Chemical Industry and Engineering Progress ›› 2022, Vol. 41 ›› Issue (12): 6733-6743.DOI: 10.16085/j.issn.1000-6613.2022-0443
• Resources and environmental engineering • Previous Articles
QI Zhenhua(), ZHOU Rong, BAI Yanan, LI Yuqin(), TANG Yufang
Received:
2022-03-21
Revised:
2022-04-12
Online:
2022-12-29
Published:
2022-12-20
Contact:
LI Yuqin
通讯作者:
李玉芹
作者简介:
齐振华(1996—),女,硕士研究生,研究方向为资源与环境化工。E-mail:2415099090@qq.com。
基金资助:
CLC Number:
QI Zhenhua, ZHOU Rong, BAI Yanan, LI Yuqin, TANG Yufang. Fermentation wastewater treatment and high-quality protein production by Chlorella pyrenoidosa under fed-batch mode[J]. Chemical Industry and Engineering Progress, 2022, 41(12): 6733-6743.
齐振华, 周蓉, 白亚楠, 李玉芹, 唐裕芳. 小球藻流加补料强化处理发酵废水联产高质蛋白饲料[J]. 化工进展, 2022, 41(12): 6733-6743.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2022-0443
发酵废水指标 | 进水(未处理) /mg·L-1 | 出水(小球藻分批模式处理) /mg·L-1 | 出水(小球藻流加补料模式处理) /mg·L-1 | 去除率 /% | GB 25463—2010排放标准 /mg·L-1 |
---|---|---|---|---|---|
TP | 369.7 | 119.34 | 1.89 | 99.5 | 2.0 |
TN | 887.1 | 306.14 | 43.75 | 95.1 | 50 |
NH3-N | 317.8 | 59.87 | 1.98 | 99.4 | 25 |
COD | 15123 | 1994.81 | 276.53 | 98.2 | 300 |
BOD | 12514 | 1997.23 | 41.43 | 99.7 | 50 |
发酵废水指标 | 进水(未处理) /mg·L-1 | 出水(小球藻分批模式处理) /mg·L-1 | 出水(小球藻流加补料模式处理) /mg·L-1 | 去除率 /% | GB 25463—2010排放标准 /mg·L-1 |
---|---|---|---|---|---|
TP | 369.7 | 119.34 | 1.89 | 99.5 | 2.0 |
TN | 887.1 | 306.14 | 43.75 | 95.1 | 50 |
NH3-N | 317.8 | 59.87 | 1.98 | 99.4 | 25 |
COD | 15123 | 1994.81 | 276.53 | 98.2 | 300 |
BOD | 12514 | 1997.23 | 41.43 | 99.7 | 50 |
营养成分 | Basal培养基小球藻粉 | 发酵废水小球藻粉 |
---|---|---|
粗蛋白 | 36.86 | 59.89 |
多糖 | 8.11 | 6.64 |
油脂 | 34.00 | 18.12 |
灰分 | 8.75 | 9.14 |
营养成分 | Basal培养基小球藻粉 | 发酵废水小球藻粉 |
---|---|---|
粗蛋白 | 36.86 | 59.89 |
多糖 | 8.11 | 6.64 |
油脂 | 34.00 | 18.12 |
灰分 | 8.75 | 9.14 |
氨基酸种类 | Basal小球藻粉 | 发酵废水小球藻粉 |
---|---|---|
苏氨酸① | 1.64 | 2.76 |
缬氨酸① | 2.19 | 3.75 |
蛋氨酸① | 0.52 | 1.71 |
异亮氨酸① | 1.07 | 2.99 |
亮氨酸① | 2.83 | 5.51 |
苯丙氨酸① | 1.65 | 3.46 |
赖氨酸① | 2.33 | 3.96 |
色氨酸① | 1.92 | 2.3 |
天冬氨酸 | 3.47 | 5.76 |
丝氨酸 | 1.61 | 1.94 |
谷氨酸 | 5.28 | 6.02 |
甘氨酸 | 2.15 | 3.41 |
丙氨酸 | 3.10 | 4.61 |
半胱氨酸 | 0.20 | 0.44 |
酪氨酸 | 1.13 | 1.86 |
组氨酸 | 0.70 | 1.22 |
精氨酸 | 2.38 | 3.83 |
脯氨酸 | 1.61 | 3.03 |
必需氨基酸(EAA) | 14.15 | 26.44 |
总氨基酸(TAA) | 33.85 | 58.56 |
非必需氨(NEAA) | 20.92 | 32.12 |
EAA/TAA | 0.42 | 0.45 |
EAA/NEAA | 0.68 | 0.82 |
氨基酸分 | 64.2 | 65.3 |
氨基酸种类 | Basal小球藻粉 | 发酵废水小球藻粉 |
---|---|---|
苏氨酸① | 1.64 | 2.76 |
缬氨酸① | 2.19 | 3.75 |
蛋氨酸① | 0.52 | 1.71 |
异亮氨酸① | 1.07 | 2.99 |
亮氨酸① | 2.83 | 5.51 |
苯丙氨酸① | 1.65 | 3.46 |
赖氨酸① | 2.33 | 3.96 |
色氨酸① | 1.92 | 2.3 |
天冬氨酸 | 3.47 | 5.76 |
丝氨酸 | 1.61 | 1.94 |
谷氨酸 | 5.28 | 6.02 |
甘氨酸 | 2.15 | 3.41 |
丙氨酸 | 3.10 | 4.61 |
半胱氨酸 | 0.20 | 0.44 |
酪氨酸 | 1.13 | 1.86 |
组氨酸 | 0.70 | 1.22 |
精氨酸 | 2.38 | 3.83 |
脯氨酸 | 1.61 | 3.03 |
必需氨基酸(EAA) | 14.15 | 26.44 |
总氨基酸(TAA) | 33.85 | 58.56 |
非必需氨(NEAA) | 20.92 | 32.12 |
EAA/TAA | 0.42 | 0.45 |
EAA/NEAA | 0.68 | 0.82 |
氨基酸分 | 64.2 | 65.3 |
脂肪酸组分 | Basal小球藻粉 | 发酵废水小球藻粉 |
---|---|---|
棕榈酸(C16∶0) | 2.88 | 3.17 |
棕榈油酸(C16∶1) | 5.35 | 5.92 |
十六碳二烯酸(C16∶2) | 1.01 | 1.33 |
十六碳三烯酸(C16∶3) | 2.22 | 2.56 |
硬脂酸(C18∶0) | 11.17 | 7.04 |
油酸(C18∶1) | 9.02 | 7.10 |
亚油酸(C18∶2) | 20.60 | 27.06 |
亚麻酸(C18∶3) | 18.68 | 25.82 |
二十烷酸(C20∶0) | 1.97 | 2.39 |
脂肪酸组分 | Basal小球藻粉 | 发酵废水小球藻粉 |
---|---|---|
棕榈酸(C16∶0) | 2.88 | 3.17 |
棕榈油酸(C16∶1) | 5.35 | 5.92 |
十六碳二烯酸(C16∶2) | 1.01 | 1.33 |
十六碳三烯酸(C16∶3) | 2.22 | 2.56 |
硬脂酸(C18∶0) | 11.17 | 7.04 |
油酸(C18∶1) | 9.02 | 7.10 |
亚油酸(C18∶2) | 20.60 | 27.06 |
亚麻酸(C18∶3) | 18.68 | 25.82 |
二十烷酸(C20∶0) | 1.97 | 2.39 |
指标 | GB 13078—2017 | Basal小球藻粉 | 发酵废水小球藻 |
---|---|---|---|
沙门氏菌/CFU·g-1 | 不得检出 | 未检出 | 未检出 |
霉菌总数/CFU·g-1 | <2×104 | 3×103 | 3×103 |
细菌总数/CFU·g-1 | <2×106 | 4×103 | 2×104 |
铅/mg·kg-1 | ≤5 | 未检出 | 未检出 |
砷/mg·kg-1 | ≤40 | 0.069 | 0.025 |
镉/mg·kg-1 | ≤2 | 未检出 | 0.0056 |
汞/mg·kg-1 | ≤0.1 | 未检出 | 未检出 |
铬/mg·kg-1 | ≤5 | 4.7 | 2.33 |
指标 | GB 13078—2017 | Basal小球藻粉 | 发酵废水小球藻 |
---|---|---|---|
沙门氏菌/CFU·g-1 | 不得检出 | 未检出 | 未检出 |
霉菌总数/CFU·g-1 | <2×104 | 3×103 | 3×103 |
细菌总数/CFU·g-1 | <2×106 | 4×103 | 2×104 |
铅/mg·kg-1 | ≤5 | 未检出 | 未检出 |
砷/mg·kg-1 | ≤40 | 0.069 | 0.025 |
镉/mg·kg-1 | ≤2 | 未检出 | 0.0056 |
汞/mg·kg-1 | ≤0.1 | 未检出 | 未检出 |
铬/mg·kg-1 | ≤5 | 4.7 | 2.33 |
1 | MADILINDI M A, ZISHIRI O T, DUBE B, et al. Technological advances in genetic improvement of feed efficiency in dairy cattle: a review[J]. Livestock Science, 2022, 258: 104871. |
2 | GOSWAMI Rahul Kumar, MEHARIYA Sanjeet, VERMA Pradeep, et al. Microalgae-based biorefineries for sustainable resource recovery from wastewater[J]. Journal of Water Process Engineering, 2021, 40: 101747. |
3 | 邹帅, 李玉芹, 马怡然, 等. 二乙醇胺强化胶球藻Coccomyxa subellipsoidea C-169固定CO2和积累油脂[J]. 化工进展, 2021, 40(9): 5222-5230. |
ZOU Shuai, LI Yuqin, MA Yiran, et al. Diethanolamine strengthening CO2 fixation and lipid accumulation in Coccomyxa subellipsoidea C-169[J]. Chemical Industry and Engineering Progress, 2021, 40(9): 5222-5230. | |
4 | WU Y B, LI L, WEN Z G, et al. Dual functions of eicosapentaenoic acid-rich microalgae: enrichment of yolk with n-3 polyunsaturated fatty acids and partial replacement for soybean meal in diet of laying hens[J]. Poultry Science, 2019, 98(1): 350-357. |
5 | AO T, MACALINTAL L M, PAUL M A, et al. Effects of supplementing microalgae in laying hen diets on productive performance, fatty-acid profile, and oxidative stability of eggs[J]. The Journal of Applied Poultry Research, 2015, 24(3): 394-400. |
6 | OH S, ZHENG L, KWON H J, et al. Effects of dietary fermented chlorella vulgaris (CBT®) on growth performance, relative organ weights, cecal microflora, tibia bone characteristics, and meat qualities in Pekin ducks[J]. Asian-Australasian Journal of Animal Sciences, 2014, 28(1): 95-101. |
7 | 曹申平, 韩冬, 解绶启, 等. 螺旋藻粉替代饲料中鱼粉对异育银鲫幼鱼生长、饲料利用和蛋白沉积的影响[J]. 水生生物学报, 2016, 40(4): 647-654. |
CAO Shenping, HAN Dong, XIE Shouqi, et al. Effects of dietary fishmeal replacement with spirulina platensis powder on the growth performance, feed utilization and protein deposition in juvenile gibel carp(carassis auratus gibelio var. cas)[J]. Acta Hydrobiologica Sinica, 2016, 40(4): 647-654. | |
8 | FADL Sabreen E, ELGOHARY M S, ELSADANY Abdelgawad Y, et al. Contribution of microalgae-enriched fodder for the Nile tilapia to growth and resistance to infection with Aeromonas hydrophila [J]. Algal Research, 2017, 27: 82-88. |
9 | HEROLD Clemens, ISHIKA Tasneema, NWOBA Emeka G, et al. Biomass production of marine microalga Tetraselmis suecica using biogas and wastewater as nutrients[J]. Biomass and Bioenergy, 2021, 145: 105945. |
10 | HUSSAIN Fida, SHAH Syed Z, AHMAD Habib, et al. Microalgae an ecofriendly and sustainable wastewater treatment option: Biomass application in biofuel and bio-fertilizer production. A review[J]. Renewable and Sustainable Energy Reviews, 2021, 137: 110603. |
11 | WANG Qingke, YU Zongyi, WEI Dong. High-yield production of biomass, protein and pigments by mixotrophic Chlorella pyrenoidosa through the bioconversion of high ammonium in wastewater[J]. Bioresource Technology, 2020, 313: 123499. |
12 | WANG Shikai, WANG Xu, MIAO Jing, et al. Tofu whey wastewater is a promising basal medium for microalgae culture[J]. Bioresource Technology, 2018, 253: 79-84. |
13 | MOHEIMANI Navid Reza, VADIVELOO Ashiwin, AYRE Jeremy Miles, et al. Nutritional profile and in vitro digestibility of microalgae grown in anaerobically digested piggery effluent[J]. Algal Research, 2018, 35: 362-369. |
14 | CHEN Chun-Yen, Enwei KUO, NAGARAJAN Dillirani, et al. Cultivating Chlorella sorokiniana AK-1 with swine wastewater for simultaneous wastewater treatment and algal biomass production[J]. Bioresource Technology, 2020, 302: 122814. |
15 | MADEIRA Marta S, CARDOSO Carlos, LOPES Paula A, et al. Microalgae as feed ingredients for livestock production and meat quality: a review[J]. Livestock Science, 2017, 205: 111-121. |
16 | MU Jinxiu, LI Shitian, CHEN Di, et al. Enhanced biomass and oil production from sugarcane bagasse hydrolysate (SBH) by heterotrophic oleaginous microalga Chlorella protothecoides [J]. Bioresource Technology, 2015, 185: 99-105. |
17 | AUSSANT Justine, Freddy GUIHÉNEUF, STENGEL Dagmar B. Impact of temperature on fatty acid composition and nutritional value in eight species of microalgae[J]. Applied Microbiology and Biotechnology, 2018, 102(12): 5279-5297. |
18 | 张立兰, 高理想, 陈亮, 等. 体外消化法优化生长猪玉米-豆粕-DDGS饲粮和小麦-豆粕饲粮非淀粉多糖酶谱的研究[J]. 畜牧兽医学报, 2017, 48(8): 1468-1480. |
ZHANG Lilan, GAO Lixiang, CHEN Liang, et al. Optimization of non-starch polysaccharide enzymes of corn-soybean-DDGS and wheat-soybean diets for growing pig using in vitro method[J]. Chinese Journal of Animal and Veterinary Sciences, 2017, 48(8): 1468-1480. | |
19 | 霍艳姣, 王波, 郭珊珊, 等. 鱼肉蛋白肽在模拟胃肠消化吸收过程中的抗氧化活性和生物利用度[J]. 食品工业科技, 2016, 37(6): 174-178, 186. |
HUO Yanjiao, WANG Bo, GUO Shanshan, et al. Antioxidant activity and bioavailability of the Pacific cod meat peptides during simulated gastrointestinal digestion and absorption[J]. Science and Technology of Food Industry, 2016, 37(6): 174-178, 186. | |
20 | QUIJANO Guillermo, ARCILA Juan S, Germán BUITRÓN. Microalgal-bacterial aggregates: applications and perspectives for wastewater treatment[J]. Biotechnology Advances, 2017, 35(6): 772-781. |
21 | GAO Feng, YANG Ziyan, ZHAO Qiaoling, et al. Mixotrophic cultivation of microalgae coupled with anaerobic hydrolysis for sustainable treatment of municipal wastewater in a hybrid system of anaerobic membrane bioreactor and membrane photobioreactor[J]. Bioresource Technology, 2021, 337: 125457. |
22 | Ainoa MORILLAS-ESPAÑA, Ana SÁNCHEZ-ZURANO, LAFARGA Tomás, et al. Improvement of wastewater treatment capacity using the microalga Scenedesmus sp. and membrane bioreactors[J]. Algal Research, 2021, 60: 102516. |
23 | KIRCHNER Nicholas J, HAGE Adam, GOMEZ Jose, et al. Photosynthesis, competition, and wastewater treatment characteristics of the microalga Monoraphidium sp. Dek19 at cool temperatures[J]. Algal Research, 2022, 62: 102624. |
24 | WANG Qingke, YU Zongyi, WEI Dong, et al. Mixotrophic Chlorella pyrenoidosa as cell factory for ultrahigh-efficient removal of ammonium from catalyzer wastewater with valuable algal biomass coproduction through short-time acclimation[J]. Bioresource Technology, 2021, 333: 125151. |
25 | ZHOU Youcai, HE Yongjin, XIAO Xuehua, et al. A novel and efficient strategy mediated with calcium carbonate-rich sources to remove ammonium sulfate from rare earth wastewater by heterotrophic Chlorella species [J]. Bioresource Technology, 2022, 343: 125994. |
26 | AZAM Rifat, KOTHARI Richa, SINGH Har Mohan, et al. Cultivation of two Chlorella species in open sewage contaminated channel wastewater for biomass and biochemical profiles: comparative lab-scale approach[J]. Journal of Biotechnology, 2022, 344: 24-31. |
27 | WANG Yue, GUO Wanqian, YEN Hong-Wei, et al. Cultivation of Chlorella vulgaris JSC-6 with swine wastewater for simultaneous nutrient/COD removal and carbohydrate production[J]. Bioresource Technology, 2015, 198: 619-625. |
28 | TAN Xiaobo, YANG Libin, ZHANG Yalei, et al. Chlorella pyrenoidosa cultivation in outdoors using the diluted anaerobically digested activated sludge[J]. Bioresource Technology, 2015, 198: 340-350. |
29 | CHENG Pengfei, CHU Ruirui, ZHANG Xuezhi, et al. Screening of the dominant Chlorella pyrenoidosa for biofilm attached culture and feed production while treating swine wastewater[J]. Bioresource Technology, 2020, 318: 124054. |
30 | CHENG Pengfei, HUANG Jianke, SONG Xiaotong, et al. Heterotrophic and mixotrophic cultivation of microalgae to simultaneously achieve furfural wastewater treatment and lipid production[J]. Bioresource Technology, 2022, 349: 126888. |
31 | SONG Chunfeng, LIU Jie, XIE Meilian, et al. Intensification of a novel absorption-microalgae hybrid CO2 utilization process via fed-batch mode optimization[J]. International Journal of Greenhouse Gas Control, 2019, 82: 1-7. |
32 | LI Yuqin, XU Hua, HAN Fangxin, et al. Regulation of lipid metabolism in the green microalga Chlorella protothecoides by heterotrophy-photoinduction cultivation regime[J]. Bioresource Technology, 2015, 192: 781-791. |
33 | MATOS Ângelo Paggi, CAVANHOLI Monnik Gandin, MOECKE Elisa Helena Siegel, et al. Effects of different photoperiod and trophic conditions on biomass, protein and lipid production by the marine alga Nannochloropsis gaditana at optimal concentration of desalination concentrate[J]. Bioresource Technology, 2017, 224: 490-497. |
34 | NICCOLAI Alberto, CHINI ZITTELLI Graziella, RODOLFI Liliana, et al. Microalgae of interest as food source: biochemical composition and digestibility[J]. Algal Research, 2019, 42: 101617. |
35 | 胡斌, 宋理平, 冒树泉, 等. 铜藻的营养成分分析与营养学评价[J]. 广东海洋大学学报, 2015, 35(6): 100-104. |
HU Bin, SONG Liping, MAO Shuquan, et al. Nutrient analysis of sargassum horneri and its nutritional evaluation[J]. Journal of Guangdong Ocean University, 2015, 35(6): 100-104. | |
36 | 张玲, 刘平怀, 罗宁, 等. 小球藻Chlorella sorokiniana C74营养素分析[J]. 食品研究与开发, 2016, 37(10): 10-15. |
ZHANG Ling, LIU Pinghuai, LUO Ning, et al. Nutrient analysis of Chlorella sorokiniana C74[J]. Food Research and Development, 2016, 37(10): 10-15. | |
37 | 向枭, 叶元土, 周兴华, 等. 鲇胃肠道、胰脏对7种饲料蛋白质的酶解动力学[J]. 水生生物学报, 2006, 30(4): 493-498. |
XIANG Xiao, YE Yuantu, ZHOU Xinghua, et al. A comparative study of enzymolysis kinetics to common feed ingredients for Silurus asotus Linnaeus[J]. Acta Hydrobiologica Sinica, 2006, 30(4): 493-498. |
[1] | WANG Shuaiqing, YANG Siwen, LI Na, SUN Zhanying, AN Haoran. Research progress on element doped biomass carbon materials for electrochemical energy storage [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4296-4306. |
[2] | WU Ya, ZHAO Dan, FANG Rongmiao, LI Jingyao, CHANG Nana, DU Chunbao, WANG Wenzhen, SHI Jun. Research progress on highly efficient demulsifiers for complex crude oil emulsions and their applications [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4398-4413. |
[3] | XI Yonglan, WANG Chengcheng, YE Xiaomei, LIU Yang, JIA Zhaoyan, CAO Chunhui, HAN Ting, ZHANG Yingpeng, TIAN Yu. Research progress on the application of micro/nano bubbles in anaerobic digestion [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4414-4423. |
[4] | ZHENG Mengqi, WANG Chengye, WANG Yan, WANG Wei, YUAN Shoujun, HU Zhenhu, HE Chunhua, WANG Jie, MEI Hong. Application and prospect of algal-bacterial symbiosis technology in zero liquid discharge of industrial wastewater [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4424-4431. |
[5] | GUAN Hongling, YANG Hui, JING Hongquan, LIU Yuqiong, GU Shouyu, WANG Haobin, HOU Cuihong. Lignin-based controlled release materials and application in drug delivery and fertilizer controlled-release [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3695-3707. |
[6] | LIU Yang, YE Xiaomei, MIAO Xiao, WANG Chengcheng, JIA Zhaoyan, CAO Chunhui, XI Yonglan. Pilot-scale process research on dry digestion of rural organic household waste under ammonia stress [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3847-3854. |
[7] | YU Dingyi, LI Yuanyuan, WANG Chenyu, JI Yongsheng. Preparation of lignin-based pH responsive hydrogel and its application in controlled drug release [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3138-3146. |
[8] | ZHUANG Jie, XUE Jinhui, ZHAO Bincheng, ZHANG Wenyi. Organic binding mechanism of heavy metals and humus during anaerobic digestion of pig manure [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3281-3291. |
[9] | WU Fengzhen, LIU Zhiwei, XIE Wenjie, YOU Yating, LAI Rouqiong, CHEN Yandan, LIN Guanfeng, LU Beili. Preparation of biomass derived Fe/N co-doped porous carbon and its application for catalytic degradation of Rhodamine B via peroxymonosulfate activation [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3292-3301. |
[10] | WANG Xue, XU Qiyong, ZHANG Chao. Hydrothermal carbonization of the lignocellulosic biomass and application of the hydro-char [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2536-2545. |
[11] | WANG Zhiwei, GUO Shuaihua, WU Mengge, CHEN Yan, ZHAO Junting, LI Hui, LEI Tingzhou. Recent advances on catalytic co-pyrolysis of biomass and plastic [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2655-2665. |
[12] | LIU Jing, LIN Lin, ZHANG Jian, ZHAO Feng. Research progress in pore size regulation and electrochemical performance of biomass-based carbon materials [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 1907-1916. |
[13] | WAN Maohua, ZHANG Xiaohong, AN Xingye, LONG Yinying, LIU Liqin, GUAN Min, CHENG Zhengbai, CAO Haibing, LIU Hongbin. Research progress on the applications of MXene in the fields of biomass based energy storage nanomaterials [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 1944-1960. |
[14] | YANG Ziqiang, LI Fenghai, GUO Weijie, MA Mingjie, ZHAO Wei. Review on phosphorus migration and transformation during municipal sewage sludge heat treatment [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 2081-2090. |
[15] | XING Xianjun, LUO Tian, BU Yuzheng, MA Peiyong. Preparation of biochar from walnut shells activated by H3PO4 and its application in Cr(Ⅵ) adsorption [J]. Chemical Industry and Engineering Progress, 2023, 42(3): 1527-1539. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |