Chemical Industry and Engineering Progress ›› 2019, Vol. 38 ›› Issue (12): 5247-5256.DOI: 10.16085/j.issn.1000-6613.2019-0397
• Chemical processes and equipment • Previous Articles Next Articles
Peipei CAI(),Xiaogang DENG(),Yuping CAO,Jiawei DENG
Received:
2019-03-17
Online:
2019-12-05
Published:
2019-12-05
Contact:
Xiaogang DENG
通讯作者:
邓晓刚
作者简介:
蔡配配(1995—),女,硕士研究生,研究方向为故障诊断。E-mail:基金资助:
CLC Number:
Peipei CAI,Xiaogang DENG,Yuping CAO,Jiawei DENG. Incipient fault detection of nonlinear chemical processes based on weighted probability related KPCA[J]. Chemical Industry and Engineering Progress, 2019, 38(12): 5247-5256.
蔡配配,邓晓刚,曹玉苹,邓佳伟. 基于WPRKPCA的非线性化工过程微小故障检测[J]. 化工进展, 2019, 38(12): 5247-5256.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2019-0397
方法统计量 | KPCA | PRKPCA | WPRKPCA | |||||
---|---|---|---|---|---|---|---|---|
T2/% | SPE/% | T2/% | SPE/% | T2/% | SPE/% | |||
故障1 | 12.33 | 1.67 | 67 | 62 | 67 | 74.67 | ||
故障2 | 1.33 | 11.67 | 46.67 | 99 | 53.67 | 99 | ||
均值 | 6.83 | 6.67 | 56.84 | 80.5 | 60.34 | 86.84 |
方法统计量 | KPCA | PRKPCA | WPRKPCA | |||||
---|---|---|---|---|---|---|---|---|
T2/% | SPE/% | T2/% | SPE/% | T2/% | SPE/% | |||
故障1 | 12.33 | 1.67 | 67 | 62 | 67 | 74.67 | ||
故障2 | 1.33 | 11.67 | 46.67 | 99 | 53.67 | 99 | ||
均值 | 6.83 | 6.67 | 56.84 | 80.5 | 60.34 | 86.84 |
故障 | 故障描述 | 幅值 |
---|---|---|
F1 | 进料流速QF阶跃变化 | +0.8L·min-1 |
F2 | 进料浓度CAF斜坡变化 | +2×10-5mol·L-1·min-1 |
F3 | 催化剂逐渐失活 | +1.45K·min-1 |
F4 | 换热器结垢 | -38J·min-2·K-1 |
F5 | 反应器温度传感器出现偏差 | +0.9K |
F6 | 冷凝器中温度测量中的传感器偏差 | +1.3K |
故障 | 故障描述 | 幅值 |
---|---|---|
F1 | 进料流速QF阶跃变化 | +0.8L·min-1 |
F2 | 进料浓度CAF斜坡变化 | +2×10-5mol·L-1·min-1 |
F3 | 催化剂逐渐失活 | +1.45K·min-1 |
F4 | 换热器结垢 | -38J·min-2·K-1 |
F5 | 反应器温度传感器出现偏差 | +0.9K |
F6 | 冷凝器中温度测量中的传感器偏差 | +1.3K |
方法 统计量 | PCA | KLD-PCA | PRPCA | KPCA | PRKPCA | WPRKPCA | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
T2 | SPE | T2 | SPE | T2 | SPE | T2 | SPE | T2 | SPE | T2 | SPE | ||||||
误报率/% | 0.8 | 0.4 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 |
方法 统计量 | PCA | KLD-PCA | PRPCA | KPCA | PRKPCA | WPRKPCA | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
T2 | SPE | T2 | SPE | T2 | SPE | T2 | SPE | T2 | SPE | T2 | SPE | ||||||
误报率/% | 0.8 | 0.4 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 |
方法 统计量 | PCA | KLD-PCA | PRPCA | KPCA | PRKPCA | WPRKPCA | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
T2 | SPE | T2 | SPE | T2 | SPE | T2 | SPE | T2 | SPE | T2 | SPE | ||||||
F1 | 2.43 | 1.43 | 93.86 | 2.29 | 89 | 2.71 | 3.14 | 2.71 | 94.43 | 59.71 | 95.14 | 80 | |||||
F2 | 41.43 | 1.00 | 87.71 | 0 | 88.29 | 0 | 41.57 | 4.29 | 88.57 | 85.29 | 91.43 | 87.43 | |||||
F3 | 13.29 | 7.29 | 76.43 | 67 | 75.71 | 65.71 | 20 | 6.71 | 76.86 | 73.86 | 78.29 | 75 | |||||
F4 | 1.43 | 2.14 | 15.71 | 76 | 20.29 | 70 | 1.71 | 20.14 | 16.57 | 76.71 | 30.14 | 86.71 | |||||
F5 | 2.86 | 1.43 | 96.71 | 1.00 | 96.71 | 1.29 | 3.14 | 1.14 | 96.71 | 74.57 | 96.71 | 87.71 | |||||
F6 | 1.57 | 1.43 | 2.29 | 97.71 | 4.14 | 97.71 | 1.29 | 20.86 | 2.29 | 98.14 | 7 | 98.43 | |||||
均值 | 10.50 | 2.45 | 62.12 | 40.67 | 62.36 | 38.74 | 11.81 | 9.31 | 62.57 | 78.05 | 66.45 | 85.88 |
方法 统计量 | PCA | KLD-PCA | PRPCA | KPCA | PRKPCA | WPRKPCA | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
T2 | SPE | T2 | SPE | T2 | SPE | T2 | SPE | T2 | SPE | T2 | SPE | ||||||
F1 | 2.43 | 1.43 | 93.86 | 2.29 | 89 | 2.71 | 3.14 | 2.71 | 94.43 | 59.71 | 95.14 | 80 | |||||
F2 | 41.43 | 1.00 | 87.71 | 0 | 88.29 | 0 | 41.57 | 4.29 | 88.57 | 85.29 | 91.43 | 87.43 | |||||
F3 | 13.29 | 7.29 | 76.43 | 67 | 75.71 | 65.71 | 20 | 6.71 | 76.86 | 73.86 | 78.29 | 75 | |||||
F4 | 1.43 | 2.14 | 15.71 | 76 | 20.29 | 70 | 1.71 | 20.14 | 16.57 | 76.71 | 30.14 | 86.71 | |||||
F5 | 2.86 | 1.43 | 96.71 | 1.00 | 96.71 | 1.29 | 3.14 | 1.14 | 96.71 | 74.57 | 96.71 | 87.71 | |||||
F6 | 1.57 | 1.43 | 2.29 | 97.71 | 4.14 | 97.71 | 1.29 | 20.86 | 2.29 | 98.14 | 7 | 98.43 | |||||
均值 | 10.50 | 2.45 | 62.12 | 40.67 | 62.36 | 38.74 | 11.81 | 9.31 | 62.57 | 78.05 | 66.45 | 85.88 |
窗宽w | PRKPCA | WPRKPCA | |||||
---|---|---|---|---|---|---|---|
平均检出时刻 | 平均检出率/% | 平均误报率/% | 平均检出时刻 | 平均检出率/% | 平均误报率/% | ||
10 | 600.75 | 24.20 | 2.78 | 567.42 | 34.24 | 3.48 | |
15 | 531.5 | 38.93 | 1.75 | 436.5 | 48.67 | 2.19 | |
20 | 413.42 | 53.51 | 3.84 | 389.92 | 60.82 | 4.97 | |
25 | 435.75 | 56.05 | 0.83 | 410.25 | 65.40 | 1.42 | |
30 | 426.67 | 61.53 | 0.31 | 391.67 | 70.70 | 1.34 | |
35 | 407.42 | 69.32 | 0.06 | 373.92 | 75.14 | 2.22 | |
40 | 411.17 | 70.31 | 0.00 | 379.59 | 76.17 | 1.36 | |
45 | 422.67 | 71.78 | 0.17 | 372.67 | 77.64 | 2.17 | |
50 | 431.08 | 73.94 | 0.22 | 385.75 | 78.46 | 2.61 |
窗宽w | PRKPCA | WPRKPCA | |||||
---|---|---|---|---|---|---|---|
平均检出时刻 | 平均检出率/% | 平均误报率/% | 平均检出时刻 | 平均检出率/% | 平均误报率/% | ||
10 | 600.75 | 24.20 | 2.78 | 567.42 | 34.24 | 3.48 | |
15 | 531.5 | 38.93 | 1.75 | 436.5 | 48.67 | 2.19 | |
20 | 413.42 | 53.51 | 3.84 | 389.92 | 60.82 | 4.97 | |
25 | 435.75 | 56.05 | 0.83 | 410.25 | 65.40 | 1.42 | |
30 | 426.67 | 61.53 | 0.31 | 391.67 | 70.70 | 1.34 | |
35 | 407.42 | 69.32 | 0.06 | 373.92 | 75.14 | 2.22 | |
40 | 411.17 | 70.31 | 0.00 | 379.59 | 76.17 | 1.36 | |
45 | 422.67 | 71.78 | 0.17 | 372.67 | 77.64 | 2.17 | |
50 | 431.08 | 73.94 | 0.22 | 385.75 | 78.46 | 2.61 |
1 | ZHANG S M, ZHAO C H. Stationarity test and Bayesian monitoring strategy for fault detection in nonlinear multimode process[J]. Chemical & Intelligent Laboratory Systems, 2017, 168: 45-61. |
2 | GE Z Q. Review on data-driven modeling and monitoring for plant-wide industrial process[J]. Chemical & Intelligent Laboratory Systems, 2017, 171: 16-25. |
3 | 文成林, 吕菲亚, 包哲静,等. 基于数据驱动的微小故障诊断方法综述[J]. 自动化学报, 2016, 42(9): 1285-1299. |
WEN C L, LÜ F Y, BAO Z J, et al. A review of data driven-based incipient fault diagnosis[J]. Acta Automatica Sinica, 2016, 42(9): 1285-1299. | |
4 | AMAR M, GONDAL I, WILSON C. Vibration spectrum imaging: a novel bearing fault classification approach[J]. IEEE Transactions on Industrial Electronics, 2015, 62(1): 494-502. |
5 | LUO L J, BAO S Y, MAO J F, et al. Industrial process monitoring based on knowledge data integrated sparse model and two-level deviation plots[J]. Industrial & Engineering Chemistry Research, 2018, 57(2): 611-622. |
6 | ZHU J L, GE Z Q, SONG Z H. Distributed parallel PCA for modeling and monitoring of large-scale plant-wide processes with big data[J]. IEEE Transactions on Industrial Informatics, 2017, 13(4): 1877-1885. |
7 | QI L J, DU W Y, ZHANG Y W. Semi-supervised kernel partial least squares fault detection and identification approach with application to HGPWLTP[J]. Journal of Chemometrics, 2016, 30(7): 377-385. |
8 | CAI L F, TIAN X M, CHEN S. A process monitoring method based on noisy independent component analysis[J]. Neurocomputing, 2014, 127(1): 231-246. |
9 | DONG Y N, QIN S J. A novel dynamic PCA algorithm for dynamic data modeling and process monitoring[J]. Journal of Process Control, 2018, 67: 1-11 |
10 | CHERRY G A, QIN S J. Multi-block principal component analysis based on a combined index for semiconductor fault detection and diagnosis[J]. IEEE Transactions on Semiconductor Manufacturing, 2006, 19(2): 159-172. |
11 | LEE J M, YOO C K, LEE I B. Fault detection of batch processes using multiway kernel principal component analysis[J]. Computers & Chemical Engineering, 2004, 28(9): 1837-1847. |
12 | WOLD S. Exponentially weighted moving principal components analysis and projections to latent structures[J]. Chemometrics & Intelligent Laboratory Systems, 1994, 23(1): 149-161. |
13 | JI H Q, HE X, SHANG J, et al. Incipient fault detection with smoothing techniques in statistical process monitoring[J]. Control Engineering Practice, 2017, 62: 11-21. |
14 | 尚骏, 陈茂银, 周东华. 基于变元统计分析的微小故障检测[J]. 上海交通大学学报, 2015, 49(6): 799-805. |
SHANG Jun, CHEN Maoyin, ZHOU Donghua. Incipient fault detection using transformed component statistical analysis[J]. Journal of Shanghai Jiaotong University, 2015, 49(6): 799-805 | |
15 | HARMOUCHE J, DELPHA C, DIALLO D. Incipient fault detection and diagnosis based on Kullback-Leibler divergence using principal component analysis: Part Ⅰ[J]. Signal Processing, 2014, 94: 278-287. |
16 | HARMOUCHE J, DELPHA C, DIALLO D. Incipient fault detection and diagnosis based on Kullback-Leibler divergence using principal component analysis: Part Ⅱ[J]. Signal Processing, 2015, 109(1): 334-344. |
17 | CHEN H T, JIANG B, LU N Y. An improved incipient fault detection method based on Kullback Leibler divergence[J]. ISA Transaction, 2018, 79: 127-136 |
18 | GE Z Q, YANG C J, SONG Z H. Improved kernel PCA-based monitoring approach for nonlinear processes[J]. Chemical Engineering Science, 2009, 64(9): 2245-2255. |
19 | CHEN H T, JIANG B, LU N Y, et al. Multi-mode kernel principal component analysis-based incipient fault detection for pulse width modulated inverter of China railway high-speed 5[J]. Advances in Mechanical Engineering, 2017, 9(10): 1-12. |
20 | CHEN H T, JIANG B, DING S X, et al. Probability-relevant incipient fault detection and diagnosis methodology with applications to electric drive systems[J]. IEEE Transactions on Control Systems Technology, 2018,27(6): 1-8. |
21 | DENG X G, TIAN X M, CHEN S, et al. Fault discriminant enhanced kernel principal component analysis incorporating prior fault information for monitoring nonlinear processes[J]. Chemom. Intell. Lab. Syst., 2017, 162: 21-34. |
22 | DENG X G, WANG L. Modified kernel principal component analysis using double-weighted local outlier factor and its application to nonlinear process monitoring[J]. ISA Transactions, 2018, 72: 218-228. |
23 | FAN J C, QIN S J, WANG Y Q. Online monitoring of nonlinear multivariate industrial processes using filtering KICA-PCA[J]. Control Engineering Practice, 2014, 22(1): 205-216. |
24 | DENG X G, TIAN X M, CHEN S, et al. Nonlinear process fault diagnosis based on serial principal component analysis[J]. IEEE Transactions on Neural Networks and Learning Systems, 2018, 29(3): 560-572. |
25 | LEE J M, YOO C K, CHOI S W, et al. Nonlinear process monitoring using kernel principal component analysis[J]. Chemical Engineering Science, 2004, 59(1): 223-234. |
26 | SCHOLKOPF B, SMOLA A, MULLER K R. Nonlinear component analysis as a kernel eigenvalue problem[J]. Neural Computation, 1998, 10(5): 1299-1319. |
27 | KULLBACK S, LEIBLER R A. On information and sufficiency[J]. The Annals of Mathematical Statistics, 1951, 22(1): 79-86. |
28 | BASSEVILLE M. Distance measures for signal processing and pattern recognition[J]. Signal Processing, 1989, 18(4): 349-369. |
29 | ROSENBLATT M. Curve estimates[J]. Annals of Mathematical Statistics, 1971, 42(6):1815-1842. |
30 | PRAZEN E. On estimation of a probability density function and mode[J]. Ann. Math. Statis., 1962, 33(3): 1065-1076. |
31 | DONG D, MCAVOY T J. Nonlinear principal component analysis-based on principal curves and neural networks[J].Computers & Chemical Engineering, 1996, 20(1): 65-78. |
32 | SONG B, SHI H B. Temporal-spatial global locality projections for multimode process monitoring[J]. IEEE Access, 2018, 6: 9740-9749. |
[1] | WANG Tai, SU Shuo, LI Shengrui, MA Xiaolong, LIU Chuntao. Dynamic behavior of single bubble attached to the solid wall in the AC electric field [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 133-141. |
[2] | YANG Jianping. PSE for feedstock consumption reduction in reaction system of HPPO plant [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 21-32. |
[3] | CHEN Kuangyin, LI Ruilan, TONG Yang, SHEN Jianhua. Structure design of gas diffusion layer in proton exchange membrane fuel cell [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 246-259. |
[4] | YANG Yudi, LI Wentao, QIAN Yongkang, HUI Junhong. Analysis of influencing factors of natural gas turbulent diffusion flame length in industrial combustion chamber [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 267-275. |
[5] | GUO Qiang, ZHAO Wenkai, XIAO Yonghou. Numerical simulation of enhancing fluid perturbation to improve separation of dimethyl sulfide/nitrogen via pressure swing adsorption [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 64-72. |
[6] | SHAO Boshi, TAN Hongbo. Simulation on the enhancement of cryogenic removal of volatile organic compounds by sawtooth plate [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 84-93. |
[7] | CHEN Lin, XU Peiyuan, ZHANG Xiaohui, CHEN Jie, XU Zhenjun, CHEN Jiaxiang, MI Xiaoguang, FENG Yongchang, MEI Deqing. Investigation on the LNG mixed refrigerant flow and heat transfer characteristics in coil-wounded heat exchanger (CWHE) system [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4496-4503. |
[8] | LIU Xuanlin, WANG Yikai, DAI Suzhou, YIN Yonggao. Analysis and optimization of decomposition reactor based on ammonium carbamate in heat pump [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4522-4530. |
[9] | ZHAO Xi, MA Haoran, LI Ping, HUANG Ailing. Simulation analysis and optimization design of mixing performance of staggered impact micromixer [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4559-4572. |
[10] | YE Zhendong, LIU Han, LYU Jing, ZHANG Yaning, LIU Hongzhi. Optimization of thermochemical energy storage reactor based on calcium and magnesium binary salt hydrates [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4307-4314. |
[11] | YU Junnan, YU Jianfeng, CHENG Yang, QI Yibo, HUA Chunjian, JIANG Yi. Performance prediction of variable-width microfluidic concentration gradient chips by deep learning [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3383-3393. |
[12] | SHAN Xueying, ZHANG Meng, ZHANG Jiafu, LI Lingyu, SONG Yan, LI Jinchun. Numerical simulation of combustion of flame retardant epoxy resin [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3413-3419. |
[13] | WANG Shuo, ZHANG Yaxin, ZHU Botao. Prediction of erosion life of coal water slurry pipeline based on grey prediction model [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3431-3442. |
[14] | ZHOU Longda, ZHAO Lixin, XU Baorui, ZHANG Shuang, LIU Lin. Advances in electrostatic-cyclonic coupling enhanced multiphase media separation research [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3443-3456. |
[15] | GU Shiya, DONG Yachao, LIU Linlin, ZHANG Lei, ZHUANG Yu, DU Jian. Design and optimization of pipeline system for carbon capture considering intermediate nodes [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 2799-2808. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |