Chemical Industry and Engineering Progress ›› 2019, Vol. 38 ›› Issue (12): 5557-5564.DOI: 10.16085/j.issn.1000-6613.2019-0494
• Resources and environmental engineering • Previous Articles Next Articles
Xianbin YING(),Lijie HUANG,Rui WANG,Huajun FENG()
Received:
2019-04-01
Online:
2019-12-05
Published:
2019-12-05
Contact:
Huajun FENG
通讯作者:
冯华军
作者简介:
应贤斌(1995—),男,硕士研究生,研究方向为废水生物处理。E-mail:基金资助:
CLC Number:
Xianbin YING,Lijie HUANG,Rui WANG,Huajun FENG. Research progress of novel membrane bioreactor based onmicrobial fuel cell[J]. Chemical Industry and Engineering Progress, 2019, 38(12): 5557-5564.
应贤斌,黄利杰,汪锐,冯华军. 基于微生物燃料电池的新型膜生物反应器研究进展[J]. 化工进展, 2019, 38(12): 5557-5564.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2019-0494
膜类型 | COD去除率/% | NH3-H去除率/% | 总氮去除率/% | 水力停留时间/h | 浊度/NTU | 参考文献 |
---|---|---|---|---|---|---|
纯膜 | ||||||
尼龙网(孔径74μm) | 89.6±3.7 | N.A. | N.A. | 8.6 | 0.8 | Wang 等[ |
中空纤维膜 | >95.0 | >95 | 36% | 6.4 | N.A. | Tian等[ |
中空纤维膜 | >97.0 | >99.9 | 86±2 | 24.0 | N.A. | Gajaraj等[ |
膜阴极 | ||||||
不锈钢网(孔径40μm) | 90.7±6.6 | 92.7 ± 6.0 | 29.3 ± 4.3 | 4.5 | 0.8 | Wang 等[ |
不锈钢网(孔径40μm) | 86.6±2.9 | 97.8 ± 0.9 | 37.0±11.2 | 9.1 | 0.8 | Wang 等[ |
聚吡咯/茜素红/不锈钢网(15μm) | >95.0 | >95.0 | N.A. | 9.6 | <2 | Li等[ |
导电曝气膜 | 94.74 | 80.82 | 80.8 | 12.0 | N.A. | Wu等[ |
MnO2/PVDF/还原氧化石墨/碳毡 | >97.0 | >90.6 | N.A. | 12.0 | N.A. | Gao等[ |
催化碳纤维 | >97.4 | >96.7 | N.A. | 8.0 | N.A. | Gao等[ |
膜空气阴极 | ||||||
无纺布(50μm)/石墨毡 | 87.4~91.2 | 69.5~97.6 | 23.1~57.2 | 1.6~14.5 | <2 | Wang等[ |
膜类型 | COD去除率/% | NH3-H去除率/% | 总氮去除率/% | 水力停留时间/h | 浊度/NTU | 参考文献 |
---|---|---|---|---|---|---|
纯膜 | ||||||
尼龙网(孔径74μm) | 89.6±3.7 | N.A. | N.A. | 8.6 | 0.8 | Wang 等[ |
中空纤维膜 | >95.0 | >95 | 36% | 6.4 | N.A. | Tian等[ |
中空纤维膜 | >97.0 | >99.9 | 86±2 | 24.0 | N.A. | Gajaraj等[ |
膜阴极 | ||||||
不锈钢网(孔径40μm) | 90.7±6.6 | 92.7 ± 6.0 | 29.3 ± 4.3 | 4.5 | 0.8 | Wang 等[ |
不锈钢网(孔径40μm) | 86.6±2.9 | 97.8 ± 0.9 | 37.0±11.2 | 9.1 | 0.8 | Wang 等[ |
聚吡咯/茜素红/不锈钢网(15μm) | >95.0 | >95.0 | N.A. | 9.6 | <2 | Li等[ |
导电曝气膜 | 94.74 | 80.82 | 80.8 | 12.0 | N.A. | Wu等[ |
MnO2/PVDF/还原氧化石墨/碳毡 | >97.0 | >90.6 | N.A. | 12.0 | N.A. | Gao等[ |
催化碳纤维 | >97.4 | >96.7 | N.A. | 8.0 | N.A. | Gao等[ |
膜空气阴极 | ||||||
无纺布(50μm)/石墨毡 | 87.4~91.2 | 69.5~97.6 | 23.1~57.2 | 1.6~14.5 | <2 | Wang等[ |
1 | BURMAN I, SINHA A. A review on membrane fouling in membrane bioreactors: control and mitigation[M]. Singapore: Springer, 2017: 281-315. |
2 | 聂丽君, 钟华文, 周如金, 等. 混凝/厌氧/兼氧-好氧膜生物反应器组合新工艺处理制革废水[J]. 化工学报, 2016, 67(9): 3995-4003. |
NIE Lijun, ZHONG Huawen, ZHOU Rujin, et al. Treatment of tanning wastewater by integrated process consisted of coagulation, anaerobic baffled reactor and anoxic/aerobic-membrane bioreactor[J]. CIESC Journal, 2016, 67(9): 3995-4003. | |
3 | ZHENG Y, ZHANG W, TANG B, et al. Membrane fouling mechanism of biofilm-membrane bioreactor (BF-MBR): pore blocking model and membrane cleaning[J]. Bioresource Technology, 2018, 250: 398-405. |
4 | LU Y, XIAO B, WANG H, et al. Simultaneously recovering electricity and water from wastewater by osmotic microbial fuel cells: performance and membrane fouling[J]. Frontiers of Environmental Science & Engineering, 2018, 12(4): 1-5. |
5 | ZHANG J, SATTI A, CHEN X, et al. Low-voltage electric field applied into MBR for fouling suppression: performance and mechanisms[J]. Chemical Engineering Journal, 2015, 273: 223-230. |
6 | HUANG Q, LIU H, WANG Y, et al. A hybrid electric field assisted vacuum membrane distillation method to mitigate membrane fouling[J]. RCS Advances, 2018, 8(32): 18084-18092. |
7 | BIAN B, DAI S, CAI X, et al. 3D printed porous carbon anode for enhanced power generation in microbial fuel cell[J]. Nano Energy, 2018, 44: 174-180. |
8 | ZOU L, QIAO Y, LI C M. Boosting microbial electrocatalytic kinetics for high power density: insights into synthetic biology and advanced nanoscience[J]. Electrochemical Energy Reviews, 2018, 1(4): 1-32. |
9 | GAJARAJ S, HU Z. Integration of microbial fuel cell techniques into activated sludge wastewater treatment processes to improve nitrogen removal and reduce sludge production[J]. Chemosphere, 2014, 117(1): 151-157. |
10 | LOGAN B E, HAMELERS B, ROZENDAL R, et al. Microbial fuel cells: methodology and technology[J]. Environmental Science & Technology, 2006, 40(17): 5181-5192. |
11 | ZHANG B, ZHAO H, ZHOU S, et al. A novel UASB-MFC-BAF integrated system for high strength molasses wastewater treatment and bioelectricity generation[J]. Bioresource Technology, 2009, 100(23): 5687-5693. |
12 | CHENG J, ZHU X P, NI J R, et al. Palm oil mill effluent treatment using a two-stage microbial fuel cells system integrated with immobilized biological aerated filters[J]. Bioresource Technology, 2010, 101(8): 2729-2734. |
13 | WANG J, ZHENG Y, JIA H, et al. In situ investigation of processing property in combination with integration of microbial fuel cell and tubular membrane bioreactor[J]. Bioresource Technology, 2013, 149(4): 163-168. |
14 | HOU D, LU L, REN Z J. Microbial fuel cells and osmotic membrane bioreactors have mutual benefits for wastewater treatment and energy production[J]. Water Research, 2016, 98: 183-189. |
15 | WANG Y K, SHENG G P, LI W W, et al. Development of a novel bioelectrochemical membrane reactor for wastewater treatment[J]. Environmental Science & Technology, 2011, 45(21): 9256-9261. |
16 | KIM K Y, CHAE K J, CHOI M J, et al. High-quality effluent and electricity production from non-CEM based flow-through type microbial fuel cell[J]. Chemical Engineering Journal, 2013, 218(3): 19-23. |
17 | DI S, WEI Z, WANG D, et al. Performance and membrane fouling characteristics in a membrane bioreactor coupled with microbial fuel cell system[J]. Chinese Journal of Environmental Engineering, 2014, 8(4): 1367-1372. |
18 | NEOH C H, NOOR Z Z, MUTAMIM N S A, et al. Green technology in wastewater treatment technologies: integration of membrane bioreactor with various wastewater treatment systems[J]. Chemical Engineering Journal, 2016, 283: 582-594. |
19 | TIAN Y U, CHAO J I, WANG K, et al. Assessment of an anaerobic membrane bio-electrochemical reactor (AnMBER) for wastewater treatment and energy recovery[J]. Journal of Membrane Science, 2014, 450(2): 242-248. |
20 | LI J, GE Z, HE Z. A fluidized bed membrane bioelectrochemical reactor for energy-efficient wastewater treatment[J]. Bioresource Technology, 2014, 167(3): 310-315. |
21 | MA J, WANG Z, DI H, et al. Long-term investigation of a novel electrochemical membrane bioreactor for low-strength municipal wastewater treatment[J]. Water Research, 2015, 78: 98-110. |
22 | ZHANG G, ZHANG H, MA Y, et al. Membrane filtration biocathode microbial fuel cell for nitrogen removal and electricity generation[J]. Enzyme & Microbial Technology, 2014, 60: 56-63. |
23 | TIAN Y, LI H, LI L, et al. In-situ integration of microbial fuel cell with hollow-fiber membrane bioreactor for wastewater treatment and membrane fouling mitigation[J]. Biosensors & Bioelectronics, 2015, 64(4): 189-195. |
24 | LI Y H, LIU L F, YANG F L, et al. Performance of carbon fiber cathode membrane with C-Mn-Fe-O catalyst in MBR-MFC for wastewater treatment[J]. Journal of Membrane Science, 2015, 484: 27-34. |
25 | LIU J, LIU L, GAO B, et al. Integration of bio-electrochemical cell in membrane bioreactor for membrane cathode fouling reduction through electricity generation[J]. Journal of Membrane Science, 2013, 430(8): 196-202. |
26 | HUANG L, LI X, REN Y, et al. Preparation of conductive microfiltration membrane and its performance in a coupled configuration of membrane bioreactor with microbial fuel cell[J]. RCS Advances, 2017, 7(34): 20824-20832. |
27 | WANG Y K, SHENG G P, SHI B J, et al. A novel electrochemical membrane bioreactor as a potential net energy producer for sustainable wastewater treatment[J]. Scientific Reports, 2013, 3(5): 1864. |
28 | CHENG B, WANG J, LIU W, et al. Membrane fouling reduction in a cost-effective integrated system of microbial fuel cell and membrane bioreactor[J]. Water Science & Technology, 2017, 76(3): 653-661. |
29 | MODIN O, FUKUSHI K, RABAEY K, et al. Bioelectrochemical hydrogen peroxide production: an opportunity for sustainable mitigation of membrane bioreactor fouling[J]. Journal of the Textile Institute Transactions, 2010, 2010(7): 309-321. |
30 | WANG Y P, LIU X W, LI W W, et al. A microbial fuel cell-membrane bioreactor integrated system for cost-effective wastewater treatment[J]. Applied Energy, 2012, 98(1): 230-235. |
31 | GAO C, LIU L, YANG F. Development of a novel proton exchange membrane-free integrated MFC system with electric membrane bioreactor and air contact oxidation bed for efficient and energy-saving wastewater treatment[J]. Bioresource Technology, 2017, 238: 472-483. |
32 | LI Y, LIU L, LIU J, et al. PPy/AQS (9, 10-anthraquinone-2-sulfonic acid) and PPy/ARS (alizarin red’s) modified stainless steel mesh as cathode membrane in an integrated MBR/MFC system[J]. Desalination, 2014, 349: 94-101. |
33 | FENG Z, FALK H, UWE S D, et al. Challenges and constraints of using oxygen cathodes in microbial fuel cells[J]. Environmental Science & Technology, 2006, 40(17): 5193-5199. |
34 | PARK Y, PARK S, NGUYEN V K, et al. Complete nitrogen removal by simultaneous nitrification and denitrification in flat-panel air-cathode microbial fuel cells treating domestic wastewater[J]. Chemical Engineering Journal, 2017, 316: 673-679. |
35 | YANG S, LIU Z, HOU J, et al. Research progress of air cathode for microbial fuel cells[J]. Chinese Journal of Power Sources, 2015, 9: 2031-2034. |
36 | GUDE V G. Wastewater treatment in microbial fuel cells:an overview[J]. Journal of Cleaner Production, 2016, 122: 287-307. |
37 | ZUO K, LIANG S, LIANG P, et al. Carbon filtration cathode in microbial fuel cell to enhance wastewater treatment[J]. Bioresource Technology, 2015, 185(6): 426-430. |
38 | WU Y, YANG Q, ZENG Q, et al. Enhanced low C/N nitrogen removal in an innovative microbial fuel cell (MFC) with electroconductivity aerated membrane (EAM) as biocathode[J]. Chemical Engineering Journal, 2017, 316: 315-322. |
39 | GAO C, LIU L, YANG F J J O P S. Novel carbon fiber cathode membrane with Fe/Mn/C/F/O elements in bio-electrochemical system (BES) to enhance wastewater treatment[J]. Journal of Power Sources, 2018, 379: 123-133. |
40 | LI N, KAKARLA R, MOON J M, et al. Determination of microbial growth by protein assay in an air-cathode single chamber microbial fuel cell[J]. Journal of Microbiology & Biotechnology, 2015, 25(7): 1114-1118. |
41 | 李正. 水解酸化-悬浮载体复合MBR处理抗生素废水研究[D]. 哈尔滨: 哈尔滨工业大学, 2009. |
LI Zheng. Study on treating antibiotic wastewater by hydrolysis acidification-suspended carrier hybrid MBR[D]. Harbin: Harbin Institute of Technology, 2009. | |
42 | ZHOU G, ZHOU Y, ZHOU G, et al. Assessment of a novel overflow-type electrochemical membrane bioreactor (EMBR) for wastewater treatment, energy recovery and membrane fouling mitigation[J]. Bioresource Technology, 2015, 196: 648-655. |
43 | WU G, HAN B, ZHENG X, et al. Polypyrrole/sargassum activated carbon modified stainless-steel sponge as high-performance and low-cost bioanode for microbial fuel cells[J]. Journal of Power Sources,2018, 384: 86–92. |
44 | JIA Y, FENG H, SHEN D, et al. High-performance microbial fuel cell anodes obtained from sewage sludge mixed with fly ash[J]. Journal of Hazardous Materials, 2018, 354: 27-32. |
45 | ERABLE B, OLIOT M, LACROIX R, et al. Iron-Nicarbazin derived platinum group metal-free electrocatalyst in scalable-size air-breathing cathodes for microbial fuel cells[J]. Electrochimica Acta, 2018, 277: 127-135. |
46 | GAJDA I, GREENMAN J, SANTORO C, et al. Improved power and long term performance of microbial fuel cell with Fe-N-C catalyst in air-breathing cathode[J]. Energy, 2018, 144: 1073-1079. |
47 | SEVDA S, DOMINGUEZ-BENETTON X, VANBROEKHOVEN K, et al. High strength wastewater treatment accompanied by power generation using air cathode microbial fuel cell[J]. Applied Energy, 2013, 105(2): 194-206. |
48 | LILIAN M, KRISHNA P K, BRUCE E L, et al. A hybrid microbial fuel cell membrane bioreactor with a conductive ultrafiltration membrane biocathode for wastewater treatment[J]. Environmental Science & Technology, 2013, 47(20): 11821-11828. |
49 | JIAN L, ZHENG G, ZHEN H. Advancing membrane bioelectrochemical reactor (MBER) with hollow-fiber membranes installed in the cathode compartment[J]. Journal of Chemical Technology & Biotechnology, 2014, 89(9): 1330-1336. |
50 | ZHAI S, JI M, ZHAO Y, et al. Effects of salinity and COD/N on denitrification and bacterial community in dicyclic-type electrode based biofilm reactor[J]. Chemosphere, 2018, 192: 328-336. |
51 | WAN Y, ZHOU L, SHU W, et al. Syntrophic growth of geobacter sulfurreducens accelerates anaerobic denitrification[J]. Frontiers in Microbiology, 2018, 9: 1572. |
52 | KELLY P T, HE Z. Nutrients removal and recovery in bioelectrochemical systems: a review[J]. Bioresource Technology, 2014, 153(2): 351-360. |
53 | YATES M D, SIEGERT M, LOGAN B E. Hydrogen evolution catalyzed by viable and non-viable cells on biocathodes[J]. International Journal of Hydrogen Energy, 2014, 39(30): 16841-16851. |
54 | 冯玉杰, 沈宏, 杨靖明, 等. 电极生物膜法反硝化工艺条件及过程[J]. 哈尔滨工业大学学报, 2008, 40(12): 1956-1961. |
FENG Yujie, SHEN Hong, YANG Jingming, et al. Technological conditions and process analysis on denitrification of biofilm-electrode system[J]. Journal of Harbin Institute of Technology (China), 2008, 40(12): 1956-1961. | |
55 | 何细军, 田光明, 吴东雷, 等. 生物膜电极法反硝化脱氮研究进展[J]. 水处理技术, 2010, 36(9): 6-9. |
HE Xijun, TIAN Guangming, WU Donglei, et al. Progress of denitrification by biofilm-electrode process[J]. Water Treatment Technology, 2010, 36(9): 6-9. | |
56 | CHEN G W, CHOI S J, LEE T H, et al. Application of biocathode in microbial fuel cells: cell performance and microbial community[J]. Applied Microbiology Biotechnology, 2008, 79(3): 379-388. |
57 | WANG Y K, LI W W,SHENG G P, et al. In-situ utilization of generated electricity in an electrochemical membrane bioreactor to mitigate membrane fouling[J]. Water Research, 2013, 47(15): 5794-5800. |
58 | LI W, ZHANG S, GANG C, et al. Simultaneous electricity generation and pollutant removal in microbial fuel cell with denitrifying biocathode over nitrite[J]. Applied Energy, 2014, 126: 136-141. |
59 | MENG F, ZHANG S, OH Y, et al. Fouling in membrane bioreactors: an updated review[J]. Water Research, 2017, 114: 151-180. |
60 | ZSIRAI T, BUZATU P, AERTS P, et al. Efficacy of relaxation, backflushing, chemical cleaning and clogging removal for an immersed hollow fibre membrane bioreactor[J]. Water Research, 2012, 46(14): 4499-4507. |
61 | AHMED F, LALIA B S, KOCHKODAN V, et al. Electrically conductive polymeric membranes for fouling prevention and detection: a review[J]. Desalination, 2016, 391: 1-15. |
62 | WANG J, BI F, NGO H H, et al. Evaluation of energy-distribution of a hybrid microbial fuel cell-membrane bioreactor (MFC-MBR) for cost-effective wastewater treatment[J]. Bioresource Technology, 2016, 200: 420-425. |
63 | DUDCHENKO A V, ROLF J, RUSSELL K, et al. Organic fouling inhibition on electrically conducting carbon nanotube-polyvinyl alcohol composite ultrafiltration membranes[J]. Journal of Membrane Science, 2014, 468(20): 1-10. |
64 | LIU L, LIU J, GAO B, et al. Conductive and hydrophilic polypyrrole modified membrane cathodes and fouling reduction in MBR[J]. Journal of Membrane Science, 2013, 429(4): 252-258. |
65 | NA L, LIU L, YANG F. Highly conductive graphene/PANi-phytic acid modified cathodic filter membrane and its antifouling property in EMBR in neutral conditions[J]. Desalination, 2014, 338(2): 10-16. |
66 | LIU H, HUANG Q, WANG Y, et al. PTFE conductive membrane for EVMD process and the application of electro-catalysis[J]. Separation & Purification Technology, 2017, 187: 327-333 |
67 | WANG X, HU T, WANG Z, et al. Permeability recovery of fouled forward osmosis membranes by chemical cleaning during a long-term operation of anaerobic osmotic membrane bioreactors treating low-strength wastewater[J]. Water Research, 2017, 123: 505-512. |
68 | BAI R, LEOW H F. Microfiltration of activated sludge wastewater-the effect of system operation parameters[J]. Separation & Purification Technology, 2002, 29(2): 189-198. |
69 | LI H, ZUO W, TIAN Y, et al. Simultaneous nitrification and denitrification in a novel membrane bioelectrochemical reactor with low membrane fouling tendency[J]. Environmental Science and Pollution Research, 2017, 24(6): 5106-5117. |
70 | WANG Z, WU Z, TANG S. Extracellular polymeric substances (EPS) properties and their effects on membrane fouling in a submerged membrane bioreactor[J]. Water Research, 2009, 43(9): 2504-2512. |
71 | QIANG L, XIKUN L, DEQIANG G, et al. Effects of SRT on LB-EPS and membrane fouling in a HMBR[J]. Technology of Water Treatment, 2018, 44: 99-102. |
72 | CHENG K Y, GINIGE M P, KAKSONEN A H. Ano-cathodophilic biofilm catalyzes both anodic carbon oxidation and cathodic denitrification[J]. Environmental Science & Technology, 2012, 46(18): 10372-10378. |
73 | CHENG K Y, HO G, CORDRUWISCH R. Anodophilic biofilm catalyzes cathodic oxygen reduction[J]. Environmental Science & Technology, 2010, 44(1): 518-525. |
74 | NA L, LIU L, YANG F. Power generation enhanced by a polyaniline-phytic acid modified filter electrode integrating microbial fuel cell with membrane bioreactor[J]. Separation & Purification Technology, 2014, 132: 213-217. |
75 | STRYCHARZGLAVEN S M, SNIDER R M, GUISEPPIELIE A, et al. On the electrical conductivity of microbial nanowires and biofilms[J]. Energy & Environmental Science, 2011, 4(11): 4366-4379. |
76 | ISHIZAKI S, TERADA K, MIYAKE H, et al. Impact of anodic respiration on biopolymer production and consequent membrane fouling[J]. Environmental Science & Technology, 2016, 50(17): 9515-9523. |
[1] | ZHANG Zuoqun, GAO Yang, BAI Chaojie, XUE Lixin. Thin-film nanocomposite (TFN) mixed matrix reverse osmosis (MMRO) membranes from secondary interface polymerization containing in situ grown ZIF-8 nano-particles [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 364-373. |
[2] | WANG Lele, YANG Wanrong, YAO Yan, LIU Tao, HE Chuan, LIU Xiao, SU Sheng, KONG Fanhai, ZHU Canghai, XIANG Jun. Influence of spent SCR catalyst blending on the characteristics and deNO x performance for new SCR catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 489-497. |
[3] | XU Zhongshuo, ZHOU Panpan, WANG Yuhui, HUANG Wei, SONG Xinshan. Advances in sulfur iron ore mediated autotrophic denitrification [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4863-4871. |
[4] | LI Xuejia, LI Peng, LI Zhixia, JIN Dunshang, GUO Qiang, SONG Xufeng, SONG Peng, PENG Yuelian. Experimental comparation on anti-scaling and anti-wetting ability of hydrophilic and hydrophobic modified membranes [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4458-4464. |
[5] | PAN Yichang, ZHOU Rongfei, XING Weihong. Advanced microporous membranes for efficient separation of same-carbon-number hydrocarbon mixtures: State-of-the-art and challenges [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 3926-3942. |
[6] | XU Jie, XIA Longbo, LUO Ping, ZOU Dong, ZHONG Zhaoxiang. Progress in preparation and application of omniphobic membranes for membrane distillation process [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 3943-3955. |
[7] | WANG Baoying, WANG Huangying, YAN Junying, WANG Yaoming, XU Tongwen. Research progress of polymer inclusion membrane in metal separation and recovery [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 3990-4004. |
[8] | LU Shaojie, LIU Jia, JI Qianzhu, LI Ping, HAN Yueyang, TAO Min, LIANG Wenjun. Preparation of diatomaceous earth-based composite filler and its xylene removal performance by a biotrickling filter [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3884-3892. |
[9] | LU Shijian, LIU Miaomiao, YANG Fei, ZHANG Junjie, CHEN Siming, LIU Ling, KANG Guojun, LI Qingfang. Gas-liquid two-phase flow and mass transfer characteristics in an improved CO2 wet-wall column [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3457-3467. |
[10] | FENG Jianghan, SONG Fang. Research progress of anion exchange membrane water electrolysis cells [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3501-3509. |
[11] | CHEN Xiangli, LI Qianqian, ZHANG Tian, LI Biao, LI Kangkang. Research progress on self-healing oil/water separation membranes [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3600-3610. |
[12] | LI Baixue, XIN Xin, ZHU Yumeng, LIU Qin, LIU Xin. Construction of sulfur autotrophic short-cut denitrification and anaerobic ammonium oxidation (SASD-A) coupling system and effect mechanisms of influent S/N ratio on denitrification process [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3261-3271. |
[13] | ZHANG Wei, QIN Chuan, XIE Kang, ZHOU Yunhe, DONG Mengyao, LI Jie, TANG Yunhao, MA Ying, SONG Jian. Application and performance enhancement challenges of H2-SCR modified platinum-based catalysts for low-temperature denitrification [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 2954-2962. |
[14] | REN Zhongyuan, HE Jinlong, YUAN Qing. Research progress on intercrystalline defects control and remediation technologies for zeolite membranes [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2454-2463. |
[15] | SUN Luqin, LU Huixia, WANG Jianyou. Separation of lysozyme from egg white by electrodialysis with ultrafiltration membrane(EDUF) process [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2262-2271. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |