1 | 梁兵连, 段洪敏, 侯宝林, 等. 二氧化碳加氢合成低碳烯烃的研究进展[J]. 化工进展, 2015, 34(10): 243-251. | 1 | LIANG Binglian, DUAN Hongmin, HOU Baolin, et al. Progress in the catalytic hydrogenation of carbon dioxide to light olefins[J]. Chemical Industry and Engineering Progress, 2015, 34(10): 243-251. | 2 | 叶海船, 秦霏, 纳薇, 等. CuO-ZnO-ZrO2(Al2O3, MgO)催化剂上CO2加氢制甲醇性能的研究[J]. 现代化工, 2019, 39(5): 87-91. | 2 | YE Haichuan, QIN Fei, NA Wei, et al. Study on performance of CuO-ZnO-ZrO2(Al2O3,MgO) catalyst for hydrogenation of CO2 to methanol[J]. Modern Chemical Industry, 2019, 39(5): 87-91. | 3 | 樊钰佳, 吴素芳. 二氧化碳加氢合成甲醇反应铜基催化剂研究进展[J]. 化工进展, 2016, 35(S1): 159-166. | 3 | FAN Yujia, WU Sufang, Advances in copper based catalyst for the methanol synthesis from CO2hydrogenation[J]. Chemical Industry and Engineering Progress,2016, 35(S1): 159-166. | 4 | CHANDRADASS J, KIM M H, BAE D S. Influence of citric acid to aluminium nitrate molar ratio on the combustion synthesis of alumina-zirconia nanopowders[J]. Journal of Alloys and Compounds, 2009, 470(1/2): L9-L12. | 5 | XIAO Qi, SI Zhichun, ZHANG Jiang, et al. Effects of samarium dopant on photocatalytic activity of TiO2 nanocrystallite for methylene blue degradation[J]. Journal of Aterials Science, 2007, 42(22): 9194-9199. | 6 | VIVEKANANDHANN S, VENKATESWARLU M, SATYANARAYANA N. Synthesis and characterization of nanocrystalline LiNi0.5Co0.5VO4 powders by citric acid assisted sol-gel combustion process[J]. Journal of Alloys and Compounds, 2008, 462(1/2): 328-334. | 7 | JIANG Yuwen, YANG Shaoguang, HUA Zhenghe, et al. Sol-gel autocombustion synthesis of metals and metal alloys[J]. Angewandte Chemie, 2009, 48(45): 8529-8531. | 8 | KUMAR A, WOLF E E, MUKASYAN A S. Solution combustion synthesis of metal nanopowders: copper and copper/nickel alloys[J]. AIChE Journal, 2011, 57(12): 3473-3479. | 9 | 张新伟, 华正和, 蒋毓文, 等. 溶胶-凝胶自燃烧法合成金属与合金材料研究进展[J]. 物理学报, 2016, 64(9): 154-166. | 9 | ZHANG Xinwei, HUA Zhenghe, JIANG Yuwen, et al. Research progress in synthesis of metal and alloy materials by sol-gel self-combustion method [J]. Journal of Physics, 2016, 64(9): 154-166. | 10 | 张爱波, 刘建睿, 李岚, 等. 柠檬酸溶胶-凝胶燃烧法制备LiNi0.5Co0.5O2[J]. 精细化工, 2006, 23(5): 421-423. | 10 | ZHANG Aibo, LIU Jianrui, LI Lan, et al. Synthesis of LiNi0.5Co0.5O2 using citric acid as fuel by gel combustion process[J]. Fine Chemicals, 2006, 23(5): 421-423. | 11 | 郭晓明, 毛东森, 卢冠忠,等. CuO-ZnO-ZrO2的柠檬酸燃烧法制备及其催化CO2加氢合成甲醇的性能[J]. 物理化学学报, 2012, 28(1): 170-176. | 11 | GUO Xiaoming, MAO Dongsen, LU Guanzhong, et al. Preparation of CuO-ZnO-ZrO2 by citric acid combustion method and its catalytic property for methanol synthesis from CO2 hydrogenation[J]. Journal of Physical Chemistry, 2012, 28(1): 170-176. | 12 | 高文桂,毛文硕,纳薇,等. 柠檬酸溶胶-凝胶法制备Cu-ZnO-ZrO2催化剂: pH对其性能的影响[J]. 精细化工, 2019, 36(8): 1625-1633. | 12 | GAO Wengui, MAO Wenshuo, NA Wei, et al. Preparation of Cu-ZnO-ZrO2 catalyst by citric acid sol-gel method: the effect of pH on the properties[J]. Fine Chemicals, 2019, 36(8): 1625-1633. | 13 | 黄纯洁, 陈绍云, 费潇瑶, 等. 柠檬酸盐凝胶法制备纳米CuO-ZnO-ZrO2的工艺分析及CO2加氢制甲醇的性能[J]. 燃料化学学报, 2016, 44(3): 375-384. | 13 | HUANG Chengjie, CHEN Shaoyun, FEI Xiaoyao, et al. Preparation of nanometer CuO-ZnO-ZrO2 catalysts through citrate-gel process and their catalytic properties for methanol synthesis from CO2[J]. Journal of Fuel Chemistry and Technology, 2016, 44(3): 375-384. | 14 | 邓一兰, 廖运文, 王怀平, 等. 溶胶-凝胶法制备0.94(K0.5Na0.5)NbO3-0.06LiNbO3陶瓷粉体[J]. 西华师范大学学报(自然科学版), 2008, 29(4): 356-359. | 14 | DENG Yilan, LIAO Yunwen, WANG Huaiping, et al. Preparation of 0.94(K0.5Na0.5)NbO3-0.06LiNbO3 ceramic powder by sol-gel method [J]. Journal of China West Normal University, 2008, 29(4): 356-359. | 15 | 周顺, 徐迎波, 王程辉, 等. 柠檬酸的热解特性[J]. 烟草科技, 2014, 47(1): 34-39. | 15 | ZHOU Shun, XU Yingbo, WANG Chenghui, et al. Pyrolysis characteristics of citric acid[J]. Tobacco Technology, 2014, 47(1): 34-39. | 16 | WU K H, YU C H, CHANG Y C, et al. Effect of pH on the formation and combustion process of sol-gel auto-combustion derived NiZn ferrite/SiO2 composites[J]. Journal of Solid State Chemistry, 2004, 177(11): 4119-4125. | 17 | BONURA G, CORDARO M, CANNILLA C, et al. The changing nature of the active site of Cu-Zn-Zr catalysts for the CO2 hydrogenation reaction to methanol[J]. Applied Catalysis B: Environmental, 2014, 152/153(1): 152-161. | 18 | WU K H, TING T H, LI M C, et al. Sol-gel auto-combustion synthesis of SiO2-doped NiZn ferrite by using various fuels[J]. Journal of Magnetism and Magnetic Materials, 2006, 298(1): 25-32. | 19 | 苏言杰, 张德, 徐建梅, 等. 柠檬酸盐凝胶自燃烧法合成超细粉体[J]. 材料导报, 2006, 20(F05): 142-145. | 19 | SU Yanjie, ZHANG De, XU Jianmei, et al. Preparation of fine-powders by auto-combustion of citrate gels[J]. Material Guide, 2006, 20(F05): 142-145. | 20 | CHEN Hongfeng, YANG Xia, HUI Huang, et al. Highly dispersed surface active species of Mn/Ce/TiW catalysts for high performance at low temperature NH3-SCR[J]. Chemical Engineering Journal, 2017(330): 1195-1202. | 21 | LEE S M, LEE H H, HONG S C, et al. Influence of calcination temperature on Ce/TiO2 catalysis of selective catalytic oxidation of NH3 to N2[J]. Applied Catalysis A: General, 2014, 470(2): 189-198. | 22 | NAKAMOTO K. Infrared and Raman spectra of inorganic and coordination compounds[M]. 6th Edition. Hoboken: A John Wiley & Sons, nc., 2009: 149-354. | 23 | 刘娅琼. 高分散性CuO-CeO2催化剂的制备、结构及CO优先氧化性能[D]. 天津: 天津大学, 2012. | 23 | LIU Yaqiong. Preparation, structure and CO-priority oxidation performance of highly dispersible CuO-CeO2 catalysts[D]. Tianjin: Tianjin University, 2012. | 24 | MATSUMURA Yasuyuki. Stabilization of Cu/ZnO/ZrO2 catalyst for methanol steam reforming to hydrogen by coprecipitation on zirconia support[J]. Journal of Power Sources, 2013, 238: 109-116. | 25 | WANG Lucun, LIU Qian, CHEN Miao, et al. Structural evolution and catalytic properties of nanostructured Cu/ZrO2 catalysts prepared by oxalate gel-coprecipitation technique[J]. Journal of Physical Chemistry C, 2007, 111(44): 16549-16557. | 26 | GüNTER M M, RESSLER T, JENTOFT R E, et al. Redox behavior of copper oxide/zinc oxide catalysts in the steam reforming of methanol studied by in situ X-ray diffraction and absorption spectroscopy[J]. Journal of Catalysis, 2001, 203(1): 133-149. | 27 | WANG L C, LIU Y M, CHEN M, et al. Production of hydrogen by steam reforming of methanol over Cu/ZnO catalysts prepared via a practical soft reactive grinding route based on dry oxalate-precursor synthesis[J]. Journal of Catalysis, 2007, 246(1): 193-204. | 28 | GRABOWSKI R, S?OCZY?SKI J, ?LIWA M, et al. Influence of polymorphic ZrO2 phases and the silver electronic state on the activity of Ag/ZrO2 catalysts in the hydrogenation of CO2 to methanol[J]. ACS Catalysis, 2016, 1(1): 266-278. | 29 | CHEN Dawei, MAO Dongsen, WANG Guo, et al. CO2 hydrogenation to methanol over CuO-ZnO-ZrO2 catalyst prepared by polymeric precursor method[J]. Journal of Sol-Gel Science and Technology, 2019, 89(3): 686-699. |
|