Walter DEN, WANG Chia-Jung. Removal of silica from brackish water by electrocoagulation pretreatment to prevent fouling of reverse osmosis membranes[J]. Separation and Purification Technology, 2008, 59(3): 318-325. |
12 | LU Kaige, LI Mengya, HUANG Haiou. Silica scaling of reverse osmosis membranes preconditioned by natural organic matter[J]. Science of the Total Environment, 2020, 746: 141178. |
13 | ALAMMAR Abdulaziz, PARK Sang-Hee, WILLIAMS Craig J, et al. Oil-in-water separation with graphene-based nanocomposite membranes for produced water treatment[J]. Journal of Membrane Science, 2020, 603: 118007. |
14 | DEMADIS K D. Water treatment’s ‘Gordian Knot’[J]. Chemical Processing, 2003, 66(5): 29-34. |
15 | BUSH John A, VANNESTE Johan, GUSTAFSON Emily M, et al. Prevention and management of silica scaling in membrane distillation using pH adjustment[J]. Journal of Membrane Science, 2018, 554: 366-377. |
16 | SALVADOR COB S, BEAUPIN C, HOFS B, et al. Silica and silicate precipitation as limiting factors in high-recovery reverse osmosis operations[J]. Journal of Membrane Science, 2012, 423/424: 1-10. |
17 | PEÑA N, GALLEGO S, DEL VIGO F, et al. Evaluating impact of fouling on reverse osmosis membranes performance[J]. Desalination and Water Treatment, 2013, 51(4/5/6): 958-968. |
18 | KIMURA Katsuki, OKAZAKI Saaya, OHASHI Takeya, et al. Importance of the co-presence of silica and organic matter in membrane fouling for RO filtering MBR effluent[J]. Journal of Membrane Science, 2016, 501: 60-67. |
19 | QUAY Amanda N, TONG Tiezheng, HASHMI Sara M, et al. Combined organic fouling and inorganic scaling in reverse osmosis: Role of protein-silica interactions[J]. Environmental Science & Technology, 2018, 52(16): 9145-9153. |
20 | ABADA Bilal, SAFARIK Jana, ISHIDA Kenneth P, et al. Surface characterization of end-of-life reverse osmosis membranes from a full-scale advanced water reuse facility: Combined role of bioorganic materials and silicon on chemically irreversible fouling[J]. Journal of Membrane Science, 2022, 653: 120511. |
21 | LI Danyang, LIN Weichen, SHAO Ruipeng, et al. Interaction between humic acid and silica in reverse osmosis membrane fouling process: A spectroscopic and molecular dynamics insight[J]. Water Research, 2021, 206: 117773. |
22 | WANG Shu, HUANG Xia, ELIMELECH Menachem. Complexation between dissolved silica and alginate molecules: Implications for reverse osmosis membrane fouling[J]. Journal of Membrane Science, 2020, 605: 118109. |
23 | MELIÁN-MARTEL N, SADHWANI ALONSO J Jaime, RUIZ-GARCÍA A. Combined silica and sodium alginate fouling of spiral-wound reverse osmosis membranes for seawater desalination[J]. Desalination, 2018, 439: 25-30. |
24 | HIGGIN Roslyn, HOWE Kerry J, MAYER Thomas M. Synergistic behavior between silica and alginate: Novel approach for removing silica scale from RO membranes[J]. Desalination, 2010, 250(1): 76-81. |
25 | TONG Tiezheng, WALLACE Adam F, ZHAO Song, et al. Mineral scaling in membrane desalination: mechanisms, mitigation strategies, and feasibility of scaling-resistant membranes[J]. Journal of Membrane Science, 2019, 579: 52-69. |
26 | MAKRIDES Alkis C, TURNER Maryjane, SLAUGHTER John. Condensation of silica from supersaturated silicic acid solutions[J]. Journal of Colloid and Interface Science, 1980, 73(2): 345-367. |
27 | BRAUN Gerd, HATER Wolfgang, KOLK Christian zum, et al. Investigations of silica scaling on reverse osmosis membranes[J]. Desalination, 2010, 250(3): 982-984. |
28 | ROLF Julianne, CAO Tianchi, HUANG Xiaochuan, et al. Inorganic scaling in membrane desalination: Models, mechanisms, and characterization methods[J]. Environmental Science & Technology, 2022, 56(12): 7484-7511. |
29 | TONG Tiezheng, ZHAO Song, Chanhee BOO, et al. Relating silica scaling in reverse osmosis to membrane surface properties[J]. Environmental Science & Technology, 2017, 51(8): 4396-4406. |
30 | LU Kaige, HUANG Haiou. Dependence of initial silica scaling on the surface physicochemical properties of reverse osmosis membranes during bench-scale brackish water desalination[J]. Water Research, 2019, 150: 358-367. |
31 | RATHINAM Karthik, ABRAHAM Shiju, OREN Yoram, et al. Surface-induced silica scaling during brackish water desalination: The role of surface charge and specific chemical groups[J]. Environmental Science & Technology, 2019, 53(9): 5202-5211. |
32 | XIE Ming, GRAY Stephen R. Silica scaling in forward osmosis: from solution to membrane interface[J]. Water Research, 2017, 108: 232-239. |
33 | WALLACE Adam F, DEYOREO James J, DOVE Patricia M. Kinetics of silica nucleation on carboxyl- and amine-terminated surfaces: Insights for biomineralization[J]. Journal of the American Chemical Society, 2009, 131(14): 5244-5250. |
34 | SHANG Chuning, PRANANTYO Dicky, ZHANG Sui. Understanding the roughness-fouling relationship in reverse osmosis: Mechanism and implications[J]. Environmental Science & Technology, 2020, 54(8): 5288-5296. |
35 | LIN Nancy H, COHEN Yoram. QCM study of mineral surface crystallization on aromatic polyamide membrane surfaces[J]. Journal of Membrane Science, 2011, 379(1/2): 426-433. |
36 | YAQUB Muhammad, NGUYEN Mai Ngoc, LEE Wontae. Treating reverse osmosis concentrate to address scaling and fouling problems in zero-liquid discharge systems: A scientometric review of global trends[J]. Science of the Total Environment, 2022, 844: 157081. |
37 | SUBRAMANI Arun, JACANGELO Joseph G. Treatment technologies for reverse osmosis concentrate volume minimization: A review[J]. Separation and Purification Technology, 2014, 122: 472-489. |
38 | SALVADOR COB S, HOFS B, MAFFEZZONI C, et al. Silica removal to prevent silica scaling in reverse osmosis membranes[J]. Desalination, 2014, 344: 137-143. |
39 | GUAN Yanfang, MARIANA Marcos-Hernández, LU Xinglin, et al. Silica removal using magnetic iron-aluminum hybrid nanomaterials: Measurements, adsorption mechanisms, and implications for silica scaling in reverse osmosis[J]. Environmental Science & Technology, 2019, 53(22): 13302-13311. |
40 | IKEHATA Keisuke, ZHAO Yuanyuan, KULKARNI Harshad V, et al. Water recovery from advanced water purification facility reverse osmosis concentrate by photobiological treatment followed by secondary reverse osmosis[J]. Environmental Science & Technology, 2018, 52(15): 8588-8595. |
41 | IKEHATA Keisuke, ZHAO Yuanyuan, MALEKY Nima, et al. Aqueous silica removal from agricultural drainage water and reverse osmosis concentrate by brackish water diatoms in semi-batch photobioreactors[J]. Journal of Applied Phycology, 2017, 29(1): 223-233. |
42 | KULKARNI Harshad V, ZHAO Yuanyuan, IKEHATA Keisuke. Factors influencing photobiological treatment process to remove reactive silica from brackish groundwater reverse osmosis concentrate[J]. Desalination, 2019, 452: 114-122. |
43 | ZHANG Xin, LU Mengjia, IDRUS Mohd Amzar Mohamed, et al. Performance of precipitation and electrocoagulation as pretreatment of silica removal in brackish water and seawater[J]. Process Safety and Environmental Protection, 2019, 126: 18-24. |
44 | PEYDAYESH Mohammad, MOHAMMADI Toraj, BAKHTIARI Omid. Water desalination via novel positively charged hybrid nanofiltration membranes filled with hyperbranched polyethyleneimine modified MWCNT[J]. Journal of Industrial and Engineering Chemistry, 2019, 69: 127-140. |
45 | SUBRAMANI Arun, CRYER Edwin, LIU Li, et al. Impact of intermediate concentrate softening on feed water recovery of reverse osmosis process during treatment of mining contaminated groundwater[J]. Separation and Purification Technology, 2012, 88: 138-145. |
46 | Ben SIK ALI M, HAMROUNI B, BOUGUECHA S, et al. Silica removal using ion-exchange resins[J]. Desalination, 2004, 167: 273-279. |
47 | GABELICH Christopher J, WILLIAMS Mark D, RAHARDIANTO Anditya, et al. High-recovery reverse osmosis desalination using intermediate chemical demineralization[J]. Journal of Membrane Science, 2007, 301(1/2): 131-141. |
48 | ZHANG Bingru, CHEN Yuning, LI Fengting. Inhibitory effects of poly(adipic acid/amine-terminated polyether D230/diethylenetriamine) on colloidal silica formation[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2011, 385(1/2/3): 11-19. |
49 | GOH P S, LAU W J, OTHMAN M H D, et al. Membrane fouling in desalination and its mitigation strategies[J]. Desalination, 2018, 425: 130-155. |
50 | Gökhan TOPÇU, Aslı ÇELIK, BABA Alper, et al. Design of polymeric antiscalants based on functional vinyl monomers for (Fe, Mg) silicates[J]. Energy & Fuels, 2017, 31(8): 8489-8496. |
51 | NEOFOTISTOU Eleftheria, DEMADIS Konstantinos D. Use of antiscalants for mitigation of silica (SiO2) fouling and deposition: Fundamentals and applications in desalination systems[J]. Desalination, 2004, 167: 257-272. |
52 | NEOFOTISTOU Eleftheria, DEMADIS Konstantinos D. Silica scale inhibition by polyaminoamide STARBURST® dendrimers[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2004, 242(1/2/3): 213-216. |
53 | ZHANG Bingru, SUN Peidi, CHEN Fang, et al. Synergistic inhibition effect of polyaminoamide dendrimers and polyepoxysuccinic acid on silica polymerization[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2012, 410: 159-169. |
54 | TAN Mingyue, FANG Li, ZHANG Bingru, et al. Synergistic inhibition effect and mechanism of polycation and polyanion on colloidal silica[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 610: 125701. |
55 | DEMADIS Konstantinos D, STATHOULOPOULOU Aggeliki. Solubility enhancement of silicate with polyamine/polyammonium cationic macromolecules: Relevance to silica-laden process waters[J]. Industrial & Engineering Chemistry Research, 2006, 45(12): 4436-4440. |
56 | KETSETZI Antonia, STATHOULOPOULOU Aggeliki, DEMADIS Konstantinos D. Being “green” in chemical water treatment technologies: Issues, challenges and developments[J]. Desalination, 2008, 223(1/2/3): 487-493. |
57 | Vu H DAO, CAMERON Neil R, SAITO Kei. Synthesis, properties and performance of organic polymers employed in flocculation applications[J]. Polymer Chemistry, 2016, 7(1): 11-25. |
58 | YANG Ran, LI Haijiang, HUANG Mu, et al. A review on chitosan-based flocculants and their applications in water treatment[J]. Water Research, 2016, 95: 59-89. |
59 | KEMPTER Andreas, GAEDT Torben, BOYKO Volodymyr, et al. New insights into silica scaling on RO-membranes[J]. Desalination and Water Treatment, 2013, 51(4/5/6): 899-907. |
60 | MELINA Preari, KATRIN Spinde, Lazic JOËLLE, et al. Bioinspired insights into silicic acid stabilization mechanisms: The dominant role of polyethylene glycol-induced hydrogen bonding[J]. Journal of the American Chemical Society, 2014, 136(11): 4236-4244. |
61 | SWEITY Amer, OREN Yoram, RONEN Zeev, et al. The influence of antiscalants on biofouling of RO membranes in seawater desalination[J]. Water Research, 2013, 47(10): 3389-3398. |
62 | SWEITY Amer, ZERE Tesfalem Rezene, DAVID Inbal, et al. Side effects of antiscalants on biofouling of reverse osmosis membranes in brackish water desalination[J]. Journal of Membrane Science, 2015, 481: 172-187. |
63 | MANKOL Vladimir, HAO Zhan, ZHAO Song, et al. Sulfonated reverse osmosis membrane fabricated with comonomer having excellent scaling and fouling resistance[J]. Industrial & Engineering Chemistry Research, 2021, 60(7): 3095-3104. |
64 | HAO Zhan, ZHAO Song, LI Qinghua, et al. Reverse osmosis membranes with sulfonate and phosphate groups having excellent anti-scaling and anti-fouling properties[J]. Desalination, 2021, 509: 115076. |
65 | QI Yunlong, TONG Tiezheng, ZHAO Song, et al. Reverse osmosis membrane with simultaneous fouling- and scaling-resistance based on multilayered metal-phytic acid assembly[J]. Journal of Membrane Science, 2020, 601: 117888. |
66 | GUAN Yanfang, Chanhee BOO, LU Xinglin, et al. Surface functionalization of reverse osmosis membranes with sulfonic groups for simultaneous mitigation of silica scaling and organic fouling[J]. Water Research, 2020, 185: 116203. |
67 | WANG Shu, MU Changjun, XIAO Kang, et al. Surface charge regulation of reverse osmosis membrane for anti-silica and organic fouling[J]. Science of the Total Environment, 2020, 715: 137013. |
68 | LIN Yili. In situ concentration-polarization-enhanced radical graft polymerization of NF270 for mitigating silica fouling and improving pharmaceutical and personal care product rejection[J]. Journal of Membrane Science, 2018, 552: 387-395. |
69 | TAN Zhe, CHEN Shengfu, PENG Xinsheng, et al. Polyamide membranes with nanoscale Turing structures for water purification[J]. Science, 2018, 360(6388): 518-521. |
70 | GU Joung-Eun, LEE Seunghye, STAFFORD Christopher M, et al. Molecular layer-by-layer assembled thin-film composite membranes for water desalination[J]. Advanced Materials (Deerfield Beach, Fla), 2013, 25(34): 4778-4782. |
71 | WANSUK Choi, Gu JOUNG-Eun, Park SANG-Hee, et al. Tailor-made polyamide membranes for water desalination[J]. ACS Nano, 2015, 9(1): 345-355. |
72 | MARUF Sajjad H, GREENBERG Alan R, PELLEGRINO John, et al. Fabrication and characterization of a surface-patterned thin film composite membrane[J]. Journal of Membrane Science, 2014, 452: 11-19. |
[1] | ZHANG Zuoqun, GAO Yang, BAI Chaojie, XUE Lixin. Thin-film nanocomposite (TFN) mixed matrix reverse osmosis (MMRO) membranes from secondary interface polymerization containing in situ grown ZIF-8 nano-particles [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 364-373. |
[2] | CHEN Xiangli, LI Qianqian, ZHANG Tian, LI Biao, LI Kangkang. Research progress on self-healing oil/water separation membranes [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3600-3610. |
[3] | REN Zhongyuan, HE Jinlong, YUAN Qing. Research progress on intercrystalline defects control and remediation technologies for zeolite membranes [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2454-2463. |
[4] | YE Haixing, CHEN Yuhao, CHEN Yi, SUN Haixiang, NIU Qingshan. Research progress of composite nanofiltration membrane for magnesium and lithium separation [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 1934-1943. |
[5] | WANG Yan, QIN Zhenping, LIU Yue, ZHANG Wenhai, GUO Hongxia. Preparation and properties of β-cyclodextrin in-situ modified MoS2 tubular ceramic composite membrane [J]. Chemical Industry and Engineering Progress, 2023, 42(10): 5373-5380. |
[6] | YANG Kailu, CHEN Mingxing, WANG Xinya, ZHANG Wei, XIAO Changfa. Research progress of preparation and modification of nanofiltration membrane for dye wastewater treatment [J]. Chemical Industry and Engineering Progress, 2023, 42(10): 5470-5486. |
[7] | SUN Mengwei, LIU Zhuang, XIE Rui, JU Xiaojie, WANG Wei, CHU Liangyin. Preparation of Lanthanum ion intercalated MoS2 membrane for treating dyeing wastewater with high brine [J]. Chemical Industry and Engineering Progress, 2023, 42(1): 346-353. |
[8] | GAO Weitao, YIN Qinan, TU Ziqiang, GONG Fan, LI Yang, XU Hong, WANG Cheng, MAO Zongqiang. Proton transport in metal-organic frameworks and their applications in proton exchange membranes [J]. Chemical Industry and Engineering Progress, 2022, 41(S1): 260-268. |
[9] | ZHANG Hongming, LU Jiongyuan, WANG Sanfan. Research progress on molecular structure of anion exchange membrane for fuel cells [J]. Chemical Industry and Engineering Progress, 2022, 41(S1): 318-330. |
[10] | ZHANG Saihui, LI Xiaoyang, GAO Hui, WANG Lili. Recent progress in additives in interfacial polymerization for the preparation of polyamide composite membrane [J]. Chemical Industry and Engineering Progress, 2022, 41(9): 4884-4894. |
[11] | FANG Longlong, ZHENG Wenji, NING Mengjia, ZHANG Mingyang, YANG Yuqing, DAI Yan, HE Gaohong. Enhanced CO2 separation of mixed matrix membranes by functionalized Zr-MOF [J]. Chemical Industry and Engineering Progress, 2022, 41(9): 4954-4962. |
[12] | ZHU Xiao, ZHU Junyong, ZHANG Yatao. Research progress of metal organic framework/polyamide thin film nanocomposite membrane [J]. Chemical Industry and Engineering Progress, 2022, 41(8): 4314-4326. |
[13] | HAN Guanglu, LU Kuan, LYU Jie, ZHANG Yonghui, CHEN Mohan. Carboxyl graphene composite membranes covalently crosslinked with diols and the n-butanol dehydration properties [J]. Chemical Industry and Engineering Progress, 2022, 41(7): 3801-3807. |
[14] | LI Peishan, ZHANG Mengchen, LI Mingjie, ZHENG Wenbiao, LIU Minchao, XIE Gaoyi, XU Xiaolong, LIU Changyu, JIA Jianbo. Nanofluidic channels based on two-dimensional material membranes [J]. Chemical Industry and Engineering Progress, 2022, 41(7): 3745-3757. |
[15] | WANG Jin, CHEN Qingbai, WANG Jianyou, LI Pengfei, DONG Lin. Research status and prospect of water softening technology based on pressure-driven and electro-driven membrane processes [J]. Chemical Industry and Engineering Progress, 2022, 41(5): 2649-2661. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |