1 | GHOSE A K, VISWANADHAN V N, WENDOLOSKI J J. A knowledge-based approach in designing combinatorial or medicinal chemistry libraries for drug discovery. 1. A qualitative and quantitative characterization of known drug databases[J]. Journal of Combinatorial Chemistry, 1999, 1(1): 55-68. | 2 | FUNABASHI M, YANG Z, NONAKA K, et al. An ATP-independent strategy for amide bond formation in antibiotic biosynthesis[J]. Nature Chemical Biology, 2010, 6(8): 581-586. | 3 | SINGH G S. Recent progress in the synthesis and chemistry of azetidinones[J]. Tetrahedron, 2003, 59(52): 7631-7649. | 4 | LAI J R, FISCHBACH M A, LIU D R, et al. Localized protein interaction surfaces on the EntB carrier protein revealed by combinatorial mutagenesis and selection[J]. Journal of the American Chemical Society, 2006, 128(34): 11002-11003. | 5 | CONSTABLE D J C, DUNN P J, HAYLER J D, et al. Key green chemistry research areas—A perspective from pharmaceutical manufacturers[J]. Green Chemistry, 2007, 9(5): 411-420. | 6 | STANG P J, WHITER M R. Cheminform abstract: triflic acid and its derivatives[J]. Chemischer Informationsdienst, 1983, 14(44): 8344-8346. | 7 | SHEEHAN J C, HESS G P. A new method of forming peptide bonds[J]. Journal of the American Chemical Society, 1955, 77(4): 1067-1068. | 8 | SULLIVAN P D, BOLTON J R, GEIGER W E. Oxygen-17 and carbon-13 hyperfine interactions in the electron paramagnetic resonance spectrum of the hydroquinone cation radical[J]. Journal of the American Chemical Society, 1970, 92(14): 4176-4180. | 9 | CAIRD J A, CARNALL W T, JAN P H. The terbium chloride-aluminum chloride vapor system. Ⅰ.Absorption and excitation spectra[J]. The Journal of Chemical Physics, 1981, 74(2): 798-804. | 10 | FERNMANDO A, JOSEP M, BOFILL, et al. Use of onium salt-based coupling reagents in peptide synthesis[J]. The Journal of Organic Chemistry, 1998, 63(26): 9678-9683. | 11 | PENG L, XU J C. New and highly efficient immonium type peptide coupling reagents: synthesis, mechanism and application[J]. Tetrahedron, 2000, 56(26): 4437-4445. | 12 | KIM S, CHANG H, KO Y K. Benzotriazol-1-yl diethyl phosphate. A new convenient coupling reagent for the synthesis of amides and peptides[J]. Tetrahedron Letters, 1985, 16(10): 1341-1342. | 13 | LU X Y. Green chemistry and organic synthesis and atomic economy in organic synthesis[J]. Progress in Chemistry, 1998, 10(2): 123-131. | 14 | CHARVILLE H, JACKSON D, HODGES G, et al. The thermal and boron-catalyzed direct amide formation reactions: mechanistically understudied yet important processes[J]. Chemical Communications, 2010, 46(11): 1813-1823. | 15 | DAS V K, DEV R R, THAKUR A J. Recyclable, highly efficient and low cost nano-MgO for amide synthesis under SFRC: a convenient and greener ‘NOSE’ approach[J]. Applied Catalysis A: General, 2013, 456(Complete): 118-125. | 16 | GU L, LIM J, CHEONG J L, et al. MCF-supported boronic acids as efficient catalysts for direct amide condensation of carboxylic acids and amines[J]. Chemical Communications, 2014, 50(53): 7017-7019. | 17 | BASAVAPRABHU, VOMMINA V S, PANDURANGA V. A simple and greener approach for the amide bond formation employing FeCl3 as a catalyst[J]. New J. Chem., 2015, 39(10): 7746-7749. | 18 | LIU S, YANG Y, LIU X, et al. Direct amidation of amino acid derivatives catalyzed by arylboronic acids: applications in dipeptide synthesis[J]. European Journal of Organic Chemistry, 2013(25): 5692-5700. | 19 | AZUMA T, MURATA A, KOBAYASHI Y, et al. A dual arylboronic acid-aminothiourea catalytic system for the asymmetric intramolecular hetero-michael reaction of α,β unsaturated carboxylic acids[J]. Organic Letters, 2014, 46(16): 4256-4259. | 20 | ISHIHARA Kazuali, LU Yanhui. Boronic acid-DMAPO cooperative catalysis for dehydrative condensation between carboxylic acids and amines[J]. Chemical Science, 2016, 47(24): 1276-1280. | 21 | LU Y, WANG K, ISHIHARA K. Design of boronic acid-base complexes as reusable homogeneous catalysts in dehydrative condensations between carboxylic acids and amines[J]. Asian Journal of Organic Chemistry, 2017, 6(9): 1191-1194. | 22 | TAM E K W, RITA R, LIU L Y, et al. 2-Furanylboronic acid as an effective catalyst for the direct amidation of carboxylic acids at room temperature[J]. European Journal of Organic Chemistry, 2015, 46(24): 1100-1107. | 23 | ARKHIPENKO S, BATSANOV A, SABATINI M, et al. Mechanistic insights into boron-catalysed direct amidation reactions[J]. Chemical Science, 2018, 9(4): 12-17. | 24 | ISHIHARA K, OHARA S, YAMAMOTO H. Direct polycondensation of carboxylic acids and amines catalyzed by 3,4,5-trifluorophenylboronic acid[J]. Macromolecules, 2000, 33(10): 3511-3513. | 25 | WANG K, LU Y, ISHIHARA K. The ortho-substituent on 2,4- bis(trifluoromethyl)-phenylboronic acid catalyzed dehydrative condensation between carboxylic acids and amines[J]. Chemical Communications, 2018, 54(43): 5410-5413. | 26 | WEI Y, YANG Y, YAN K, et al. Study on the construction of amide bond catalyzed by phenylboronic acid[J]. Journal of Hebei University of Science and Technology, 2018, 39(4): 337-342. | 27 | DU Y H, BARBER T, LIM S E, et al. A solid-supported arylboronic acid catalyst for direct amidation[J]. Chemical Communications (Cambridge, England), 2019, 55(20): 2916-2919. | 28 | MAKI T, IHIHARA K, YAMAOTO H. 4,5,6,7-Tetrachlorobenzo(d) (1,3,2)dioxaborol-2-ol as an effective catalyst for the amide condensation of sterically demanding carboxylic acids[J]. Organic Letters, 2006, 8(7): 1431-1434. | 29 | NODA H, FURUTACHI M, ASADA Y, et al. Unique physicochemical and catalytic properties dictated by the B3NO2 ring system[J]. Nature Chemistry, 2017, 9: 571-577. | 30 | LIU Z, NODA H, SHIBASAKI M, et al. Catalytic oligopeptide synthesis[J]. Organic Letters, 2018, 20(3): 612-615. | 31 | SABATINI M T, BOOULTON L T, SHEPPARD T D. Borate esters: simple catalysts for the sustainable synthesis of complex amides[J]. Science Advances, 2017, 3(9): 1-8. | 32 | TINNIS F, LUNDBERG H, KIVIJARVI T, et al. Zirconium() chloride catalyzed amide formation from carboxylic acid and amine: (S)-tert-butyl 2-(benzylcarbamoyl) pyrrolidine-1-carboxylate[M]. Organic Syntheses: John Wiley & Sons, Inc., 2016: 227-236. | 33 | LUNDBERG H, TINNIS F, ZHANG J, et al. Mechanistic elucidation of zirconium-catalyzed direct amidation[J]. Journal of the American Chemical Society, 2017, 139(6): 2286-2295. | 34 | LUNDERG H, ADOLFSSON H. Hafnium-catalyzed direct amide formation at room temperature[J]. ACS Catalysis, 2015, 5(6): 3271-3277. | 35 | LUNDERG H, TINNIS F, ADOLFSSON H. Zirconium catalyzed amide formation without water scavenging[J]. Applied Organometallic Chemistry, 2019, 33(9): e5062. | 36 | ALI M A, SIDDIKI S M A H, ONODERA W, et al. Amidation of carboxylic acids with amines by Nb2O5 as a reusable lewis acid catalyst[J]. ChemCatChem, 2015, 21(7): 3555-3561. | 37 | SHIMIZU K I, SIDDIKI S M A H, RASHED M N, et al. Lewis acid catalysis of Nb2O5 for reactions of carboxylic acid derivatives in the presence of basic inhibitors[J]. ChemCatChem, 2018, 11: 383-396. | 38 | CHENG L D, GE X, HUANG L L. Direct amidation of non-activated phenylacetic acid and benzylamine derivatives catalysed by NiCl2[J]. Royal Society Open Science, 2018, 5(2):171870-171879. | 39 | FRANCISCO, PARAC-VOGT T N. Water-tolerant and atom economical amide bond formation by metal-substituted polyoxometalate catalysts[J]. ACS Catalyst, 2019, 9: 10245-10252. | 40 | SHIINA I, USHIYAMA H, YAMADA Y K, et al. 4-(Dimethylamino)pyridine N-oxide (DMAPO): an effective nucleophilic catalyst in the peptide coupling reaction with 2-methyl-6-nitrobenzoic anhydride[J]. Chemistry: An Asian Journal, 2010, 3(2):454-461. | 41 | KAWAGOE Y, MORIYAMA K, TOGO H. Facile preparation of amides from carboxylic acids and amines with ion‐supported Ph3P[J]. Tetrahedron, 2013, 69(19): 3971-3977. | 42 | TAMURA M, MURASE D, KOMURA K. Direct amide synthesis from equimolar amounts of carboxylic acid and amine catalyzed by mesoporous silica SBA-15[J]. Synthesis, 2015, 47(6): 769-776. | 43 | TAMURA M, MURASE D, KOMURA K. Mesoporous silica catalyzed the direct amidation of palmitic acid and hexylamine and unique dependence of reaction rate on pore size with p6mm topological catalyst[J]. Chemistry Letters, 45(4): 451-453. | 44 | RYOO R, KIM J M. Structural order in MCM-41 controlled by shifting silicate polymerization equilibrium[J]. Journal of the Chemical Society, Chemical Communications, 1995, 7(7): 2473-2670. | 45 | ANUNZIATA O A, BELTRAMONE A R, MARIA L, et al. Synthesis and characterization of SBA-3, SBA-15, and SBA-1 nanostructured catalytic materials[J]. Journal of Colloid and Interface Science, 2007, 315(1): 184-190. | 46 | INAGAKI S, FUKUSHIMA Y. Adsorption of water vapor and hydrophobicity of ordered mesoporous silica, FSM-16[J]. Microporous & Mesoporous Materials, 1998, 21(4/5/6): 667-672. | 47 | CHEN C L, LI T, CHENG S, et al. Direct impregnation method for preparing sulfated zirconia supported on mesoporous silica[J]. Microporous and Mesoporous Materials, 2001, 50(2): 201-208. | 48 | CHOI M, HEO W, KLEITZ F, et al. Facile synthesis of high quality mesoporous SBA-15 with enhanced control of the porous network connectivity and wall thickness[J]. Chemical Communications-Royal Society of Chemistry, 2003, 12: 1340-1341. | 49 | FAN J, YU C, LEI J, et al. Low-temperature strategy to synthesize highly ordered mesoporous silicas with very large pores[J]. Journal of the American Chemical Society, 2005, 127(31): 10794-10795. | 50 | VINU A, MIYAHARA M, MORI T, et al. Carbon nanocage: a large-pore cage-type mesoporous carbon material as an adsorbent for biomolecules[J]. Journal of Porous Materials, 2006, 13(3/4): 379-383. | 51 | EL-SAFTY S A, KIYOZUMI Y, HANAOKA T, et al. Cationic surfactant templates for newly developed cubic Fd3m silica mesocage structures[J]. Materials Letters, 2008, 62(17/18): 2950-2953. | 52 | RIMOLA A, FABBIANI M, SODUPE M, et al. How does silica catalyze the amide bond formation in dry conditions? Role of specific surface silanol pairs[J]. ACS Catalysis, 2018, 8(5): 4558-4568. | 53 | WANG S M, ZHAO C, ZHANG X, et al. Clickable coupling of carboxylic acids and amines at room temperature mediated by SO2F2: a significant breakthrough for the construction of amides and peptide linkages[J]. Organic & Biomolecular Chemistry, 2019, 17: 4087-4101. |
|