Chemical Industry and Engineering Progress ›› 2021, Vol. 40 ›› Issue (7): 3645-3655.DOI: 10.16085/j.issn.1000-6613.2020-1721
• Chemical processes and equipment • Previous Articles Next Articles
WANG Jiajun1(), DENG Shuai1,2, ZHAO Ruikai1,2(), ZHAO Li1
Received:
2020-08-28
Revised:
2021-03-01
Online:
2021-07-19
Published:
2021-07-06
Contact:
ZHAO Ruikai
通讯作者:
赵睿恺
作者简介:
王傢俊(1997—),男,硕士研究生,研究方向为电子级气体高效回收。E-mail:基金资助:
CLC Number:
WANG Jiajun, DENG Shuai, ZHAO Ruikai, ZHAO Li. Analysis of energy and consumption reduction in adsorption recovery of electronic HF[J]. Chemical Industry and Engineering Progress, 2021, 40(7): 3645-3655.
王傢俊, 邓帅, 赵睿恺, 赵力. 电子级HF吸附法回收的节能降耗潜力分析[J]. 化工进展, 2021, 40(7): 3645-3655.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2020-1721
原子名称 | σ/? | 电荷(e-) | |
---|---|---|---|
Cu | 2.516 | 3.11 | 1.248 |
O | 48.158 | 3.03 | -0.624 |
C1 | 47.856 | 3.47 | 0.494 |
C2 | 47.856 | 3.47 | 0.13 |
C3 | 47.856 | 3.47 | -0.156 |
H | 7.65 | 2.85 | 0.156 |
F_ hf | 60.0 | 2.830 | 0.592 |
H_ hf | 0 | 0 | 0.592 |
HF_ w | 0 | 0 | -1.184 |
原子名称 | σ/? | 电荷(e-) | |
---|---|---|---|
Cu | 2.516 | 3.11 | 1.248 |
O | 48.158 | 3.03 | -0.624 |
C1 | 47.856 | 3.47 | 0.494 |
C2 | 47.856 | 3.47 | 0.13 |
C3 | 47.856 | 3.47 | -0.156 |
H | 7.65 | 2.85 | 0.156 |
F_ hf | 60.0 | 2.830 | 0.592 |
H_ hf | 0 | 0 | 0.592 |
HF_ w | 0 | 0 | -1.184 |
键的形式 | 键的长度/? |
---|---|
F—H | 0.973 |
F—X | 0.1647 |
键的形式 | 键的长度/? |
---|---|
F—H | 0.973 |
F—X | 0.1647 |
个数 | 测试温度/K | 测试压力/Pa |
---|---|---|
1 | 298 | 1000 |
2 | 300 | 10000 |
3 | 313 | 20000 |
4 | 330 | 50000 |
5 | 340 | 70000 |
6 | 360 | — |
7 | 380 | — |
8 | 400 | — |
9 | 420 | — |
个数 | 测试温度/K | 测试压力/Pa |
---|---|---|
1 | 298 | 1000 |
2 | 300 | 10000 |
3 | 313 | 20000 |
4 | 330 | 50000 |
5 | 340 | 70000 |
6 | 360 | — |
7 | 380 | — |
8 | 400 | — |
9 | 420 | — |
吸附平衡等温线模型 | 模型表达式 | 模型参数表达式 | |
---|---|---|---|
Langmuir模型 | |||
Toth模型 | |||
Sips模型 |
吸附平衡等温线模型 | 模型表达式 | 模型参数表达式 | |
---|---|---|---|
Langmuir模型 | |||
Toth模型 | |||
Sips模型 |
参数 | 数值 |
---|---|
管壳内管几何尺(di)/cm | 3 |
管壳外管几何尺(do)/cm | 3.18 |
比换热面积(S)/m2·m-3 | 133.5 |
总换热热阻(U)/J·m-2·K-1 | 16.8 |
不锈钢壁面比热容(cpw)/J·m-3·K-1 | 4000000 |
进料速度(yF)/m·s-1 | 0.5 |
环境压力(pH)/Pa | 1.01×105 |
吸附床床长(L)/m | 1.2 |
参数 | 数值 |
---|---|
管壳内管几何尺(di)/cm | 3 |
管壳外管几何尺(do)/cm | 3.18 |
比换热面积(S)/m2·m-3 | 133.5 |
总换热热阻(U)/J·m-2·K-1 | 16.8 |
不锈钢壁面比热容(cpw)/J·m-3·K-1 | 4000000 |
进料速度(yF)/m·s-1 | 0.5 |
环境压力(pH)/Pa | 1.01×105 |
吸附床床长(L)/m | 1.2 |
吸附平衡等温线模型 | R2 |
---|---|
Langmuir模型 | 0.8286 |
Toth模型 | 0.7734 |
Sips模型 | 0.9987 |
吸附平衡等温线模型 | R2 |
---|---|
Langmuir模型 | 0.8286 |
Toth模型 | 0.7734 |
Sips模型 | 0.9987 |
表达式参数 | 参数数值 | R2 |
---|---|---|
300 | 0.9764 | |
K0 | 7.159 | |
Q | -10420 | |
c0 | 1.748 | |
α | 17.26 |
表达式参数 | 参数数值 | R2 |
---|---|---|
300 | 0.9764 | |
K0 | 7.159 | |
Q | -10420 | |
c0 | 1.748 | |
α | 17.26 |
1 | 洪海江, 应振洲, 余锋, 等. 电子级氢氟酸的纯化技术及其配套技术[J]. 有机氟工业, 2012(3): 25-29. |
HONG Haijiang, YING Zhenzhou, YU Feng, et al. Purification technology for electronic-grade hydrofluoric acid and its associated technology[J]. Organic Forine Istry, 2012(3): 25-29. | |
2 | 李丹丹, 岳立平, 郑艺. 无水氟化氢的纯化工艺研究进展[J]. 化学工程师, 2017, 31(9): 36-37, 39. |
LI Dandan, YUE Liping, ZHENG Yi. Advances in purification study of fluoride hydrogen[J]. Chemical Engineer, 2017, 31(9): 36-37, 39. | |
3 | 金正义, 应学来. 含氟化学品生产中过量氟化氢的吸附回收技术[J]. 有机氟工业, 2007(3): 28-29, 33. |
JIN Zhengyi, YING Xuelai. The adsorption and recovery technology of excessive hydrogen fluoride in the production of fluorinated chemicals[J]. Organic Fluorine Industry, 2007(3): 28-29, 33. | |
4 | 刘飞, 邱祖军, 尹峰, 等. 电子级氢氟酸的纯化技术及其发展现状[J]. 硫磷设计与粉体工程, 2012(1): 44-48. |
LIU Fei, QIU Zujun, YIN Feng, et al. Purification technology of electron-grade hydrofluoric acid and its development status[J]. Design and Powder Engineering of Sulfur-Phosphorus, 2012(1): 44-48. | |
5 | 王文利, 白志民. 中国萤石资源及产业发展现状[J]. 金属矿山, 2014(3): 1-9. |
WANG Wenli, BAI Zhimin. Current situation of fluorite resources and industry development in China[J]. Metal Mine, 2014(3): 1-9. | |
6 | 李敬, 高永璋, 张浩. 中国萤石资源现状及可持续发展对策[J]. 中国矿业, 2017, 26(10): 7-14. |
LI Jing, GAO Yongzhang, ZHANG Hao.Current situation and sustainable development countermeasures of fluorite resources in China[J]. China Mining, 2017, 26(10): 7-14. | |
7 | 贾磊. 日本限制对韩氟化氢出口[J]. 无机盐工业, 2019, 51(8): 94. |
JIA L. Restriction of export of hydrogen fluoride to Korea by Japan[J]. Inorfanic Chemicals Industry, 2019, 51(8): 94. | |
8 | AFZAL S, RAHIMI A, EHSANI M R, et al. Experimental study of hydrogen fluoride adsorption on sodium fluoride[J]. Journal of Industrial & Engineering Chemistry, 2010, 16(1):147-151. |
9 | SIAHOOEI M A, BORDBARI K. Adsorption of fluoride gases in aluminum production by using of nanotechnology[M]. Berlin: Springer International Publishing, 2019: 121-136. |
10 | WANG C, LIU B, SUN F, et al. New challenge of microporous metal-organic frameworks for adsorption of hydrogen fluoride gas[J]. Materials Letters, 2017, 197: 175-179. |
11 | BAHRAMI H, SAFDARI J, MOOSAVIAN M A, et al. Adsorption of hydrogen fluoride onto activated carbon under vacuum conditions: equilibrium, kinetic and thermodynamic investigations[J]. Chemical Industry and Chemical Engineering Quarterly, 2012, 18(4): 497-508. |
12 | CASTILLO J M, VLUGT T J H, CALERO, et al. Understanding water adsorption in Cu-BTC Metal-Organic frameworks[J]. Journal of Physical Chemistry C, 2008, 112(41): 15934-15939. |
13 | PARTAY L B, JEDLOVSZKY P, HOANG P N M, et al. Free-energy profile of small solute molecules at the free surfaces of water and ice, as determined by cavity insertion widom calculations[J]. Journal of Physical Chemistry C, 2007, 111(26): 9407-9416. |
14 | ZHAO R, ZHAO L, DENG S, et al. A comparative study on CO2 capture performance of vacuum-pressure swing adsorption and pressure-temperature swing adsorption based on carbon pump cycle[J]. Energy, 2017, 137: 495-509. |
15 | DU Z, NIE X, DENG S, et al. Comparative analysis of calculation method of adsorption isosteric heat: case study of CO2 capture using MOFs[J]. Microporous and Mesoporous Materials, 2020, 298: 110053. |
16 | MAX, HEFTI, DORIAN, et al. Adsorption equilibrium of binary mixtures of carbon dioxide and nitrogen on zeolites ZSM-5 and 13X[J]. Microporous and Mesoporous Materials, 2015, 215: 215-288. |
17 | JIANG L, ROSKILLY A P, WANG R Z. Performance exploration of temperature swing adsorption technology for carbon dioxide capture[J]. Energy Conversion & Management, 2018, 165: 396-404. |
18 | KIM Min-Bae, MOON Jong-Ho, LEE Chang-Ha, et al. Effect of heat transfer on the transient dynamics of temperature swing adsorption process[J]. Korean Journal of Chemical Engineering, 2004, 21(3): 73-711. |
19 | JOSS L, GAZZANI M, HEFTI M, et al. Temperature swing adsorption for the recovery of the heavy component: an equilibrium-based shortcut model[J]. Industrial & Engineering Chemistry Research, 2015, 54(11): 3027-3038. |
20 | ZHAO R, DENG S, LIU Y, et al. Carbon pump: fundamental theory and applications[J]. Energy, 2017, 119:1131-1143. |
21 | KLOUTSE F A, ZACHARIA R, COSSEMENT D, et al. Specific heat capacities of MOF-5, Cu-BTC, Fe-BTC, MOF-177 and MIL-53 (Al) over wide temperature ranges: measurements and application of empirical group contribution method[J]. Microporous and Mesoporous Materials, 2015, 217: 1-5. |
[1] | MA Yi, CAO Shiwei, WANG Jiajun, LIN Liqun, XING Yan, CAO Tengliang, LU Feng, ZHAO Zhenlun, ZHANG Zhijun. Research progress in recovery of spent cathode materials for lithium-ion batteries using deep eutectic solvents [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 219-232. |
[2] | WANG Shengyan, DENG Shuai, ZHAO Ruikai. Research progress on carbon dioxide capture technology based on electric swing adsorption [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 233-245. |
[3] | CUI Shoucheng, XU Hongbo, PENG Nan. Simulation analysis of two MOFs materials for O2/He adsorption separation [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 382-390. |
[4] | SHI Keke, LIU Muzi, ZHAO Qiang, LI Jinping, LIU Guang. Properties and research progress of magnesium based hydrogen storage materials [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4731-4745. |
[5] | SHAO Zhiguo, REN Wen, XU Shipei, NIE Fan, XU Yu, LIU Longjie, XIE Shuixiang, LI Xingchun, WANG Qingji, XIE Jiacai. Influence of final temperature on the distribution and characteristics of oil-based drilling cuttings pyrolysis products [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4929-4938. |
[6] | WANG Baoying, WANG Huangying, YAN Junying, WANG Yaoming, XU Tongwen. Research progress of polymer inclusion membrane in metal separation and recovery [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 3990-4004. |
[7] | LYU Jie, HUANG Chong, FENG Ziping, HU Yafei, SONG Wenji. Performance and control system of gas engine heat pump based on waste heat recovery [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4182-4192. |
[8] | HU Yafei, FENG Ziping, TIAN Jiayao, SONG Wenji. Waste heat recovery performance of an air-source gas engine-driven heat pump system in multi-heating operation modes [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4204-4211. |
[9] | OUYANG Sufang, ZHOU Daowei, HUANG Wei, JIA Feng. Research progress on novel anti-migration rubber antioxidants [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3708-3719. |
[10] | LI Ruidong, HUANG Hui, TONG Guohu, WANG Yueshe. Hygroscopic properties and corrosion behavior of ammonium salt in a crude oil distillation column [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 2809-2818. |
[11] | ZHAO Yi, YANG Zhen, ZHANG Xinwei, WANG Gang, YANG Xuan. Molecular simulation of self-healing behavior of asphalt under different crack damage and healing temperature [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3147-3156. |
[12] | YANG Farong, GU Lili, LIU Yang, LI Weixue, CAI Jieyun, WANG Huiping. Preparation and application of molecularly imprinted polymers of terbutylazine assisted by computer simulation [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3157-3166. |
[13] | HOU Dianbao, HE Maoyong, CHEN Yugang, YANG Haiyun, LI Haimin. Application analysis of resource allocation optimization and circular economy in development and utilization of potassium resources [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3197-3208. |
[14] | ZENG Tianxu, ZHANG Yongxian, YAN Yuan, LIU Hong, MA Jiao, DANG Hongzhong, WU Xinbo, LI Weiwei, CHEN Yongzhi. Effects of hydroxylamine on the activity and kinetic parameters of nitrifying bacteria [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3272-3280. |
[15] | LIU Yulong, YAO Junhu, SHU Chuangchuang, SHE Yuehui. Biosynthesis and EOR application of magnetic Fe3O4 NPs [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2464-2474. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |