Chemical Industry and Engineering Progress ›› 2019, Vol. 38 ›› Issue (12): 5339-5350.DOI: 10.16085/j.issn.1000-6613.2019-0524
• Energy processes and technology • Previous Articles Next Articles
Yanshuo LIU1(),Xinhe WANG2,Junshe ZHANG1,Jinjia WEI1,2()
Received:
2019-04-04
Online:
2019-12-05
Published:
2019-12-05
Contact:
Jinjia WEI
通讯作者:
魏进家
作者简介:
刘彦铄(1996—),男,硕士研究生,研究方向为太阳能热化学利用。E-mail: 基金资助:
CLC Number:
Yanshuo LIU,Xinhe WANG,Junshe ZHANG,Jinjia WEI. Progress in solar methane reforming reactors[J]. Chemical Industry and Engineering Progress, 2019, 38(12): 5339-5350.
刘彦铄,王新赫,张军社,魏进家. 太阳能甲烷重整反应器研究进展[J]. 化工进展, 2019, 38(12): 5339-5350.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2019-0524
1 | 吴新雄. 解读“十三五”能源规划方向[J]. 风能, 2014(9): 8. |
W X X. Interprets the energy planning direction of the “13th Five-Year Plan”[J]. Wind Energy, 2014(9): 8. | |
2 | CRABTREE G W, LEWIS N S. Solar energy conversion[J]. Physics Today, 2007, 60(3): 37-42. |
3 | LU J, CHEN Y, DING J, et al. High temperature energy storage performances of methane reforming with carbon dioxide in a tubular packed reactor[J]. Energy Procedia, 2014, 61: 407-410. |
4 | 王新赫, 杜轩成, 魏进家. 不同太阳能热化学储能体系的研究进展[J]. 科学通报, 2017, 62(31): 3631-3642. |
WANG X H, DU X C, WEI J J. Research progress of different solar thermochemical energy storage systems[J]. Science Bulletin, 2017, 62(31): 3631-3642. | |
5 | SAID S A M, WASEEEUDDIN M, SIMAKOV D S A. A review on solar reforming systems[J]. Renewable & Sustainable Energy Reviews, 2016, 59: 149-159. |
6 | Cinti GIOVANNI, Baldinelli ARIANNA, ALESSANDRO Di Michele, et al. Integration of solid oxide electrolyzer and Fischer-Tropsch: a sustainable pathway for synthetic fuel[J]. Applied Energy, 2016, 162: 308-320. |
7 | 李文兵, 齐智平. 甲烷制氢技术研究进展[J]. 天然气工业, 2005, 25(2): 165-168. |
LI W B, QI Z P. Research progress of methane hydrogen production technology[J]. Natural Gas Industry, 2005, 25(2): 165-168. | |
8 | 杨修春, 韦亚南. 甲烷重整制氢用催化剂的研究进展[J]. 材料导报, 2007, 21(5): 49-52, 64. |
YANG X C, WEI Y N. Research progress of catalysts for hydrogen production from methane reforming[J]. Material Report, 2007, 21(5): 49-52, 64. | |
9 | RAHEMI N, HAGHIGHI M, BABALUO A A, et al. Syngas production from reforming of greenhouse gases CH4/CO2 over Ni-Cu/Al2O3 nanocatalyst: impregnated vs.plasma-treated catalyst[J]. Energy Conversion and Management, 2014, 84: 50-59. |
10 | AXEL L, KANE T, JESÚS G C, et al. Chemical looping dry reforming of methane: toward shale-gas and biogas valorization[J]. Chemical Engineering & Processing Process Intensification, 2017, 122: 523-529. |
11 | PASHCHENKO D. Numerical study of steam methane reforming over a pre-heated Ni-based catalyst with detailed fluid dynamics[J]. Fuel, 2019, 236: 686-694. |
12 | JIN J, WEI X, LIU M, et al. A solar methane reforming reactor design with enhanced efficiency[J]. Reforming Reactions, 2018, 226: 797-807. |
13 | SHEU E J, MOKHEIMER E M A, GHONIEM A F. A review of solar methane reforming systems[J]. International Journal of Hydrogen Energy, 2015, 40(38): 12929-12955. |
14 | KHAN M N, SHAMIM T. Thermodynamic screening of suitable oxygen carriers for a three reactor chemical looping reforming system[J]. International Journal of Hydrogen Energy, 2017, 42(24): 15745-15760. |
15 | LUO S, ZENG L, XU D, et al. Shale gas-to-syngas chemical looping process for stable shale gas conversion to high purity syngas with a H2:CO ratio of 2∶1[J]. Energy and Environmental Science, 2014, 7: 4104-4117. |
16 | LIU Q, JIN H, HONG H, et al. Performance analysis of a mid- and low-temperature solar receiver/reactor for hydrogen production with methanol steam reforming[J]. International Journal of Energy Research, 2011, 35(1): 52-60. |
17 | 谢涛, 杨伯伦. 基于太阳能蓄热过程的甲烷二氧化碳重整研究进展[J]. 化工进展, 2016, 35(6): 1723-1732. |
XIE T, YANG B L. Progress in carbon dioxide reforming of methane based on solar thermal storage[J]. Chemical Industry and Engineering Progress, 2016, 35(6): 1723-1732. | |
18 | BHATTA S, NAGASSOU D, TRELLES J P. Solar photo-thermochemical reactor design for carbon dioxide processing[J]. Solar Energy, 2017, 142: 253-266. |
19 | 马婷婷, 朱跃钊, 陈海军, 等. 太阳能高温热化学反应器研究进展[J]. 化工进展, 2014, 33(5): 1134-1141. |
MA T T, ZHU Y Z, CHEN H J, et al. Advances in solar high temperature thermochemical reactors[J]. Chemical Industry and Engineering Progress, 2014, 33(5): 1134-1141. | |
20 | 付晓娟, 曾尚红, 苏海全. 用于甲烷二氧化碳重整新型催化材料的研究进展[J]. 化工进展, 2012, 31(s1): 168-175. |
FU X J, ZENG S H, SU H Q. Research progress of new catalytic materials for carbon dioxide reforming of methane[J]. Chemical Industry and Engineering Progress, 2012, 31(s1): 168-175. | |
21 | FUQIANG W, LANXIN M, ZIMING C, et al. Radiative heat transfer in solar thermochemical particle reactor: a comprehensive review[J]. Renewable and Sustainable Energy Reviews, 2017, 73: 935-949. |
22 | LI D, QI H, WU G. Determined optical constants of liquid hydrocarbon fuel by a novel transmittance method[J]. Optik-International Journal for Light and Electron Optics, 2015, 126(7/8): 834-837. |
23 | TAMME R, BUCK R, Epstein M, et al. Solar upgrading of fuels for generation of electricity[J]. Journal of Solar Energy Engineering, 2001, 123(2): 160-163. |
24 | JIN J, WEI X, LIU M, et al. A solar methane reforming reactor design with enhanced efficiency[J]. Reforming Reactions, 2018, 226: 797-807. |
25 | SRIRAT C, STéPHANE ABANADES, SYLVAIN R. Syngas production via solar-driven chemical looping methane reforming from redox cycling of ceria porous foam in a volumetric solar reactor[J]. Chemical Engineering Journal, 2019, 356: 756-770. |
26 | GUENE L B, SHUAI Y, CHAFFA G, et al. Analysis of CO2, utilization into synthesis gas based on solar thermochemical CH4-reforming[J]. Journal of Energy Chemistry, 2019, 28: 61-72. |
27 | RUBIN R, KARNI J. Carbon dioxide reforming of methane indirectly irradiated solar reactor with porcupine absorber[J]. Journal of Solar Energy Engineering, 2011, 133(2): 021008. |
28 | TAMME R, BUCK R, EPSTEIN M, et al. Solar upgrading of fuels for generation of electricity[J]. Journal of Solar Energy Engineering, 2001, 123(2): 160-163. |
29 | DILLON A C, JONES K M, BEKKEDAHL T A, et al. Storage of hydrogen in single-walled carbon nanotubes[J]. Nature, 1997, 386(6623): 377-379. |
30 | PAGLIARO M, KONSTANDOPOULOSA G, CIRIMINNA R, et al. Solar hydrogen: fuel of the near future[J]. Energy & Environmental Science, 2010, 3(3): 279. |
31 | KORONEOS C, DOMPROS A, ROUMBAS G, et al. Life cycle assessment of hydrogen fuel production processes[J]. International Journal of Hydrogen Energy, 2004, 29(14): 1443-1450. |
32 | CHEN H L, LEE H M, CHEN S H, et al. Review of plasma catalysis on hydrocarbon reforming for hydrogen production-interaction, integration, and prospects[J]. Applied Catalysis B: Environmental, 2008, 85(1): 1-9. |
33 | SAAVEDRA J, WHITTAKER T, CHEN Z, et al. Controlling activity and selectivity using water in the Au-catalysed preferential oxidation of CO in H2[J]. Nature Chemistry, 2016, 8: 584-589. |
34 | NAITO H, ARASHI H. Hydrogen production from direct water splitting at high temperatures using a ZrO2-TiO2-Y2O3 membrane[J]. Solid State Ionics, Diffusion & Reactions, 1995, 79: 366-370. |
35 | JIANG H Q, WANG H H, WERTH S, et al. Simultaneous production of hydrogen and synthesis gas by combining water splitting with partial oxidation of methane in a hollow-fiber membrane reactor[J]. Angewandte Chemie International Edition, 2008, 120(48): 9481-9484. |
36 | 王宏圣, 郝勇, 孔慧. 太阳能膜反应器燃料制取及联合循环效率分析[J]. 工程热物理学报, 2016, 37(11): 2269-2276. |
WANG H S, HAO Y, KONG H. Fuel preparation and combined cycle efficiency analysis of solar membrane reactor[J]. Journal of Engineering Thermophysics, 2016, 37(11): 2269-2276. | |
37 | WANG H S, HAO Y, KONG H. Thermodynamic study on solar thermochemical fuel production with oxygen permeation membrane reactors[J]. International Journal of Energy Research, 2015, 39(13): 1790-1799. |
38 | 曾萍英. 锶钴基新钙钛矿型混合导体氧化物的开发与研究[D]. 南京: 南京工业大学, 2008. |
ZENG P Y. Development and research of strontium-cobalt-based new perovskite mixed conductor oxides[D]. Nanjing: Nanjing University of Technology, 2008. | |
39 | 樊传刚. 致密透氧陶瓷膜材料及氧分离器的研究[D]. 合肥: 中国科学技术大学, 2003. |
FAN C G. Study on dense oxygen permeable ceramic membrane materials and oxygen separator[D]. Hefei: China University of Science and Technology, 2003. | |
40 | BALACHANDRAN U, DUSEK J T, MIEVILLE R L, et al. Dense ceramic membranes for partial oxidation of methane to syngas[J]. Applied Catalysis A: General, 1995, 133(1): 19-29. |
41 | WANG H S, LIU M, KONG H, et al. Thermodynamic analysis on mid/low temperature solar methane steam reforming with hydrogen permeation membrane reactors[J]. Applied Thermal Engineering, 2017, 152: 925-936. |
42 | UEMIYA S, SATO N, ANDO H, et al. Steam reforming of methane in a hydrogen-permeable membrane reactor[J]. Applied Catalysis, 1990, 67(1): 223-230. |
43 | BASILE A, PATURZO L. An experimental study of multilayered composite palladium membrane reactors for partial oxidation of methane to syngas[J]. Catalysis Today, 2001, 67(1): 55-64. |
44 | MALERD-FJELD H, CLARK D, YUSTE-TIRADOS I, et al. Thermo-electrochemical production of compressed hydrogen from methane with near-zero energy loss[J]. Nature Energy, 2017, 2: 923-931. |
45 | LI Y, ZHANG N, CAI R, et al. Low CO2 emissions hybrid solar combined-cycle power system with methane membrane reforming[J]. Energy, 2013, 58(3): 36-44. |
46 | DOLAN M D, BEATH A C, HLA S S, et al. An experimental and techno-economic assessment of solar reforming for H2 production[J]. International Journal of Hydrogen Energy, 2016, 41(33): 14583-14595. |
47 | SHEU E J, GHONIEM A F. Receiver reactor concept and model development for a solar steam redox reformer[J]. Solar Energy, 2016, 125: 339-359. |
48 | 孔慧. 太阳能热化学循环及反应器设计研究[D]. 北京: 中国科学院大学, 2018. |
KONG H. Solar thermochemical cycle and reactor design[D]. Beijing: University of Chinese Academy of Sciences, 2018. | |
49 | ZHAO Z, CHEN T, GHONIEM A F. Rotary bed reactor for chemical-looping combustion with carbon capture. Part 1: reactor design and model development[J]. Energy & Fuels, 2013, 27(1): 327-343. |
50 | ZHAO Z, UDDI M, TSVETKOV N, et al. Redox kinetics study of fuel reduced ceria for chemical-looping water splitting[J]. The Journal of Physical Chemistry C, 2016, 120(30): 16271-16289. |
51 | KANEKO H, MIURA T, FUSE A, et al. Rotary-type solar reactor for solar hydrogen production with two-step water splitting process[J]. Energy & Fuels, 2007, 21(4): 2287-2293. |
52 | KODAMA T, BELLAN S, GOKON N, et al. Particle reactors for solar thermochemical processes[J]. Solar Energy, 2017, 156: 117-132. |
53 | GOKON N, OKU Y, KANEKO H, et al. Methane reforming with CO2 in molten salt using FeO catalyst[J]. Solar Energy, 2002, 72(3): 243-250. |
54 | BELLAN S, KODAMA T, MATSUBARA K, et al. Thermal performance of a 30 kW fluidized bed reactor for solar gasification: a CFD-DEM study[J]. Chemical Engineering Journal, 2018, 360: 1287-1300. |
55 | GOKON N, NAKAMURA S, HATAMACHI T, et al. Steam reforming of methane using double-walled reformer tubes containing high-temperature thermal storage Na2CO3/MgO composites for solar fuel production[J]. Energy, 2014, 68: 773-782. |
56 | 桑丽霞, 刘晓倩, 黄莹, 等. 太阳能甲烷重整反应的研究进展[J]. 天然气化工, 2009, 34(3): 67-71. |
SANG L X, LIU X Q, HUANG Y, et al. Progress in solar methane reforming[J]. Natural Gas Chemical Industry, 2009, 34(3): 67-71. | |
57 | KLEIN H H, KARNI J, RUBIN R. Dry methane reforming without a metal catalyst in a directly irradiated solar particle reactor[J]. Journal of Solar Energy Engineering, 2009, 133(2): 189-200. |
58 | AGRAFIOTIS C, STORCH H VON, ROEB M, et al. Solar thermal reforming of methane feedstocks for hydrogen and syngas production-a review[J]. Renewable and Sustainable Energy Reviews, 2014, 29: 656-682. |
59 | DIVER R B, FISH J D, LEVITAN R, et al. Solar test of an integrated sodium reflux heat pipe receiver/reactor for thermochemical energy transport[J]. Solar Energy, 1992, 48(1): 21-30. |
60 | BENITO R, DUFFY G J. CSIRO’s advanced power generation technology using solar thermal-fossil energy hybrid systems[C]//Greenhouse Gas Control Technologies-6th International Conference, Kyoto, Japan, 2003. |
[1] | YANG Xiazhen, PENG Yifan, LIU Huazhang, HUO Chao. Regulation of active phase of fused iron catalyst and its catalytic performance of Fischer-Tropsch synthesis [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 310-318. |
[2] | LAI Shini, JIANG Lixia, LI Jun, HUANG Hongyu, KOBAYASHI Noriyuki. Research progress of ammonia blended fossil fuel [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4603-4615. |
[3] | HUANG Yufei, LI Ziyi, HUANG Yangqiang, JIN Bo, LUO Xiao, LIANG Zhiwu. Research progress on catalysts for photocatalytic CO2 and CH4 reforming [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4247-4263. |
[4] | YE Zhendong, LIU Han, LYU Jing, ZHANG Yaning, LIU Hongzhi. Optimization of thermochemical energy storage reactor based on calcium and magnesium binary salt hydrates [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4307-4314. |
[5] | XI Yonglan, WANG Chengcheng, YE Xiaomei, LIU Yang, JIA Zhaoyan, CAO Chunhui, HAN Ting, ZHANG Yingpeng, TIAN Yu. Research progress on the application of micro/nano bubbles in anaerobic digestion [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4414-4423. |
[6] | LIU Yang, YE Xiaomei, MIAO Xiao, WANG Chengcheng, JIA Zhaoyan, CAO Chunhui, XI Yonglan. Pilot-scale process research on dry digestion of rural organic household waste under ammonia stress [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3847-3854. |
[7] | ZHANG Kai, LYU Qiunan, LI Gang, LI Xiaosen, MO Jiamei. Morphology and occurrence characteristics of methane hydrates in the mud of the South China Sea [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3865-3874. |
[8] | LU Yang, ZHOU Jinsong, ZHOU Qixin, WANG Tang, LIU Zhuang, LI Bohao, ZHOU Lingtao. Leaching mechanism of Hg-absorption products on CeO2/TiO2 sorbentsin syngas [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3875-3883. |
[9] | LI Jiyan, JING Yanju, XING Guoyu, LIU Meichen, LONG Yong, ZHU Zhaoqi. Research progress and challenges of salt-resistant solar-driven interface photo-thermal materials and evaporator [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3611-3622. |
[10] | FU Shurong, WANG Lina, WANG Dongwei, LIU Rui, ZHANG Xiaohui, MA Zhanwei. Oxygen evolution cocatalyst enhancing the photoanode performances for photoelectrochemical water splitting [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2353-2370. |
[11] | RUAN Peng, YANG Runnong, LIN Zirong, SUN Yongming. Advances in catalysts for catalytic partial oxidation of methane to syngas [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 1832-1846. |
[12] | TIAN Yuan, LOU Shujie, MENG Shanru, YAN Jingru, XIAO Haicheng. Recent progress of Co-based catalysts for higher alcohols synthesis form syngas [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 1869-1876. |
[13] | HE Yangdong, CHANG Honggang, WANG Dan, CHEN Changjie, LI Yaxin. Development of methane pyrolysis based on molten metal technology for coproduction of hydrogen and solid carbon products [J]. Chemical Industry and Engineering Progress, 2023, 42(3): 1270-1280. |
[14] | DU Tao, MA Jinwei, CHEN Qianqian, FANG Hao, CHEN Bingzhang, CHEN Houren. Comparison test and numerical simulation analysis of PV/T module composite cooling mode [J]. Chemical Industry and Engineering Progress, 2023, 42(2): 722-730. |
[15] | ZHANG He, LI Xiaoke, XIONG Ying, WEN Jin. Desalination and pollution treatment of fracturing flow-back fluid based on interfacial solar evaporation of hydrogel [J]. Chemical Industry and Engineering Progress, 2023, 42(2): 1073-1079. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |