Chemical Industry and Engineering Progress ›› 2021, Vol. 40 ›› Issue (S1): 126-141.DOI: 10.16085/j.issn.1000-6613.2020-1523
• Energy processes and technology • Previous Articles Next Articles
ZHANG Yukui1,2(), ZHANG Chenjia1,2,3, SUN Zhenxin1,2, DU Shuming1,2, XU Dong1,2, QU Zongkai1,2, CHEN Baowei4
Received:
2020-08-03
Revised:
2020-12-19
Online:
2021-11-09
Published:
2021-10-25
Contact:
ZHANG Yukui
张玉魁1,2(), 张晨佳1,2,3, 孙振新1,2, 杜庶铭1,2, 徐冬1,2, 曲宗凯1,2, 陈保卫4
通讯作者:
张玉魁
作者简介:
张玉魁(1989—),男,博士,研究方向为氢能与储能技术。E-mail:基金资助:
CLC Number:
ZHANG Yukui, ZHANG Chenjia, SUN Zhenxin, DU Shuming, XU Dong, QU Zongkai, CHEN Baowei. Review on modeling and simulation of high temperature solid oxide electrolysis for hydrogen production[J]. Chemical Industry and Engineering Progress, 2021, 40(S1): 126-141.
张玉魁, 张晨佳, 孙振新, 杜庶铭, 徐冬, 曲宗凯, 陈保卫. 高温固体氧化物电解制氢模拟研究进展[J]. 化工进展, 2021, 40(S1): 126-141.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2020-1523
1 | BP P. L.C. BP statistical review of world energy 2019[R]. BP P.L.C., 2019. |
2 | 国家统计局能源司. 中国能源统计年鉴2018[M]. 北京: 中国统计出版社, 2019: 34-54. |
Energy Department of China Statistics Bureau. China energy statistical yearbook 2018[M]. Beijing: China Statistical Publishing House, 2019:34-54. | |
3 | 白建华, 辛颂旭, 刘俊, 等. 中国实现高比例可再生能源发展路径研究[J]. 中国电机工程学报, 2015, 35(14): 3699-3705. |
BAI Jianhua, XIN Songxu, LIU Jun, et al. Roadmap of realizing the high penetration renewable energy in China[J]. Proceeding of the CSEE, 2015, 35(14):3699-3705. | |
4 | SAMAVATI M, SANTARELLI M, MARTIN A, et al. Thermodynamic and economy analysis of solid oxide electrolyser system for syngas production[J]. Energy, 2017, 122: 37-49. |
5 | 牟树君, 林今, 邢学韬, 等. 高温固体氧化物电解水制氢储能技术及应用展望[J]. 电网技术, 2017, 41(10): 3385-3391. |
MU Shujun, LIN Jin, XING Xuetao, et al. Technology and application prospect of high-temperature solid oxide electrolysis cell[J]. Power System Technology, 2017, 41(10):3385-3391. | |
6 | STAFFELL I, SCAMMAN D, VELAZQUEZ Abad A, et al. The role of hydrogen and fuel cells in the global energy system[J]. Energy & Environmental Science, 2019, 12: 463-491. |
7 | 刘明义, 于波, 徐景明. 固体氧化物电解水制氢系统效率[J]. 清华大学学报(自然科学版), 2009, 49(6): 852-855. |
LIU Mingyi, YU Bo, XU Jingming. Efficiency of solid oxide water electrolysis system for hydrogen production[J]. Journal of Tsinghua University(Natural Science Edition), 2009, 49(6):852-855. | |
8 | 邢学韬, 林今, 宋永华, 等. 基于高温电解的大规模电力储能技术[J]. 全球能源互联网, 2018, 1(3): 303-312. |
24 | MA Zheng, LIU Chao, PU Jiangge, et al. Development of cathode materials in solid oxide electrolysis cell[J]. Journal of Ceramics, 2019, 40(5): 565-573. |
25 | 陈婷, 王绍荣. 固体氧化物电解池电解水研究综述[J]. 陶瓷学报, 2014, 35(1): 1-6. |
8 | XING Xuetao, LIN Jin, SONG Yonghua, et al. Large scale energy storage technology based on high-temperature electrolysis[J]. Journal of Global Energy Interconnection, 2018, 1(3): 303-312. |
9 | JENSEN S H, SUN X, EBBESEN S D, et al. Hydrogen and synthetic fuel production using pressurized solid oxide electrolysis cells[J]. International Journal of Hydrogen Energy, 2010, 35(18): 9544-9549. |
10 | STOOTS C M, O’BRIEN J E, CONDIE K G, et al. High-temperature electrolysis for large-scale hydrogen production from nuclear energy--experimental investigations[J]. International Journal of Hydrogen Energy, 2010, 35(10): 4861-4870. |
11 | LI Q, ZHENG Y, GUAN W, et al. Achieving high-efficiency hydrogen production using planar solid-oxide electrolysis stacks[J]. International Journal of Hydrogen Energy, 2014, 39(21): 10833-10842. |
12 | SCHEFOLD J, BRISSE A, POEPKE H. Long-term steam electrolysis with electrolyte-supported solid oxide cells[J]. Electrochimica Acta, 2015, 179: 161-168. |
13 | ZHANG X, O’BRIEN J E, TAO G, et al. Experimental design, operation, and results of a 4kW high temperature steam electrolysis experiment[J]. Journal of Power Sources, 2015, 297: 90-97. |
14 | RIEDEL M, HEDDRICH M P, FRIEDRICH K A. Analysis of pressurized operation of 10 layer solid oxide electrolysis stacks[J]. International Journal of Hydrogen Energy, 2019, 44(10): 4570-4581. |
15 | 刘同乐, 王诚, 付志强, 等. LSCF-GDC氧电极固体氧化物电堆高温蒸汽电解制氢性能研究[J]. 高校化学工程学报, 2016, 30(3):575-581. |
LIU Tongle, WANG Cheng, FU Zhiqiang, et al. Performance of solid oxide electrolysis stack with LSCF-GDC oxygen electrodes in hydrogen production from high temperature steam[J]. Journal of Chemical Engineering of Chinese Universities, 2016, 30(3): 575-581. | |
16 | 霍海波, 朱新坚, 曹广益. SOFC建模与控制策略的研究现状与发展[J]. 电源技术, 2007, 31(10): 833-836. |
HUO Haibo, ZHU Xinjian, CAO Guangyi. Research status and development of modeling and controlling for SOFC[J]. Chinese Journal of Power Sources, 2007, 31(10): 833-836. | |
17 | STEMPIEN J P, SUN Q, CHAN S H. Solid oxide electrolyzer cell modeling: a review[J]. Journal of Power Technologies, 2013, 93(4):216-246. |
18 | HAJIMOLANA S A, HUSSAIN M A, DAUD W M A W, et al. Mathematical modeling of solid oxide fuel cells: a review[J]. Renewable and Sustainable Energy Reviews, 2011, 15(4): 1893-1917. |
19 | YU B, ZHANG W, CHEN J, et al. Advance in highly efficient hydrogen production by high temperature steam electrolysis[J]. Science in China Series B: Chemistry, 2008, 51(4): 289-304. |
20 | HERRING J S, O’BRIEN J E, STOOTS C M, et al. Progress in high-temperature electrolysis for hydrogen production using planar SOFC technology[J]. International Journal of Hydrogen Energy, 2007, 32(4):440-450. |
21 | NI M, LEUNG M K H, LEUNG D Y C. Technological development of hydrogen production by solid oxide electrolyzer cell (SOEC)[J]. International Journal of Hydrogen Energy, 2008, 33(9): 2337-2354. |
22 | LAGUNA-BERCERO M A. Recent advances in high temperature electrolysis using solid oxide fuel cells: a review[J]. Journal of Power Sources, 2012, 203: 4-16. |
23 | SHI Y, LUO Y, LI W, et al. Handbook of clean energy systems[M]. New York: John Wiley & Sons Ltd., 2015: 1-19 |
25 | CHEN Ting, WANG Shaorong. Water electrolysis using SOECs: a review[J]. Journal of Ceramics, 2014, 35(1): 1-6. |
26 | 赵晨欢, 张文强, 于波, 等. 固体氧化物电解池[J]. 化学进展, 2016, 28(8): 1265-1288. |
ZHAO Chenhuan, ZHANG Wenqiang, YU Bo, et al. Solid oxide electrolyzer cells[J]. Progress in Chemistry, 2016, 28(8): 1265-1288. | |
27 | 张文强, 于波, 陈靖, 等. 高温固体氧化物电解水制氢技术[J]. 化学进展, 2008, 20(5): 778-787. |
ZHANG Wenqiang, YU Bo, CHEN Jing, et al. Hydrogen production through solid oxide electrolysis at elevated temperatures[J]. Progress in Chemistry, 2008, 20(5): 778-787. | |
28 | ELLIS M W, GUNES M B, THOMOPKINS D, et al. Status of fuel cell systems for combined heat and power applications in buildings[J]. Ashrae Transactions, 2002, 108(1): 1032-1044. |
29 | MENON V, JANARDHANAN V M, DEUTSCHMANN O. A mathematical model to analyze solid oxide electrolyzer cells (SOECs) for hydrogen production[J]. Chemical Engineering Science, 2014, 110:83-93. |
30 | GOPALAN S, MOSLEH M, HARTVIGSEN J J, et al. Analysis of self-sustaining recuperative solid oxide electrolysis systems[J]. Journal of Power Sources, 2008, 185(2): 1328-1333. |
31 | NI M, LENUG M K H, LEUNG D Y C. Energy and exergy analysis of hydrogen production by solid oxide steam electrolyzer plant[J]. International Journal of Hydrogen Energy, 2007, 32(18): 4648-4660. |
32 | ALZAHRANI A A, DINCER I. Thermodynamic and electrochemical analyses of a solid oxide electrolyzer for hydrogen production[J]. International Journal of Hydrogen Energy, 2017, 44(33): 21404-21413. |
33 | ALZAHRANI A A, DINCER I. Modeling and performance optimization of a solid oxide electrolysis system for hydrogen production[J]. Applied Energy, 2018, 225: 471-485. |
34 | MOTTAGHIZADEH P, SANTHANAM S, HEDDRICH M P, et al. Process modeling of a reversible solid oxide cell (r-SOC) energy storage system utilizing commercially available SOC reactor[J]. Energy Conversion and Management, 2017, 142: 477-493. |
35 | BUTTLER A, KOLTUN R, WOLF R, et al. A detailed techno-economic analysis of heat integration in high temperature electrolysis for efficient hydrogen production[J]. International Journal of Hydrogen Energy, 2015, 40(1): 38-50. |
36 | ZHANG H, SU S, CHEN X, et al. Configuration design and performance optimum analysis of a solar-driven high temperature steam electrolysis system for hydrogen production[J]. International Journal of Hydrogen Energy, 2013, 38(11): 4298-4307. |
37 | KOUMI NGOH S, AYINA OHANDJA L M, KEMAJOU A, et al. Design and simulation of hybrid solar high-temperature hydrogen production system using both solar photovoltaic and thermal energy[J]. Sustainable Energy Technologies and Assessments, 2014, 7: 279-293. |
38 | ALZAHRANI A A, DINCER I. Design and analysis of a solar tower based integrated system using high temperature electrolyzer for hydrogen production[J]. International Journal of Hydrogen Energy, 2016, 41(19): 8042-8056. |
24 | 马征, 刘超, 蒲江戈, 等. 固体氧化物电解池阴极材料的发展现状[J]. 陶瓷学报, 2019, 40(5): 565-573. |
39 | SANZ-BERMEJO J, MUNOZ-ANTON J, GONZALEZ-AGUILAR J, et al. Optimal integration of a solid-oxide electrolyser cell into a direct steam generation solar tower plant for zero-emission hydrogen production[J]. Applied Energy, 2014, 131: 238-247. |
40 | LIU M, YU B, XU J, et al. Thermodynamic analysis of the efficiency of high-temperature steam electrolysis system for hydrogen production[J]. Journal of Power Sources, 2008, 177(2): 493-499. |
41 | SHIN Y, PARK W, CHANG J, et al. Evaluation of the high temperature electrolysis of steam to produce hydrogen[J]. International Journal of Hydrogen Energy, 2007, 32(10/11): 1486-1491. |
42 | O’BRIEN J E. Thermodynamic considerations from thermal water splitting process and high temperature electrolysis[C]//2008 International Mechanical Engineering Congress and Exposition. Boston, 2008. |
43 | O’BRIEN J E, MCKELLAR M G, HARVEGO E A, et al. High-temperature electrolysis for large-scale hydrogen and syngas production from nuclear energy--summary of system simulation and economic analyses[J]. International Journal of Hydrogen Energy, 2010, 35(10):4808-4819. |
44 | HARVEGO E A, MCKELLAR M G, SOHAL M S, et al. Economic analysis of a nuclear reactor powered high-temperature electrolysis hydrogen production plant[C]//Energy Sustainability 2008. United States, 2008. |
45 | MANAGE M N, SORENSEN E, SIMONS S, et al. A modelling approach to assessing the feasibility of the integration of power stations with steam electrolysers[J]. Chemical Engineering Research and Design, 2014, 92(10): 1988-2005. |
46 | SIGUVINSSON J, MANSILLA C, LOVERA P, et al. Can high temperature steam electrolysis function with geothermal heat?[J]. International Journal of Hydrogen Energy, 2007, 32(9): 1174-1182. |
47 | PERDIKARIS N, PANOPOULOS K D, HOFMANN P, et al. Design and exergetic analysis of a novel carbon free tri-generation system for hydrogen, power and heat production from natural gas, based on combined solid oxide fuel and electrolyser cells[J]. International Journal of Hydrogen Energy, 2010, 35(6): 2446-2456. |
48 | SPACIL H S, TEDMON C S. Electrochemical dissociation of water vapor in solid oxide electrolyte cells[J]. Journal of the Electrochemical Society, 1969, 116(12): 1618-1627. |
49 | NI M, LENUG M, LEUNG D. An electrochemical model of a solid oxide steam electrolyzer for hydrogen production[J]. Chemical Engineering & Technology, 2006, 29(5): 636-642. |
50 | NI M, LEUNG M K H, LEUNG D Y C. Parametric study of solid oxide steam electrolyzer for hydrogen production[J]. International Journal of Hydrogen Energy, 2007, 32(13): 2305-2313. |
51 | IM-ORB K, VISITDUMRONGKUL N, SAEBEA D, et al. Flowsheet-based model and exergy analysis of solid oxide electrolysis cells for clean hydrogen production[J]. Journal of Cleaner Production, 2018, 170: 1-13. |
52 | DUTTA S, MOREHOUSE J H, KHAN J A. Numerical analysis of laminar flow and heat transfer in a high temperature electrolyzer[J]. International Journal of Hydrogen Energy, 1996, 22(9): 883-895. |
53 | LAURENCIN J, KANE D, DELETTE G, et al. Modelling of solid oxide steam electrolyser: impact of the operating conditions on hydrogen production[J]. Journal of Power Sources, 2011, 196(4): 2080-2093. |
54 | HAWKES G L, O’BRIEN J E, STOOTS C M, et al. CFD model of a planar solid oxide electrolysis cell: base case and variations[C]//2007 ASME-JSME Thermal Engineering Summer Heat Transfer Conference. Vancouver, 2007. |
55 | HAWKES G L, O’BRIEN J E, STOOTS C M, et al. CFD model of a planar solid oxide electrolysis cell for hydrogen production from nuclear energy[J]. Nuclear Technology, 2007, 158(2): 132-144. |
56 | HAWKES G, O’BRIEN J, STOOTS C, et al. 3D CFD model of a multi-cell high-temperature electrolysis stack[J]. International Journal of Hydrogen Energy, 2009, 34(9): 4189-4197. |
57 | NI M. Computational fluid dynamics modeling of a solid oxide electrolyzer cell for hydrogen production[J]. International Journal of Hydrogen Energy, 2009, 34(18): 7795-7806. |
58 | XU Z, REN N, TANG M, et al. Numerical investigations for a solid oxide electrolyte cell stack[J]. International Journal of Hydrogen Energy, 2019, 44(38): 20997-21009. |
59 | GRONDIN D, DESEURE J, BRISSE A, et al. Simulation of a high temperature electrolyzer[J]. Journal of Applied Electrochemistry, 2010, 40(5): 933-941. |
60 | BERNADET L, GOUSSEAU G, CHATROUX A, et al. Influence of pressure on solid oxide electrolysis cells investigated by experimental and modeling approach[J]. International Journal of Hydrogen Energy, 2015, 40(38): 12918-12928. |
61 | HENKE M, WILLICH C, KALLO J, et al. Theoretical study on pressurized operation of solid oxide electrolysis cells[J]. International Journal of Hydrogen Energy, 2014, 39(24): 12434-12439. |
62 | 侯权, 关成志, 肖国萍, 等. 氧分压对固体氧化物电解池性能的影响[J]. 物理化学学报, 2019, 35(3): 284-291. |
HOU Quan, GUAN Chengzhi, XIAO Guoping, et al. Effect of oxygen partial pressure on solid oxide electrolysis cells[J]. Acta Physico-Chimica Sinica, 2019, 35(3): 284-291. | |
63 | TODD D, SCHWAGER M, MERIDA W. Thermodynamics of high-temperature, high-pressure water electrolysis[J]. Journal of Power Sources, 2014, 269: 424-429. |
64 | 侯权, 关成志, 肖国萍, 等. 固体氧化物电解池尺寸对其性能的影响[J]. 核技术, 2019, 42(3): 43-51. |
HOU Quan, GUAN Chengzhi, XIAO Guoping, et al. Effect of size on the electrolytic performance of solid oxide electrolysis cell[J]. Nuclear Techniques, 2019, 42(3): 43-51. | |
65 | NAVASA M, YUAN J, SUNDEN B. Computational fluid dynamics approach for performance evaluation of a solid oxide electrolysis cell for hydrogen production[J]. Applied Energy, 2015, 137: 867-876. |
66 | XU Z, ZHANG X, LI G, et al. Comparative performance investigation of different gas flow configurations for a planar solid oxide electrolyzer cell[J]. International Journal of Hydrogen Energy, 2017, 42(16): 10785-10801. |
67 | YILDIZ B, SMITH J, SOFU T. Thermal-fluid and electrochemical modeling and performance study of a planar solid oxide electrolysis cell: analysis on SOEC resistances, size, and inlet flow conditions[R]. Chicago, Illinois, 2008: 1-23. |
68 | JIN X, XUE X. Computational fluid dynamics analysis of solid oxide electrolysis cells with delaminations[J]. International Journal of Hydrogen Energy, 2010, 35(14): 7321-7328. |
69 | NI M, LEUNG M K H, LEUNG D Y C. A modeling study on concentration overpotentials of a reversible solid oxide fuel cell[J]. Journal of Power Sources, 2006, 163(1): 460-466. |
70 | FERRERO D, LANZINI A, LEONE P, et al. Reversible operation of solid oxide cells under electrolysis and fuel cell modes: experimental study and model validation[J]. Chemical Engineering Journal, 2015, 274: 143-155. |
71 | HAUCK M, HERMANN S, SPLIETHOFF H. Simulation of a reversible SOFC with Aspen Plus[J]. International Journal of Hydrogen Energy, 2017, 42(15): 10329-10340. |
72 | ZHANG J H, LEI L, LIU D, et al. Numerical investigation of solid oxide electrolysis cells for hydrogen production applied with different continuity expressions[J]. Energy Conversion & Management, 2017, 149: 646-659. |
73 | DEMIN A, GPRBOVA E, TSIAKARAS P. High temperature electrolyzer based on solid oxide co-ionic electrolyte: a theoretical model[J]. Journal of Power Sources, 2007, 171(1): 205-211. |
74 | NI M, LEUNG M K H, LEUNG D Y C. Mathematical modeling of the coupled transport and electrochemical reactions in solid oxide steam electrolyzer for hydrogen production[J]. Electrochimica Acta, 2007, 52(24): 6707-6718. |
75 | LAY-GRINDLER E, LAURENCIN J, DELETTE G, et al. Micro modelling of solid oxide electrolysis cell: from performance to durability[J]. International Journal of Hydrogen Energy, 2013, 38(17): 6917-6929. |
76 | GRONDIN D, DESEURE J, OZIL P, et al. Computing approach of cathodic process within solid oxide electrolysis cell: experiments and continuum model validation[J]. Journal of Power Sources, 2011, 196(22): 9561-9567. |
77 | CACCIUTTOLO Q, VULLIET J, LAIR V, et al. Effect of pressure on high temperature steam electrolysis: model and experimental tests[J]. International Journal of Hydrogen Energy, 2015, 40(35): 11378-11384. |
78 | O’BRIEN J E, STOOTS C M, HERRING J S, et al. Comparison of a one-dimensional model of a high-temperature solid-oxide electrolysis stack with CFD and experimental results[C]//ASME 2005 International Mechanical Engineering Congress and Exposition. Orlando, 2005. |
79 | LI W, SHI Y, YU L, et al. Theoretical modeling of air electrode operating in SOFC mode and SOEC mode: the effects of microstructure and thickness[J]. International Journal of Hydrogen Energy, 2014, 39(25): 13738-13750. |
80 | GRONDIN D, DESEURE J, OZIL P, et al. Solid oxide electrolysis cell 3D simulation using artificial neural network for cathodic process description[J]. Chemical Engineering Research & Design, 2013, 91(1): 134-140. |
81 | PTEIPAS F, BRISSE A, BOUALLOU C. Model-based behavior of a high temperature electrolyser system operated at various loads[J]. Journal of Power Sources, 2013, 239: 584-595. |
82 | UDAGAWA J, AGUIAR P, BRANDON N P. Hydrogen production through steam electrolysis: model-based steady state performance of a cathode-supported intermediate temperature solid oxide electrolysis cell[J]. Journal of Power Sources, 2007, 166(1): 127-136. |
83 | CAI Q, LUNA-ORTIZ E, ADJIMAN C S, et al. The effects of operating conditions on the performance of a solid oxide steam electrolyser: a model-based study[J]. Fuel Cells, 2010, 10(6): 1114-1128. |
84 | UDAGAWA J, AGUIAR P, BRANDON N P. Hydrogen production through steam electrolysis: control strategies for a cathode-supported intermediate temperature solid oxide electrolysis cell[J]. Journal of Power Sources, 2008, 180(1): 354-364. |
85 | UDAGAWA J, AGUIAR P, BRANDON N P. Hydrogen production through steam electrolysis: model-based dynamic behavior of a cathode-supported intermediate temperature solid oxide electrolysis cell[J]. Journal of Power Sources, 2008, 180(1): 46-55. |
86 | CAI Q, HAW A W V, ADJIMAN C S, et al. Hydrogen production through steam electrolysis: a model-based study[C]//22nd European Symposium on Computer Aided Process Engineering. London, 2012. |
87 | JIN X, XUE X. Mathematical modeling analysis of regenerative solid oxide fuel cells in switching mode conditions[J]. Journal of Power Sources, 2010, 195(19): 6652-6658. |
88 | KAZEMPOOR P, BRAUN R J. Model validation and performance analysis of regenerative solid oxide cells: electrolytic operation[J]. International Journal of Hydrogen Energy, 2014, 39(6): 2669-2684. |
[1] | XIE Luyao, CHEN Songzhe, WANG Laijun, ZHANG Ping. Platinum-based catalysts for SO2 depolarized electrolysis [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 299-309. |
[2] | ZHANG Jie, BAI Zhongbo, FENG Baoxin, PENG Xiaolin, REN Weiwei, ZHANG Jingli, LIU Eryong. Effect of PEG and its compound additives on post-treatment of electrolytic copper foils [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 374-381. |
[3] | CUI Shoucheng, XU Hongbo, PENG Nan. Simulation analysis of two MOFs materials for O2/He adsorption separation [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 382-390. |
[4] | XU Ruosi, TAN Wei. Flow field simulation and fluid-structure coupling analysis of C-tube pool boiling two-phase flow model [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 47-55. |
[5] | ZHANG Fengqi, CUI Chengdong, BAO Xuewei, ZHU Weixuan, DONG Hongguang. Design and evaluation of sweetening process with amine solution absorption and multiple desorption [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 518-528. |
[6] | GUO Qiang, ZHAO Wenkai, XIAO Yonghou. Numerical simulation of enhancing fluid perturbation to improve separation of dimethyl sulfide/nitrogen via pressure swing adsorption [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 64-72. |
[7] | SHAO Boshi, TAN Hongbo. Simulation on the enhancement of cryogenic removal of volatile organic compounds by sawtooth plate [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 84-93. |
[8] | LI Mengyuan, GUO Fan, LI Qunsheng. Simulation and optimization of the third and fourth distillation columns in the recovery section of polyvinyl alcohol production [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 113-123. |
[9] | ZHANG Ruijie, LIU Zhilin, WANG Junwen, ZHANG Wei, HAN Deqiu, LI Ting, ZOU Xiong. On-line dynamic simulation and optimization of water-cooled cascade refrigeration system [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 124-132. |
[10] | WANG Tai, SU Shuo, LI Shengrui, MA Xiaolong, LIU Chuntao. Dynamic behavior of single bubble attached to the solid wall in the AC electric field [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 133-141. |
[11] | SUN Jipeng, HAN Jing, TANG Yangchao, YAN Bowen, ZHANG Jieyao, XIAO Ping, WU Feng. Numerical simulation and optimization of operating parameters of sulfur wet molding process [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 189-196. |
[12] | CHEN Kuangyin, LI Ruilan, TONG Yang, SHEN Jianhua. Structure design of gas diffusion layer in proton exchange membrane fuel cell [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 246-259. |
[13] | YANG Yudi, LI Wentao, QIAN Yongkang, HUI Junhong. Analysis of influencing factors of natural gas turbulent diffusion flame length in industrial combustion chamber [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 267-275. |
[14] | XU Youhao, WANG Wei, LU Bona, XU Hui, HE Mingyuan. China’s oil refining innovation: MIP development strategy and enlightenment [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4465-4470. |
[15] | CHEN Lin, XU Peiyuan, ZHANG Xiaohui, CHEN Jie, XU Zhenjun, CHEN Jiaxiang, MI Xiaoguang, FENG Yongchang, MEI Deqing. Investigation on the LNG mixed refrigerant flow and heat transfer characteristics in coil-wounded heat exchanger (CWHE) system [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4496-4503. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |