1 |
SELVARAJ R, SANTHANAM M, SELVAMANI V, et al. A membrane electroflotation process for recovery of recyclable chromium(Ⅲ) from tannery spent liquor effluent[J]. Journal of Hazardous Materials, 2018, 346: 133-139.
|
2 |
CHOW Y N, LEE L K, ZAKARIA N A, et al. Phytotoxic effects of trivalent chromium-enriched water irrigation in Vigna unguiculata seedling[J]. Journal of Cleaner Production, 2018, 202: 101-108.
|
3 |
LIU W, YU Y X. Removal of recalcitrant trivalent chromium complexes from industrial wastewater under strict discharge standards[J]. Environmental Technology & Innovation, 2021, 23: 101644.
|
4 |
LIU G J, CUI C C, JIANG L, et al. Visible light-induced hydrogels towards reversible adsorption and desorption based on trivalent chromium in aqueous solution[J]. Reactive and Functional Polymers, 2021, 163: 104886.
|
5 |
LYU T, MA R G, KE K, et al. Synthesis of gallic acid functionalized magnetic hydrogel beads for enhanced synergistic reduction and adsorption of aqueous chromium[J]. Chemical Engineering Journal, 2021, 408: 127327.
|
6 |
KYZIOŁ-KOMOSIŃSKA J, AUGUSTYNOWICZ J, LASEK W, et al. Callitriche cophocarpa biomass as a potential low-cost biosorbent for trivalent chromium[J]. Journal of Environmental Management, 2018, 214: 295-304.
|
7 |
LATIF A, SHENG D, SUN K, et al. Remediation of heavy metals polluted environment using Fe-based nanoparticles: mechanisms, influencing factors, and environmental implications[J]. Environmental Pollution, 2020, 264:114728.
|
8 |
RAMALINGAM B, VENKATACHALAM S S, KIRAN M S, et al. Rationally designed shewanella oneidensis biofilm toilored graphene-magnetite hybrid nanobiocomposite as reusable living functional nanomaterial for effective removal of trivalent chromium[J]. Environmental Pollution, 2021, 278: 116847.
|
9 |
LI M J, MA C X, YIN X X, et al. Investigating trivalent chromium biosorption-driven extracellular polymeric substances changes of Synechocystis sp. PCC 7806 by parallel factor analysis (PARAFAC) analysis[J]. Bioresource Technology Reports, 2019, 7: 100249.
|
10 |
EL-SHAHAWI M S, HASSAN S S M, OTHMAN A M, et al. Retention profile and subsequent chemical speciation of chromium (Ⅲ) and (Ⅵ) in industrial wastewater samples employing some onium cations loaded polyurethane foams[J]. Microchemical Journal, 2008, 89(1): 13-19.
|
11 |
JIANG D M, YANG Y H, HUANG C T, et al. Removal of the heavy metal ion nickel (Ⅱ) via an adsorption method using flower globular magnesium hydroxide[J]. Journal of Hazardous Materials, 2019, 373: 131-140.
|
12 |
张振国, 张铭栋, 顾平, 等. 沸石材料吸附水中放射性锶和铯的研究进展[J]. 化工进展, 2019, 38(4): 1984-1995.
|
|
ZHANG Zhenguo, ZHANG Mingdong, GU Ping, et al. Progress in adsorption of radioactive strontium and cesium from aqueous solution on zeolite materials[J]. Chemical Industry and Engineering Progress, 2019, 38(4): 1984-1995.
|
13 |
DU X, ZHANG Q, QIAO W L, et al. Controlled self-assembly of oligomers-grafted fibrous polyaniline/single zirconium phosphate nanosheet hybrids with potential-responsive ion exchange properties[J]. Chemical Engineering Journal, 2016, 302: 516-525.
|
14 |
MARCINIAK M, GOSCIANSKA J, FRANKOWSKI M, et al. Optimal synthesis of oxidized mesoporous carbons for the adsorption of heavy metal ions[J]. Journal of Molecular Liquids, 2019, 276: 630-637.
|
15 |
WU H M, XIAO Y, GUO Y, et al. Functionalization of SBA-15 mesoporous materials with 2-acetylthiophene for adsorption of Cr(Ⅲ) ions[J]. Microporous and Mesoporous Materials, 2020, 292: 109754.
|
16 |
RADI S, TIGHADOUINI S, MASSAOUDI M EL, et al. Thermodynamics and kinetics of heavy metals adsorption on silica particles chemically modified by conjugated β-ketoenol furan[J]. Journal of Chemical & Engineering Data, 2015, 60(10): 2915-2925.
|
17 |
ORTIZ-BUSTOS J, MARTÍN A, MORALES V, et al. Surface-functionalization of mesoporous SBA-15 silica materials for controlled release of methylprednisolone sodium hemisuccinate: influence of functionality type and strategies of incorporation[J]. Microporous and Mesoporous Materials, 2017, 240: 236-245.
|
18 |
О DUDARKO, KOBYLINSKA N, MISHRA B, et al. Facile strategies for synthesis of functionalized mesoporous silicas for the removal of rare-earth elements and heavy metals from aqueous systems[J]. Microporous and Mesoporous Materials, 2021, 315: 110919.
|
19 |
LI S L, LI S Q, WEN N, et al. Highly effective removal of lead and cadmium ions from wastewater by bifunctional magnetic mesoporous silica[J]. Separation and Purification Technology, 2021, 265: 118341.
|
20 |
DINDAR M H, YAFTIAN M R, ROSTAMNIA S. Potential of functionalized SBA-15 mesoporous materials for decontamination of water solutions from Cr(Ⅵ), As(Ⅴ) and Hg(Ⅱ) ions[J]. Journal of Environmental Chemical Engineering, 2015, 3(2): 986-995.
|
21 |
肖昱, 郭宇, 吴红梅, 等. 氨基功能化介孔硅吸附剂的制备及其对铬(Ⅲ)的吸附行为[J]. 化工进展, 2020, 39(1): 257-266.
|
|
XIAO Yu, GUO Yu, WU Hongmei, et al. Adsorption of chromium(Ⅲ) ions with amino functionalized mesoporous silica adsorbent[J]. Chemical Industry and Engineering Progress, 2020, 39(1): 257-266.
|
22 |
LIU S, CUI H Z, LI Y L, et al. Bis-pyrazolyl functionalized mesoporous SBA-15 for the extraction of Cr(Ⅲ) and detection of Cr(Ⅵ) in artificial jewelry samples[J]. Microchemical Journal, 2017, 131: 130-136.
|
23 |
CORREIA L M M, SOLIMAN M M A, GRANADEIRO C M, et al. Vanadium C-scorpionate supported on mesoporous aptes-functionalized SBA-15 as catalyst for the peroxidative oxidation of benzyl alcohol[J]. Microporous and Mesoporous Materials, 2021, 320: 111111.
|
24 |
RIBEIRO S O, GRANADEIRO C M, ALMEIDA P L, et al. Effective zinc-substituted keggin composite to catalyze the removal of sulfur from real diesels under a solvent-free system[J]. Industrial & Engineering Chemistry Research, 2019, 58(40): 18540-18549.
|
25 |
ZHOU Y, BAO R L, YUE B, et al. Synthesis, characterization and catalytic application of SBA-15 immobilized rare earth metal sandwiched polyoxometalates[J]. Journal of Molecular Catalysis A: Chemical, 2007, 270(1/2): 50-55.
|
26 |
HAO S Y, ZHONG Y J, PEPE F, et al. Adsorption of Pb2+ and Cu2+ on anionic surfactant-templated amino-functionalized mesoporous silicas[J]. Chemical Engineering Journal, 2012, 189/190: 160-167.
|
27 |
GOLLAKOTA A R K, MUNAGAPATI V S, SHADANGI K P, et al. Encapsulating toxic Rhodamine 6G dye, and Cr(Ⅵ) metal ions from liquid phase using AlPO4-5 molecular sieves. Preparation, characterization, and adsorption parameters[J]. Journal of Molecular Liquids, 2021, 336: 116549.
|
28 |
HERNÁNDEZ-MORALES V, NAVA R, ACOSTA-SILVA Y J, et al. Adsorption of lead (Ⅱ) on SBA-15 mesoporous molecular sieve functionalized with-NH2 groups[J]. Microporous and Mesoporous Materials, 2012, 160: 133-142.
|
29 |
LIU C, JIN R N, OUYANG X K, et al. Adsorption behavior of carboxylated cellulose nanocrystal-polyethyleneimine composite for removal of Cr(Ⅵ) ions[J]. Applied Surface Science, 2017, 408: 77-87.
|
30 |
SALMANI M H, EHRAMPOUSH M H, ESLAMI H, et al. Synthesis, characterization and application of mesoporous silica in removal of cobalt ions from contaminated water[J]. Groundwater for Sustainable Development, 2020, 11: 100425.
|
31 |
MAHMOUDI F, AMINI M M, SILLANPÄÄ M. Hydrothermal synthesis of novel MIL-100(Fe)@SBA-15 composite material with high adsorption efficiency towards dye pollutants for wastewater remediation[J]. Journal of the Taiwan Institute of Chemical Engineers, 2020, 116: 303-313.
|
32 |
SHARMA R, KUMAR D. Adsorption of Cr(Ⅲ) and Cu(Ⅱ) on hydrothermally synthesized graphene oxide-calcium-zinc nanocomposite[J]. Journal of Chemical & Engineering Data, 2018, 63(12): 4560-4572.
|
33 |
张永德, 黄松涛, 罗学刚, 等. 膨化稻壳对铀及伴生重金属离子的吸附机理[J]. 化工进展, 2016, 35(9): 2707-2714.
|
|
ZHANG Yongde, HUANG Songtao, LUO Xuegang, et al. Adsorption characteristics and mechanism of U(Ⅵ) and associated heavy metals on expanded rice husk[J]. Chemical Industry and Engineering Progress, 2016, 35(9): 2707-2714.
|
34 |
王重庆, 王晖, 江小燕, 等. 生物炭吸附重金属离子的研究进展[J]. 化工进展, 2019, 38(1): 692-706.
|
|
WANG Chongqing, WANG Hui, JIANG Xiaoyan, et al. Research advances on adsorption of heavy metals by biochar[J]. Chemical Industry and Engineering Progress, 2019, 38(1): 692-706.
|
35 |
DENG S B, TING Y P. Polyethylenimine-modified fungal biomass as a high-capacity biosorbent for Cr(Ⅵ) anions: sorption capacity and uptake mechanisms[J]. Environmental Science & Technology, 2005, 39(21): 8490-8496.
|
36 |
LEI Z M, AN Q D, FAN Y, et al. Monolithic magnetic carbonaceous beads for efficient Cr(Ⅵ) removal from water[J]. New Journal of Chemistry, 2016, 40(2): 1195-1204.
|
37 |
PARAB H, JOSHI S, SHENOY N, et al. Determination of kinetic and equilibrium parameters of the batch adsorption of Co(Ⅱ), Cr(Ⅲ) and Ni(Ⅱ) onto coir pith[J]. Process Biochemistry, 2006, 41(3): 609-615.
|
38 |
QIU Y, ZHANG Q, GAO B, et al. Removal mechanisms of Cr(Ⅵ) and Cr(Ⅲ) by biochar supported nanosized zero-valent iron: synergy of adsorption, reduction and transformation[J]. Environmental Pollution, 2020, 265: 115018.
|
39 |
ARIM A L, QUINA M J, GANDO-FERREIRA L M. Uptake of trivalent chromium from aqueous solutions by xanthate pine bark: characterization, batch and column studies[J]. Process Safety and Environmental Protection, 2019, 121:374-386.
|
40 |
WANG J H, MAO M, ATIF S, et al. Adsorption behavior and mechanism of aqueous Cr(Ⅲ) and Cr(Ⅲ)-EDTA chelates on DTPA-chitosan modified Fe3O4@SiO2 [J]. Reactive and Functional Polymers, 2020, 156: 104720.
|