Chemical Industry and Engineering Progress ›› 2023, Vol. 42 ›› Issue (11): 5908-5919.DOI: 10.16085/j.issn.1000-6613.2023-0019
• Biochemical and pharmaceutical engineering • Previous Articles
LIU Ya1(), LI Jingru1, CAI Dongren1, ZHOU Shufeng1, WANG Yuanpeng2, ZHAN Guowu1(), LI Qingbiao2,3
Received:
2023-01-06
Revised:
2023-02-07
Online:
2023-12-15
Published:
2023-11-20
Contact:
ZHAN Guowu
刘亚1(), 李静茹1, 蔡东仁1, 周树锋1, 王远鹏2, 詹国武1(), 李清彪2,3
通讯作者:
詹国武
作者简介:
刘亚(1996—),女,硕士研究生,研究方向为集成催化剂。E-mail:1215488720@qq.com。
基金资助:
CLC Number:
LIU Ya, LI Jingru, CAI Dongren, ZHOU Shufeng, WANG Yuanpeng, ZHAN Guowu, LI Qingbiao. Preparation and photocatalysis application of integrated nanocatalysts based on genetic engineering Shewanella oneidensis strain[J]. Chemical Industry and Engineering Progress, 2023, 42(11): 5908-5919.
刘亚, 李静茹, 蔡东仁, 周树锋, 王远鹏, 詹国武, 李清彪. 基于希瓦氏菌基因工程菌制备集成催化剂及光催化性能[J]. 化工进展, 2023, 42(11): 5908-5919.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2023-0019
光催化剂 | 合成方法 | 染料种类(浓度) | 光催化剂使用量/mg | 染料去除率/% | 反应速率常数k/min-1 | 去除时间/h | 参考 文献 |
---|---|---|---|---|---|---|---|
SO/CdS/ZnO | 生物模板法 | 刚果红(50mg/L) | 10 | 90 | 0.03 | 1 | 本文 |
CdS/ZrO2 | 化学共沉淀法 | 刚果红(30mg/L) | 10 | 84 | — | 2 | [ |
CdS/GA | 化学沉淀法 | 刚果红(40mg/L) | 40 | 100 | 0.027 | 2 | [ |
CdS/ZnO | 水热沉淀法 | 罗丹明B(10mg/L) | 100 | 98 | 0.076 | 1.5 | [ |
CS/CdS | 模拟生物矿化 | 刚果红(20mg/L) | — | 86 | 0.011 | 3 | [ |
CdS/Cu(OH)2/CuO@PVA | 化学合成法 | 刚果红(10mg/L) | 10 | 92 | — | 2 | [ |
Co3O4/TiO2/GO | 溶胶-凝胶法和水热法合 | 刚果红(10mg/L) | 50 | 91 | — | 1.5 | [ |
TiO2/ZrO2 | 微波水热法 | 罗丹明B(10mg/L) | 50 | 91 | — | 4.5 | [ |
Ag/ZnO | 辅助电化学沉积法 | 刚果红(5mg/L) | — | 92 | 0.021 | 2 | [ |
光催化剂 | 合成方法 | 染料种类(浓度) | 光催化剂使用量/mg | 染料去除率/% | 反应速率常数k/min-1 | 去除时间/h | 参考 文献 |
---|---|---|---|---|---|---|---|
SO/CdS/ZnO | 生物模板法 | 刚果红(50mg/L) | 10 | 90 | 0.03 | 1 | 本文 |
CdS/ZrO2 | 化学共沉淀法 | 刚果红(30mg/L) | 10 | 84 | — | 2 | [ |
CdS/GA | 化学沉淀法 | 刚果红(40mg/L) | 40 | 100 | 0.027 | 2 | [ |
CdS/ZnO | 水热沉淀法 | 罗丹明B(10mg/L) | 100 | 98 | 0.076 | 1.5 | [ |
CS/CdS | 模拟生物矿化 | 刚果红(20mg/L) | — | 86 | 0.011 | 3 | [ |
CdS/Cu(OH)2/CuO@PVA | 化学合成法 | 刚果红(10mg/L) | 10 | 92 | — | 2 | [ |
Co3O4/TiO2/GO | 溶胶-凝胶法和水热法合 | 刚果红(10mg/L) | 50 | 91 | — | 1.5 | [ |
TiO2/ZrO2 | 微波水热法 | 罗丹明B(10mg/L) | 50 | 91 | — | 4.5 | [ |
Ag/ZnO | 辅助电化学沉积法 | 刚果红(5mg/L) | — | 92 | 0.021 | 2 | [ |
1 | ALI I, ALHARBI O M L, ALOTHMAN Z A, et al. Kinetics, thermodynamics, and modeling of amido black dye photodegradation in water using Co/TiO2 nanoparticles[J]. Photochemistry and Photobiology, 2018, 94(5): 935-941. |
2 | ADANE T, ADUGNA A T, ALEMAYEHU E. Textile industry effluent treatment techniques[J]. Journal of Chemistry, 2021, 2021. . |
3 | FANG Yuanxing, ZHENG Yun, FANG Tao, et al. Photocatalysis: An overview of recent developments and technological advancements[J]. Science China-Chemistry, 2020, 63(2): 149-181. |
4 | NAVEEN K, ANUJ M, YADAV M, et al. Photocatalytic TiO2/CdS/ZnS nanocomposite induces Bacillus subtilis cell death by disrupting its metabolism and membrane integrity[J]. Indian Journal of Microbiology, 2021, 61(4): 487-496. |
5 | DU Juan, WANG Zheng, LI YeHua, et al. Establishing WO3/g-C3N4 composite for “memory” photocatalytic activity and enhancement in photocatalytic degradation[J]. Catalysis Letters, 2019, 149(5): 1167-1173. |
6 | HUANG Jiale, LIN Liqin, SUN Daohua, et al. Bio-inspired synthesis of metal nanomaterials and applications[J]. Chemical Society Reviews, 2015, 44(17): 6330-6374. |
7 | 宋苗苗, 郭梅婷, 蔡东仁, 等. 基于稻谷壳模板制备层状硅酸盐催化剂用于CO2加氢反应[J]. 化学反应工程与工艺, 2022, 38(4): 318-328. |
SONG Miaomiao, GUO Meiting, CAI Dongren, et al. Preparation of phyllosilicate catalysts using rice husk as template for CO2 hydrogenation[J]. Chemical Reaction Engineering and Technology, 2022, 38(4): 318-328. | |
8 | KANG S H, BOZHILOV K N, MYUNG N V, et al. Microbial synthesis of CdS nanocrystals in genetically engineered E. coli [J]. Angewandte Chemie International Edition, 2008, 47(28): 5186-5189. |
9 | ZHOU Z Y, BEDWEL G J, LI R, et al. Pathways for gold nucleation and growth over protein cages[J]. Langmuir, 2017, 33(23): 5925-5931. |
10 | CHOI Yoojin, PARK Tae Jung, LEE Doh C, et al. Recombinant Escherichia coli as a biofactory for various single- and multi-element nanomaterials[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(23): 5944-5949. |
11 | IRAVANI S, VARMA R S. Biofactories: Engineered nanoparticles via genetically engineered organisms[J]. Green Chemistry, 2019, 21(17): 4583-4603. |
12 | YANG Chenhui, ASLAN, Husnu, ZHANG Peng, et al. Carbon dots-fed Shewanella oneidensis MR-1 for bioelectricity enhancement[J]. Nature Communications, 2020, 11(1): 1379. |
13 | XIAO Xiang, MA Xiaobo, YUAN Hang, et al. Photocatalytic properties of zinc sulfide nanocrystals biofabricated by metal-reducing bacterium Shewanella oneidensis MR-1[J]. Journal of Hazardous Materials, 2015, 288: 134-139. |
14 | CAI Junkai, ZHAO Liang, WEI Jianwei, et al. Negatively charged metal-organic hosts with cobalt dithiolene species: Improving PET processes for light-driven proton reduction through host-guest electrostatic interactions[J]. Chemical Communications, 2019, 55(59): 8524-8527. |
15 | BEGHAIN J, A-C LANGLOIS, LEGRAND E, et al. Plasmodium copy number variation scan: Gene copy numbers evaluation in haploid genomes[J]. Malaria Journal, 2016, 15: 206. |
16 | YANG Xiande, YANG Yuxiao, WANG Boyou, et al. Synthesis and photocatalytic property of cubic phase CdS[J]. Solid State Sciences, 2019, 92: 31-35. |
17 | NANDI P, DAS D. ZnO/CdS/CuS heterostructure: A suitable candidate for applications in visible-light photocatalysis[J]. Journal of Physics and Chemistry of Solids, 2022, 160: 10. |
18 | LAN Kin-Tak, HSIAO Yu-Jen, JI Liangwen, et al. High-sensitive ultraviolet photodetectors based on ZnO nanorods/CdS heterostructures[J]. Nanoscale Research Letters, 2017, 12(1): 31. |
19 | WENG Yu-Ching, CHANG Hao. Screening and characterization for the optimization of CdS-based photocatalysts[J]. Rsc Advances, 2016, 6(47): 41376-41384. |
20 | ZHAO Yi, LU Yongfang., Lu CHEN, et al. Redox dual-cocatalyst-modified CdS double-heterojunction photocatalysts for efficient hydrogen production[J]. ACS Applied Materials & Interfaces, 2020, 12(41): 46073-46083. |
21 | CHANG Xueting, LI Zhongliang, ZHAI Xinxin, et al. Efficient synthesis of sunlight-driven ZnO-based heterogeneous photocatalysts[J]. Materials & Design, 2016, 98: 324-332. |
22 | MEYER R L, ZHOU X F, TANG L, et al. Immobilisation of living bacteria for AFM imaging under physiological conditions[J]. Ultramicroscopy, 2010, 110(11): 1349-1357. |
23 | RAJESWARI A, VISMAIYA S, PIUS A. Preparation, characterization of nano ZnO-blended cellulose acetate-polyurethane membrane for photocatalytic degradation of dyes from water[J]. Chemical Engineering Journal, 2017, 313: 928-937. |
24 | FENG Yinchang, LI Lei, LI Junwei, et al. Synthesis of mesoporous BiOBr 3D microspheres and their photodecomposition for toluene[J]. Journal of Hazardous Materials, 2011, 192(2): 538-544. |
25 | KANAGARAJ T, THIRIPURANTHAGAN S. Photocatalytic activities of novel SrTiO3-BiOBr heterojunction catalysts towards the degradation of reactive dyes[J]. Applied Catalysis B: Environmental, 2017, 207: 218-232. |
26 | MANZOOR S, MALANA M. A, ALSHAHRANI T, et al. Visible-light-driven zirconium oxide/cadmium sulfide nanocomposite for degradation of textile dyes[J]. International Journal of Environmental Science and Technology, 2022, 19(5): 4037-4046. |
27 | KAUSHIK J, HIMANSHI, KUMAR V, et al. Sunlight-promoted photodegradation of Congo red by cadmium-sulfide decorated graphene aerogel[J]. Chemosphere, 2022, 287: 132225. |
28 | LI Xiaojing, WANG Junfeng, ZHANG Jiayu, et al. Cadmium sulfide modified zinc oxide heterojunction harvesting ultrasonic mechanical energy for efficient decomposition of dye wastewater[J]. Journal of Colloid and Interface Science, 2022, 607: 412-422. |
29 | ZHU Huayue, JIANG Ru, XIAO Ling, et al. Photocatalytic decolorization and degradation of Congo red on innovative crosslinked chitosan/nano-CdS composite catalyst under visible light irradiation[J]. Journal of Hazardous Materials, 2009, 169(1/2/3): 933-940. |
30 | SOLTANINEJAD V, AHGHARI M R, TAHERI-LEDARI R, et al. A versatile nanocomposite made of Cd/Cu, chlorophyll and PVA matrix utilized for photocatalytic degradation of the hazardous chemicals and pathogens for wastewater treatment[J]. Journal of Molecular Structure, 2022, 1256: 132456. |
31 | Wan-Kuen JO, KUMER S, ISAACS M. A, et al. Cobalt promoted TiO2/GO for the photocatalytic degradation of oxytetracycline and Congo red[J]. Applied Catalysis B: Environmental, 2017, 201: 159-168. |
32 | TIAN Jiangyang, SHAO Qian, ZHAO Junkai, et al. Microwave solvothermal carboxymethyl chitosan templated synthesis of TiO2/ZrO2 composites toward enhanced photocatalytic degradation of Rhodamine B[J]. Journal of Colloid and Interface Science, 2019, 541: 18-29. |
33 | LIU Jinrun, LI Jiadong, WEI Feng, et al. Ag-ZnO submicrometer rod arrays for high-efficiency photocatalytic degradation of Congo red and disinfection[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(13): 11258-11266. |
34 | DU Jimin, YANG Mengke, ZHANG Fangfang, et al. Enhanced charge separation of CuS and CdS quantum-dot-cosensitized porous TiO2-based photoanodes for photoelectrochemical water splitting[J]. Ceramics International, 2018, 44(3): 3099-3106. |
35 | ZHONG Wenzhou, QIAO Tao, DAI Jing, et al. Visible-light-responsive sulfated vanadium-doped TS-1 with hollow structure: Enhanced photocatalytic activity in selective oxidation of cyclohexane[J]. Journal of Catalysis, 2015, 330: 208-221. |
36 | WU Qiangshun, WANG Huijuan, JIA Yuanyuan, et al. Kinetics of the Acid orange 7 degradation in the photocatalytic system of UV/H2O2/TS-1[J]. Journal of Water Process Engineering, 2017, 19: 106-111. |
37 | ZHANG Lina, XU Meiling, GAO Chaomin, et al. Ultrasensitive photoelectrochemical sensor enabled by a target-induced signal quencher release strategy[J]. New Journal of Chemistry, 2020, 44(32): 13882-13888. |
38 | ZU Fanlin, YAN Fanyong, BAI Zhangjun, et al. The quenching of the fluorescence of carbon dots: A review on mechanisms and applications[J]. Microchimica Acta, 2017, 184(7): 1899-1914. |
39 | MENG Aiyun, ZHU Bicheng, ZHONG Bo, et al. Direct Z-scheme TiO2/CdS hierarchical photocatalyst for enhanced photocatalytic H2-production activity[J]. Applied Surface Science, 2017, 422: 518-527. |
40 | LI Xin, ZHU Bicheng, Jingxiang LOW, et al. Engineering heterogeneous semiconductors for solar water splitting[J]. Journal of Materials Chemistry A, 2015, 3(6): 2485-2534. |
[1] | YANG Bin, WANG Xiaodong, WANG Yan, YI Guiyun, WANG Tielang, SHI Chuang, ZHANG Zhanying. Preparation of nano-Pt/ZnO heterostructures and gas sensitive properties [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4817-4827. |
[2] | XU Guobin, LIU Honghao, LI Jie, GUO Jiaqi, WANG Qi. Preparation and properties of ZnO QDs water-based inkjet fluorescent ink [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3114-3122. |
[3] | SI Yinfang, HU Yujie, ZHANG Fan, DONG Hao, SHE Yuehui. Biosynthesis of zinc oxide nanoparticles and its application to antibacterial [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 2013-2023. |
[4] | LI Qiaochun, GUO Enhui, LI Yang, MI Jie, WU Mengmeng. Desulfurization and regeneration behaviors of zinc-based composite oxides derived from hydrotalcite [J]. Chemical Industry and Engineering Progress, 2021, 40(11): 6278-6286. |
[5] | Yihang LI, Yuzhu XIONG, Qingpo ZHANG, Jiangbing WU. Preparation of nano zinc oxide/silica hybrid and its effect on properties of natural rubber composites [J]. Chemical Industry and Engineering Progress, 2020, 39(8): 3213-3220. |
[6] | Chun LI, Lixia SUN, Jianhua SUN, Liqin ZHOU, Dapeng XU, Youquan ZHANG, Dankui LIAO. Fabrication of Tyr biosensor for detection of catechol based on the ZnO with electrospinning [J]. Chemical Industry and Engineering Progress, 2020, 39(7): 2795-2801. |
[7] | Xia JIANG, Wen LI, Yunlong GUO, Lu WANG, Qun LI, Qingbiao LI. Progress on bio-templated synthesis of metal oxides and their catalytic applications [J]. Chemical Industry and Engineering Progress, 2019, 38(01): 485-494. |
[8] | LIANG Pengju, GUAN Rongxin, WANG Weihua, QIN Shaowei, MU Jincheng, DING Huiping, JIANG Jianhui. Photocatalytic oxidation desulfurization properties of Ce-doped ZnO [J]. Chemical Industry and Engineering Progress, 2018, 37(12): 4701-4708. |
[9] | ZHANG Chongmiao, WEN Yinmei, GAO Min, GAO Qian. Comparative study on the antibacterial properties of TiO2, ZnO and TiO2/ZnO oxide powders [J]. Chemical Industry and Engineering Progress, 2018, 37(11): 4343-4348. |
[10] | SONG Kaiwei, LI Jialei, CAI Jinpeng, LIU Siyan, CAO Yang, SU Chao, LIU Dianwen. A review on surface sulfidization of typical copper/lead/zinc oxide minerals flotation [J]. Chemical Industry and Engineering Progress, 2018, 37(09): 3618-3628. |
[11] | GUO Xingbo, HUANG Jinjun, LI Wenfei, TIAN Yuexin, SHEN Jingyuan. Photogenerated cathodic protection of polyaniline modified nano-ZnO films [J]. Chemical Industry and Engineering Progress, 2018, 37(08): 3107-3112. |
[12] | CHEN Xiao, SHI Qian, YANG Le, QIU Yu, SUN Qi, LEI Hua. Research progress in surface-modification and applications of nano zinc oxide [J]. Chemical Industry and Engineering Progress, 2018, 37(02): 621-627. |
[13] | FENG Yu, SHI Lei, ZHANG Saisai, WU Mengmeng, MI Jie. Kinetics study of zinc oxide sorbent prepared by different methods for hot coal gas desulfurization [J]. Chemical Industry and Engineering Progress, 2017, 36(08): 2994-3001. |
[14] | WANG Lixian, ZHAO Wentao, WANG Lulu, LI Haiying. The synthesis and properties of industrial-grade zinc oxide [J]. Chemical Industry and Engineering Progree, 2016, 35(S1): 259-264. |
[15] | SONG Zhenyu, TONG Zhangfa, ZHANG Hanbing, TAO Jingpeng, QIN Yuelong, ZHANG Lei. Photocatalytic degradation of dyes by nano-ZnO prepared with microwave assistance [J]. Chemical Industry and Engineering Progree, 2015, 34(12): 4310-4314. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |