Chemical Industry and Engineering Progress ›› 2023, Vol. 42 ›› Issue (9): 4817-4827.DOI: 10.16085/j.issn.1000-6613.2022-1976
• Materials science and technology • Previous Articles Next Articles
YANG Bin1(), WANG Xiaodong1(), WANG Yan2, YI Guiyun3, WANG Tielang1, SHI Chuang1, ZHANG Zhanying1
Received:
2022-10-24
Revised:
2023-02-15
Online:
2023-09-28
Published:
2023-09-15
Contact:
WANG Xiaodong
杨斌1(), 王晓冬1(), 王燕2, 仪桂云3, 王铁狼1, 时闯1, 张战营1
通讯作者:
王晓冬
作者简介:
杨斌(1998—),男,硕士研究生,研究方向为气体传感器。E-mail:3097532959@qq.com。
基金资助:
CLC Number:
YANG Bin, WANG Xiaodong, WANG Yan, YI Guiyun, WANG Tielang, SHI Chuang, ZHANG Zhanying. Preparation of nano-Pt/ZnO heterostructures and gas sensitive properties[J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4817-4827.
杨斌, 王晓冬, 王燕, 仪桂云, 王铁狼, 时闯, 张战营. 纳米Pt/ZnO异质结构的制备及其气敏性能[J]. 化工进展, 2023, 42(9): 4817-4827.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2022-1976
样品 | 晶粒尺寸/nm |
---|---|
ZnO | 30.520 |
Pt/ZnO-2 | 28.913 |
样品 | 晶粒尺寸/nm |
---|---|
ZnO | 30.520 |
Pt/ZnO-2 | 28.913 |
样品 | 晶格氧/% | 空位氧/% | 化学吸附氧/% |
---|---|---|---|
ZnO | 44.98 | 40.66 | 14.36 |
Pt/ZnO-2 | 39.49 | 39.14 | 21.37 |
样品 | 晶格氧/% | 空位氧/% | 化学吸附氧/% |
---|---|---|---|
ZnO | 44.98 | 40.66 | 14.36 |
Pt/ZnO-2 | 39.49 | 39.14 | 21.37 |
材料 | 最佳工作温度 /℃ | 浓度 /μL·L-1 | 响应值 | 参考 文献 |
---|---|---|---|---|
NiO-ZnO纳米片 | 320 | 100 | 300 | [ |
Pr/ZnO纳米棒 | 200 | 50 | 158 | [ |
Au/ZnO半球 | 260 | 100 | 104.8 | [ |
α-Fe2O3微球 | 275 | 100 | 11.8 | [ |
TiO2-SnO2纳米片 | 260 | 100 | 52.3 | [ |
SnO2-Zn2SnO4纳米球 | 250 | 100 | 48 | [ |
TiO2纳米棒 | 290 | 100 | 14.2 | [ |
V2O5空心球 | 370 | 100 | 7.2 | [ |
Au@SnO2/MoS2 | 300 | 100 | 96 | [ |
Au@ZnO/SnO2 | 300 | 100 | 115 | [ |
Pt/ZnO-2 | 180 | 100 | 521.7 | 本研究 |
材料 | 最佳工作温度 /℃ | 浓度 /μL·L-1 | 响应值 | 参考 文献 |
---|---|---|---|---|
NiO-ZnO纳米片 | 320 | 100 | 300 | [ |
Pr/ZnO纳米棒 | 200 | 50 | 158 | [ |
Au/ZnO半球 | 260 | 100 | 104.8 | [ |
α-Fe2O3微球 | 275 | 100 | 11.8 | [ |
TiO2-SnO2纳米片 | 260 | 100 | 52.3 | [ |
SnO2-Zn2SnO4纳米球 | 250 | 100 | 48 | [ |
TiO2纳米棒 | 290 | 100 | 14.2 | [ |
V2O5空心球 | 370 | 100 | 7.2 | [ |
Au@SnO2/MoS2 | 300 | 100 | 96 | [ |
Au@ZnO/SnO2 | 300 | 100 | 115 | [ |
Pt/ZnO-2 | 180 | 100 | 521.7 | 本研究 |
12 | DING Jijun, YANG Mingya, CHEN Haixia, et al. Construction of ZnO/GaN in-plane heterojunction with different contacted modes and vacancy defects for improving magnetic and adsorption properties[J]. Applied Surface Science, 2022, 604: 154500. |
13 | ZOU Dongna, JAMAL R, ABDIRYIM T, et al. Construction and properties of ZnO/poly(EDOT-pyridine-EDOT) core/shell heterostructure nanoarrays for UV photodetector[J]. Synthetic Metals, 2022, 291: 117192. |
14 | NAVALE Y H, NAVALE S T, STADLER F J, et al. Enhanced NO2 sensing aptness of ZnO nanowire/CuO nanoparticle heterostructure-based gas sensors[J]. Ceramics International, 2019, 45(2): 1513-1522. |
15 | XUAN Jingyue, WANG Li, ZOU Yecheng, et al. Room-temperature gas sensor based on in situ grown, etched and W-doped ZnO nanotubes functionalized with Pt nanoparticles for the detection of low-concentration H2S[J]. Journal of Alloys and Compounds, 2022, 922: 166158. |
16 | YANG Youzhi, WU Sini, CAO Yuehong, et al. A highly efficient room-temperature formaldehyde gas sensor based on a Ni-doped ZnO hierarchical porous structure decorated with NiS illuminated by UV light[J]. Journal of Alloys and Compounds, 2022, 920: 165850. |
17 | WANG Ziyan, YANG Xueli, SUN Caixuan, et al. Excellent acetone sensing performance of Au NPs functionalized Co3O4-ZnO nanocomposite[J]. Sensor Review, 2022, 42(6): 638-647. |
18 | FANG Jian, XUE Jingjing, XIAO Rongpu, et al. Synthesis of Pr-doped ZnO nanospindles by one-pot precipitation as a triethylamine sensor[J]. Journal of Environmental Chemical Engineering, 2022, 10(5): 108334. |
19 | OOSTHUIZEN D N, MOTAUNG D E, SWART H C. Gas sensors based on CeO2 nanoparticles prepared by chemical precipitation method and their temperature-dependent selectivity towards H2S and NO2 gases[J]. Applied Surface Science, 2020, 505: 144356. |
20 | BUAPUEAN T, JARUDILOKKUL S. Synthesis of mesoporous Zn-doped TiO2 nanoparticles by colloidal emulsion aphrons and their use for dye-sensitized solar cells[J]. Russian Journal of Applied Chemistry, 2020, 93(8): 1229-1236. |
21 | XUE Dongping, WANG Pengtao, ZHANG Zhanying, et al. Enhanced methane sensing property of flower-like SnO2 doped by Pt nanoparticles: A combined experimental and first-principle study[J]. Sensors and Actuators B: Chemical, 2019, 296: 126710. |
22 | KIM Hogyoung, JUNG Myeong Jun, CHOI Byung Joon. Barrier height enhancement in Pt/n-Ge Schottky junction with a ZnO interlayer prepared by atomic layer deposition[J]. Journal of the Korean Physical Society, 2022, 81(3): 241-246. |
23 | ZHANG Saisai, LI Yanwei, SUN Guang, et al. Synthesis of NiO-decorated ZnO porous nanosheets with improved CH4 sensing performance[J]. Applied Surface Science, 2019, 497: 143811. |
24 | LIU Yiping, ZHU Liyuan, FENG Pu, et al. Bimetallic AuPt alloy nanoparticles decorated on ZnO nanowires towards efficient and selective H2S gas sensing[J]. Sensors and Actuators B: Chemical, 2022, 367: 132024. |
25 | XU Qi, JU Dianxing, ZHANG Zichao, et al. Near room-temperature triethylamine sensor constructed with CuO/ZnO P-N heterostructural nanorods directly on flat electrode[J]. Sensors and Actuators B: Chemical, 2016, 225: 16-23. |
26 | JU Dianxing, XU Hongyan, QIU Zhiwen, et al. Highly sensitive and selective triethylamine-sensing properties of nanosheets directly grown on ceramic tube by forming NiO/ZnO PN heterojunction[J]. Sensors and Actuators B: Chemical, 2014, 200: 288-296. |
27 | MA Qian, FANG Yuan, LIU Yu, et al. Facile synthesis of ZnO morphological evolution with tunable growth habits: Achieving superior gas-sensing properties of hemispherical ZnO/Au heterostructures for triethylamine[J]. Physica E: Low-Dimensional Systems and Nanostructures, 2019, 106: 180-186. |
28 | SUN Guang, CHEN Honglin, LI Yanwei, et al. Synthesis and triethylamine sensing properties of mesoporous α-Fe2O3 microrods[J]. Materials Letters, 2016, 178: 213-216. |
29 | XU Hongyan, JU Judianxing, LI Wenru, et al. Superior triethylamine-sensing properties based on TiO2/SnO2 n-n heterojunction nanosheets directly grown on ceramic tubes[J]. Sensors and Actuators B: Chemical, 2016, 228: 634-642. |
30 | YANG Xueli, YU Qi, ZHANG Sufang, et al. Highly sensitive and selective triethylamine gas sensor based on porous SnO2/Zn2SnO4 composites[J]. Sensors and Actuators B: Chemical, 2018, 266: 213-220. |
31 | YANG Hongyan, CHENG Xiaoli, ZHANG Xianfa, et al. A novel sensor for fast detection of triethylamine based on rutile TiO2 nanorod arrays[J]. Sensors and Actuators B: Chemical, 2014, 205: 322-328. |
32 | WU Minzi, ZHANG Xianfa, GAO Shan, et al. Construction of monodisperse vanadium pentoxide hollow spheres via a facile route and triethylamine sensing property[J]. CrystEngComm, 2013, 15(46): 10123-10131. |
33 | LI Wenru, XU Hongyan, ZHAI Ting, et al. Enhanced triethylamine sensing properties by designing Au@SnO2/MoS2 nanostructure directly on alumina tubes[J]. Sensors and Actuators B: Chemical, 2017, 253: 97-107. |
34 | ZHAI Ting, XU Hongyan, LI Wenru, et al. Low-temperature in situ growth of SnO2 nanosheets and its high triethylamine sensing response by constructing Au-loaded ZnO/SnO2 heterostructure[J]. Journal of Alloys and Compounds, 2018, 737: 603-612. |
35 | ZHANG Dongzhi, YANG Zhimin, WU Zhenling, et al. Metal-organic frameworks-derived hollow zinc oxide/cobalt oxide nanoheterostructure for highly sensitive acetone sensing[J]. Sensors and Actuators B: Chemical, 2019, 283: 42-51. |
1 | DAI Hongbin, HUANG Guangqiu, WANG Jingjing, et al. Regional VOCs gathering situation intelligent sensing method based on spatial-temporal feature selection[J]. Atmosphere, 2022, 13(3): 483. |
2 | GAO Shang, ZHAO Yuli, WANG Wei, et al. Au/CuO/Cu2O heterostructures for conductometric triethylamine gas sensing[J]. Sensors and Actuators B: Chemical, 2022, 371: 132515. |
3 | CAI Liuxin, CHEN Li, SUN Xiqian, et al. Ultra-sensitive triethylamine gas sensors based on polyoxometalate-assisted synthesis of ZnWO4/ZnO hetero-structured nanofibers[J]. Sensors and Actuators B: Chemical, 2022, 370: 132422. |
4 | GUO Jia, LI Hang, MA Qian, et al. Surface oxygen vacancies actuated MoO3/CuMoO4 self-assembled microspheres for highly selective triethylamine detection[J]. Sensors and Actuators B: Chemical, 2022, 369: 132256. |
5 | LI Hang, ZHANG Qi, GUO Jia, et al. In-situ growth of hierarchical SnO2/In2O3 heterostructures with multiple effective n-n heterojunctions for superior triethylamine-sensing performances[J]. Sensors and Actuators B: Chemical, 2022, 369: 132377. |
6 | ZHANG Yueying, MA Ce, YANG Xinyu, et al. NASICON-based gas sensor utilizing MMnO3 (M: Gd, Sm, La) sensing electrode for triethylamine detection[J]. Sensors and Actuators B: Chemical, 2019, 295: 56-64. |
7 | LI Guodong, SHEN Yanbai, ZHAO Sikai, et al. Novel sensitizer Au x Sn modify rGO-SnO2 nanocomposites for enhancing detection of sub-ppm H2 [J]. Sensors and Actuators B: Chemical, 2022, 373: 132656. |
8 | TIAN Hailin, FAN Huiqing, MA Jiangwei, et al. Pt-decorated zinc oxide nanorod arrays with graphitic carbon nitride nanosheets for highly efficient dual-functional gas sensing[J]. Journal of Hazardous Materials, 2018, 341: 102-111. |
9 | DING Jijun, DAI Hangfei, CHEN Haixia, et al. Highly sensitive ethylene glycol gas sensor based on ZnO/rGO nanosheets[J]. Sensors and Actuators B: Chemical, 2022, 372: 132655. |
10 | SUN Lili, GUO Yun, LIU Yanchao, et al. Construction of hierarchical tourmaline@ZnO/MWCNT micro-nanostructured composite and its conductometric gas sensibility for n-butanol detection[J]. Sensors and Actuators B: Chemical, 2022, 371: 132533. |
11 | HU Jingjie, YUAN Qiming, ZHANG Cheng, et al. A facile cotton biotemplate to fabricate porous ZnFe2O4 sheets for acetone gas sensing application[J]. Sensors and Actuators B: Chemical, 2022, 371: 132587. |
36 | SIL I, CHAKRABORTY B, DUTTA K, et al. Capacitive mode vapor sensing phenomenon in ZnO homojunction: An insight through space charge model and electrical equivalent circuit[J]. IEEE Sensors Journal, 2022, 22(10): 9483-9490. |
37 | WANG Yan, MENG Xiaoning, YAO Mengxia, et al. Enhanced CH4 sensing properties of Pd modified ZnO nanosheets[J]. Ceramics International, 2019, 45(10): 13150-13157. |
[1] | XU Guobin, LIU Honghao, LI Jie, GUO Jiaqi, WANG Qi. Preparation and properties of ZnO QDs water-based inkjet fluorescent ink [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3114-3122. |
[2] | SI Yinfang, HU Yujie, ZHANG Fan, DONG Hao, SHE Yuehui. Biosynthesis of zinc oxide nanoparticles and its application to antibacterial [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 2013-2023. |
[3] | LI Qiaochun, GUO Enhui, LI Yang, MI Jie, WU Mengmeng. Desulfurization and regeneration behaviors of zinc-based composite oxides derived from hydrotalcite [J]. Chemical Industry and Engineering Progress, 2021, 40(11): 6278-6286. |
[4] | Yihang LI, Yuzhu XIONG, Qingpo ZHANG, Jiangbing WU. Preparation of nano zinc oxide/silica hybrid and its effect on properties of natural rubber composites [J]. Chemical Industry and Engineering Progress, 2020, 39(8): 3213-3220. |
[5] | Chun LI, Lixia SUN, Jianhua SUN, Liqin ZHOU, Dapeng XU, Youquan ZHANG, Dankui LIAO. Fabrication of Tyr biosensor for detection of catechol based on the ZnO with electrospinning [J]. Chemical Industry and Engineering Progress, 2020, 39(7): 2795-2801. |
[6] | Tianxiang ZHANG, Dong WANG. Research on carbon composite NiO sensitive material used for gas sensor [J]. Chemical Industry and Engineering Progress, 2020, 39(11): 4544-4549. |
[7] | LIANG Pengju, GUAN Rongxin, WANG Weihua, QIN Shaowei, MU Jincheng, DING Huiping, JIANG Jianhui. Photocatalytic oxidation desulfurization properties of Ce-doped ZnO [J]. Chemical Industry and Engineering Progress, 2018, 37(12): 4701-4708. |
[8] | ZHANG Chongmiao, WEN Yinmei, GAO Min, GAO Qian. Comparative study on the antibacterial properties of TiO2, ZnO and TiO2/ZnO oxide powders [J]. Chemical Industry and Engineering Progress, 2018, 37(11): 4343-4348. |
[9] | SONG Kaiwei, LI Jialei, CAI Jinpeng, LIU Siyan, CAO Yang, SU Chao, LIU Dianwen. A review on surface sulfidization of typical copper/lead/zinc oxide minerals flotation [J]. Chemical Industry and Engineering Progress, 2018, 37(09): 3618-3628. |
[10] | GUO Xingbo, HUANG Jinjun, LI Wenfei, TIAN Yuexin, SHEN Jingyuan. Photogenerated cathodic protection of polyaniline modified nano-ZnO films [J]. Chemical Industry and Engineering Progress, 2018, 37(08): 3107-3112. |
[11] | CHEN Xiao, SHI Qian, YANG Le, QIU Yu, SUN Qi, LEI Hua. Research progress in surface-modification and applications of nano zinc oxide [J]. Chemical Industry and Engineering Progress, 2018, 37(02): 621-627. |
[12] | FENG Yu, SHI Lei, ZHANG Saisai, WU Mengmeng, MI Jie. Kinetics study of zinc oxide sorbent prepared by different methods for hot coal gas desulfurization [J]. Chemical Industry and Engineering Progress, 2017, 36(08): 2994-3001. |
[13] | WANG Lixian, ZHAO Wentao, WANG Lulu, LI Haiying. The synthesis and properties of industrial-grade zinc oxide [J]. Chemical Industry and Engineering Progree, 2016, 35(S1): 259-264. |
[14] | SONG Zhenyu, TONG Zhangfa, ZHANG Hanbing, TAO Jingpeng, QIN Yuelong, ZHANG Lei. Photocatalytic degradation of dyes by nano-ZnO prepared with microwave assistance [J]. Chemical Industry and Engineering Progree, 2015, 34(12): 4310-4314. |
[15] | YE Linjing, AN Xiaoying, JIANG Yunjie, YAN Chao, GUAN Weisheng. Preparation of ZnO/CdS composite photocatalyst and its degradability on tetracycline antibiotic [J]. Chemical Industry and Engineering Progree, 2015, 34(11): 3944-3950. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |