Chemical Industry and Engineering Progress ›› 2019, Vol. 38 ›› Issue (9): 4247-4254.DOI: 10.16085/j.issn.1000-6613.2019-0207
• Biochemical and pharmaceutical engineering • Previous Articles Next Articles
Linqing YANG1(),Danlei MA1,Fubao SUN1(
),Cheng ZENG1,Yanjun TANG2,Haiyan SUN3
Received:
2019-02-11
Online:
2019-09-05
Published:
2019-09-05
Contact:
Fubao SUN
杨林青1(),马丹蕾1,孙付保1(
),曾诚1,唐艳军2,孙海彦3
通讯作者:
孙付保
作者简介:
中文作者简介:杨林青(1993—),女,硕士研究生,研究方向为工业微生物与酶工程。E-mail: 基金资助:
CLC Number:
Linqing YANG,Danlei MA,Fubao SUN,Cheng ZENG,Yanjun TANG,Haiyan SUN. Acid-catalyzed atmospheric glycerol organosolv pretreatment of sugarcane bagasse and its enzymatic hydrolysis[J]. Chemical Industry and Engineering Progress, 2019, 38(9): 4247-4254.
杨林青,马丹蕾,孙付保,曾诚,唐艳军,孙海彦. 甘蔗渣的酸催化常压甘油有机溶剂预处理及其酶解[J]. 化工进展, 2019, 38(9): 4247-4254.
预处理条件 | 预处理量/% | 三大组分含量/% | 48h酶解率/% | |||
---|---|---|---|---|---|---|
温度/加酸量 | 时间 /min | 纤维素 | 半纤维素 | 木质素 | ||
230℃/0.1% | 10 | 60.0 | 49.5 | 12.2 | 25.1 | 56.6 |
30 | 58.0 | 50.3 | 10.6 | 24.1 | 80.9 | |
60 | 56.0 | 55.1 | 8.1 | 23.1 | 61.7 | |
90 | 48.1 | 54.3 | 6.3 | 21.8 | 55.3 |
预处理条件 | 预处理量/% | 三大组分含量/% | 48h酶解率/% | |||
---|---|---|---|---|---|---|
温度/加酸量 | 时间 /min | 纤维素 | 半纤维素 | 木质素 | ||
230℃/0.1% | 10 | 60.0 | 49.5 | 12.2 | 25.1 | 56.6 |
30 | 58.0 | 50.3 | 10.6 | 24.1 | 80.9 | |
60 | 56.0 | 55.1 | 8.1 | 23.1 | 61.7 | |
90 | 48.1 | 54.3 | 6.3 | 21.8 | 55.3 |
加酸量/% | 预处理量/% | 三大组分含量/% | 48h酶解率/% | ||
---|---|---|---|---|---|
纤维素 | 半纤维素 | 木质素 | |||
0.01 | 67.0 | 45.7 | 19.3 | 24.8 | 62.4 |
0.05 | 58.3 | 46.9 | 13.8 | 25.9 | 63.6 |
0.10 | 58.0 | 50.3 | 10.6 | 24.1 | 80.9 |
0.15 | 51.1 | 43.4 | 3.9 | 26.8 | 57.3 |
0.20 | 49.0 | 44.2 | 1.2 | 23.6 | 50.3 |
加酸量/% | 预处理量/% | 三大组分含量/% | 48h酶解率/% | ||
---|---|---|---|---|---|
纤维素 | 半纤维素 | 木质素 | |||
0.01 | 67.0 | 45.7 | 19.3 | 24.8 | 62.4 |
0.05 | 58.3 | 46.9 | 13.8 | 25.9 | 63.6 |
0.10 | 58.0 | 50.3 | 10.6 | 24.1 | 80.9 |
0.15 | 51.1 | 43.4 | 3.9 | 26.8 | 57.3 |
0.20 | 49.0 | 44.2 | 1.2 | 23.6 | 50.3 |
温度/℃ | 预处理量 /% | 三大组分含量/% | 48h酶解率/% | ||
---|---|---|---|---|---|
纤维素 | 半纤维素 | 木质素 | |||
160 | 83.0 | 40.5 | 22.2 | 24.5 | 34.8 |
190 | 68.0 | 46.7 | 16.2 | 20.0 | 46.8 |
210 | 63.2 | 49.7 | 13.7 | 25.5 | 55.0 |
230 | 58.0 | 50.3 | 10.1 | 24.1 | 80.9 |
260 | 48.0 | 56.0 | 3.7 | 23.4 | 73.5 |
温度/℃ | 预处理量 /% | 三大组分含量/% | 48h酶解率/% | ||
---|---|---|---|---|---|
纤维素 | 半纤维素 | 木质素 | |||
160 | 83.0 | 40.5 | 22.2 | 24.5 | 34.8 |
190 | 68.0 | 46.7 | 16.2 | 20.0 | 46.8 |
210 | 63.2 | 49.7 | 13.7 | 25.5 | 55.0 |
230 | 58.0 | 50.3 | 10.1 | 24.1 | 80.9 |
260 | 48.0 | 56.0 | 3.7 | 23.4 | 73.5 |
实验序号 | 时间/min | 加酸量/% | 温度/℃ | 48h酶解率/% |
---|---|---|---|---|
1 | 10 | 0.06 | 250 | 77.3 |
2 | 35 | 0.01 | 250 | 85.4 |
3 | 35 | 0.06 | 230 | 89.9 |
4 | 60 | 0.10 | 230 | 82.1 |
5 | 60 | 0.06 | 250 | 80.6 |
6 | 10 | 0.10 | 230 | 74.5 |
7 | 60 | 0.01 | 230 | 71.7 |
8 | 35 | 0.10 | 210 | 79.8 |
9 | 10 | 0.06 | 210 | 55.5 |
10 | 35 | 0.06 | 230 | 87.3 |
11 | 35 | 0.01 | 210 | 70.2 |
12 | 60 | 0.06 | 210 | 70.0 |
13 | 10 | 0.01 | 230 | 71.7 |
14 | 35 | 0.06 | 230 | 87.7 |
15 | 35 | 0.06 | 230 | 88.8 |
16 | 35 | 0.06 | 230 | 87.6 |
17 | 35 | 0.10 | 250 | 94.3 |
实验序号 | 时间/min | 加酸量/% | 温度/℃ | 48h酶解率/% |
---|---|---|---|---|
1 | 10 | 0.06 | 250 | 77.3 |
2 | 35 | 0.01 | 250 | 85.4 |
3 | 35 | 0.06 | 230 | 89.9 |
4 | 60 | 0.10 | 230 | 82.1 |
5 | 60 | 0.06 | 250 | 80.6 |
6 | 10 | 0.10 | 230 | 74.5 |
7 | 60 | 0.01 | 230 | 71.7 |
8 | 35 | 0.10 | 210 | 79.8 |
9 | 10 | 0.06 | 210 | 55.5 |
10 | 35 | 0.06 | 230 | 87.3 |
11 | 35 | 0.01 | 210 | 70.2 |
12 | 60 | 0.06 | 210 | 70.0 |
13 | 10 | 0.01 | 230 | 71.7 |
14 | 35 | 0.06 | 230 | 87.7 |
15 | 35 | 0.06 | 230 | 88.8 |
16 | 35 | 0.06 | 230 | 87.6 |
17 | 35 | 0.10 | 250 | 94.3 |
参数 | 方程系数 | F值 | P值 |
---|---|---|---|
截距 | 88.28000 | — | — |
X1 | 7.75875 | 151.642700 | < 0.0001 |
X2 | 3.19125 | 25.654260 | 0.0015 |
X3 | 3.97000 | 39.702600 | 0.0004 |
X1X2 | -2.79750 | 9.857076 | 0.0164 |
X1X3 | -0.20500 | 0.052932 | 0.8246 |
X2X3 | 1.90000 | 4.546897 | 0.0704 |
X12 | -4.99175 | 33.036190 | 0.0007 |
X22 | -12.43680 | 205.068100 | < 0.0001 |
X32 | -0.85925 | 0.978866 | 0.3554 |
参数 | 方程系数 | F值 | P值 |
---|---|---|---|
截距 | 88.28000 | — | — |
X1 | 7.75875 | 151.642700 | < 0.0001 |
X2 | 3.19125 | 25.654260 | 0.0015 |
X3 | 3.97000 | 39.702600 | 0.0004 |
X1X2 | -2.79750 | 9.857076 | 0.0164 |
X1X3 | -0.20500 | 0.052932 | 0.8246 |
X2X3 | 1.90000 | 4.546897 | 0.0704 |
X12 | -4.99175 | 33.036190 | 0.0007 |
X22 | -12.43680 | 205.068100 | < 0.0001 |
X32 | -0.85925 | 0.978866 | 0.3554 |
来源 | 平方和 | 自由度 | 均方 | F值 | P值 |
---|---|---|---|---|---|
模型 | 1535.06 | 9 | 170.56 | 53.71 | <0.0001 |
残差 | 22.23 | 7 | 3.18 | — | — |
失拟项 | 17.56 | 3 | 5.85 | 5.01 | 0.0768 |
纯误差 | 4.67 | 4 | 1.17 | — | — |
总和 | 1557.29 | 16 | — | — | — |
来源 | 平方和 | 自由度 | 均方 | F值 | P值 |
---|---|---|---|---|---|
模型 | 1535.06 | 9 | 170.56 | 53.71 | <0.0001 |
残差 | 22.23 | 7 | 3.18 | — | — |
失拟项 | 17.56 | 3 | 5.85 | 5.01 | 0.0768 |
纯误差 | 4.67 | 4 | 1.17 | — | — |
总和 | 1557.29 | 16 | — | — | — |
1 | 生瑜, 颜荣宾, 朱德钦. 甘蔗渣纤维素提取分离技术进展[J]. 广州化工, 2016, 44(17): 5-7. |
SHENGYu, YANRongbin, ZHUDeqin. Progress in cellulose extraction and separation technology of sugarcane bagasse[J]. Guangzhou Chemical Industry, 2016, 44(17): 5-7. | |
2 | 符瑞华, 高俊永, 梁磊, 等. 甘蔗渣利用现状及致密成型研究发展[J].甘蔗糖业, 2013(2): 47-51. |
3 | FURuihua, GAOJunyong, LIANGLei, et al. Present situation of bagasse utilization and development of dense forming[J]. Sugarcane and Canesugar, 2013(2): 47-51. |
4 | 刘海燕, 黄枭, 高星爱, 等. 农作物秸秆酶解制糖研究进展[J]. 江苏农业科学, 2014, 42(3): 10-12. |
LIUHaiyan, HUANGXiao, GAOXingai, et al. Research progress in enzymatic hydrolysis of crop straws[J]. Jiangsu Agricultural Sciences, 2014, 42(3): 10-12. | |
5 | 邢静润, 申锋, 仇茉, 等. NaOH/尿素冻融预处理纤维素及其酸催化水解[J].化工进展, 2018, 37(6): 2159-2165. |
XINGJingrun, SHENFeng, CHOU Mo, et al. NaOH/urea freeze-thaw pretreatment of cellulose and its acid-catalyzed hydrolysis[J]. Chemical Industry and Engineering Progress, 2018, 37(6): 2159-2165. | |
6 | 孙付保, 王亮, 谭玲, 等.木质纤维素糖平台基质组成结构的分析表征技术研究进展[J]. 化工进展, 2014, 33(4): 883-890. |
SUNFubao, WANGLiang, TANLing,et al. Advances in analytical characterization techniques of lignocellulosic sugar platform matrix structure[J]. Chemical Industry and Engineering Progress, 2014, 33(4): 883-890. | |
7 | SUNF , CHENH. Organosolv pretreatment by crude glycerol from oleochemicals industry for enzymatic hydrolysis of wheat straw[J]. Bioresource Technology, 2008, 99(13): 5474-5479. |
8 | 王亮, 刘建权, 张喆, 等. 常压甘油自催化预处理麦草浓醪发酵纤维素乙醇[J]. 生物工程学报, 2015, 31(10): 1468-1483. |
WANGLiang, LIUJianquan, ZHANGZhe, et al. Self-catalytic pretreatment of wheat straw concentrated fermented cellulosic ethanol with atmospheric pressure glycerol[J]. Chinese Journal of Biotechnology, 2015, 31(10): 1468-1483. | |
9 | ELENAD, ALOIAR, JOSEL A, et al. A biorefinery approach based on fractionation with a cheap industrial by-product for getting value from an invasive woody species[J]. Bioresource Technology, 2014, 173: 301-308. |
10 | GURAGAINY N, DEC J, HUSSONF, et al. Comparison of some new pretreatment methods for second generation bioethanol production from wheat straw and water hyacinth[J]. Bioresour Technology, 2011, 102(6): 4416-4424. |
11 | HUNDTM, SCHNITZLEINK, SCHNITZLEINM G. Alkaline polyol pulping and enzymatic hydrolysis of softwood: effect of pulping severity and pulp properties on cellulase activity and overall sugar yield[J]. Bioresource Technology, 2013, 134(2): 307-315. |
12 | MARTINC, PULSJ, SAAKEB, et al. Effect of glycerol preatreatment on component recovery and enzymatic hydrolysis of sugarcane bagasse [J]. Cellulose Chemistry & Technology, 2011, 45(7): 487-494. |
13 | LISIASP N, LEANDROV A G, MARABEZIK , et al. Delignification of sugarcane bagasse using glycerol-water mixtures to produce pulps for saccharification[J]. Bioresource Technology, 2011, 102(21): 10040-10046. |
14 | ROMANIA, RUIZH A, PEREIRAF B, et al. Fractionation of eucalyptus globulus wood by glycerol-water pretreatment: optimization and modeling [J]. Industrial & Engineering Chemistry Research, 2013, 52(40): 14342-14352. |
15 | ZHANGZ, WONGH H, ALBERTSONP L, et al. Laboratory and pilot scale pretreatment of sugarcane bagasse by acidified aqueous glycerol solution[J]. Bioresource Technology, 2013, 138(6): 14-21. |
16 | SLUIITERA, HAMESB, RUIZR, et al. Determination of structural carbohydrates and lignin in biomass[M]. Golden, Colo:National Renewable Energy Laboratory,2008: 530-537. |
17 | GHOSET. Measurement of cellulase activities [J]. Pure and Applied Chemistry, 1987, 59(2): 257-268. |
18 | 洪嘉鹏, 岳春, 赵晓琴, 等. 常压甘油有机溶剂预处理甘蔗渣的浓醪酶解[J]. 食品与发酵工业, 2017,43(10): 41-47. |
HONGJiapeng, YUEChun, ZHAOXiaoqin, et al. Preconcentration enzymatic hydrolysis of sugarcane bagasse by atmospheric pressure glycerol organic solvent[J]. Food and Fermentation Industries, 2017,43(10): 41-47. | |
19 | TANS S Y, MACFARLANED R, UPFALJ, et al. Extraction of lignin from lignocellulose at atmospheric pressure using alkylbenzenesulfonate ionic liquid[J]. Green Chemistry, 2009, 11(3): 339. |
20 | 亢能. 木质纤维原料预处理技术的进展与展望[J]. 吉林农业, 2015(11): 118-119. |
KANGNeng. Progress and prospect of pretreatment technology of lignocellulosic materials[J]. Jilin Agriculture, 2015(11): 118-119. | |
21 | 陈倩, 陈京环, 王堃, 等. 热水预处理生物质原料及其生物转化研究进展[J]. 林业科学, 2017, 53(9): 97-104. |
CHENQian, CHENJinghuan, WANGKun, et al. Research progress on hot water pretreatment of biomass feedstock and its biotransformation[J]. Forestry Science, 2017, 53(9): 97-104. | |
22 | 谢慧, 张东, 张兆昆, 等. 稀酸和蒸汽爆破预处理玉米秸秆对琥珀酸发酵的影响[J]. 食品与发酵工业, 2018, 44(5): 57-62. |
XIEHui, ZHANGDong, ZHANGZhaokun, et al. Effect of pretreatment of corn stover with dilute acid and steam explosion on succinic acid fermentation[J]. Food and Fermentation Industries, 2018, 44(5): 57-62. | |
23 | 余洪波, 张晓昱, 柯静, 等. 生物-碱氧化预处理玉米秸秆酶解条件的优化[J]. 农业工程学报, 2009, 25(4): 201-205. |
YUHongbo, ZHANGXiaoyu, KEJing, et al. Optimization of enzymatic hydrolysis conditions of corn-stalks pretreated by bio-alkali oxidation[J]. Transactions of the Chinese Society of Agricultural Engineering, 2009, 25(4): 201-205. | |
24 | GREGGD J, SADDLERJ N. Factors affecting cellulose hydrolysis and the potential of enzyme recycle to enhance the efficiency of an integrated wood to ethanol process[J]. Biotechnology and Bioengineering, 2015, 51(4): 375-383. |
25 | ZHANGX, QINW, PAICEM G, et al. High consistency enzymatic hydrolysis of hardwood substrates[J].Bioresource Technology, 2009, 100(23): 5890-5897. |
26 | SUNF F, ZHAOX, HONGJ, et al. Industrially relevant hydrolyzability and fermentability of sugarcane bagasse improved effectively by glycerol organosolv pretreatment[J]. Biotechnology for Biofuels, 2016, 9(1): 59-62. |
27 | 郑志, 李超孟, 杨培周, 等. 不同预处理对玉米芯酶解特性和形态结构的影响研究[J]. 可再生能源, 2012, 30(3): 43-48. |
ZHENGZhi, LIChaomeng, YANGPeizhou,et al. Effects of different pretreatments on enzymatic hydrolysis characteristics and morphological structure of corncobs[J]. Renewable Energy, 2012, 30(3): 43-48. | |
28 | 邓学群, 仲兆平, 艾特玲. 硫酸-乙醇预处理玉米芯制取生物乙醇研究[J]. 安全与环境学报, 2016, 16(2): 237-241. |
DENGXuequn, ZHONGZhaoping, AITeling. Study on preparation of bioethanol from corncob by pretreatment of sulfuric acid-ethanol[J]. Journal of Safety and Environment, 2016, 16(2): 237-241. | |
29 | ZHANGZ, OHARAI M, DOHERTYW O S. Pretreatment of sugarcane bagasse by acid-catalysed process in aqueous ionic liquid solutions[J]. Bioresource Technology, 2012, 120(3): 149-156. |
30 | DEMIRBAA. Aqueous glycerol delignification of wood chips and ground wood[J]. Bioresource Technology, 1998, 63(2): 179-185. |
31 | HARRISONM D, ZHANGZ, SHNDK, et al. Effect of pretreatment on saccharification of sugarcane bagasse by complex and simple enzyme mixtures[J]. Bioresource Technology, 2013, 148(7): 105-113. |
[1] | YUE Yao, PU Mengfan, WANG Wenrui, ZHAO Jianbo, CAO Hui. Preparation and biodegradability of polyaspartic acid hydrogel [J]. Chemical Industry and Engineering Progress, 2022, 41(8): 4491-4497. |
[2] | CHEN Danyang, ZHU Jianyu, WU Qin, WANG Ziqing, ZHANG Jinli. KF/MgO catalyzed transesterification of glycerol and dimethyl carbonate to glycerol carbonate [J]. Chemical Industry and Engineering Progress, 2022, 41(4): 2082-2089. |
[3] | XIE Xianli, LIU Yunyun, YU Qiang, ZHANG Yu, ZHANG Rongqing, QIU Yuxin. Improving enzymatic hydrolysis effect of herb residue by deep eutectic solvent pretreatment [J]. Chemical Industry and Engineering Progress, 2022, 41(3): 1349-1356. |
[4] | LIU Qianjing, CHEN Xiaomiao, WANG Zhi, SHI Jiping, LI Baoguo, LIU Li. Deep eutectic solvent pretreatment of poplar hydrolysis residue for lignin separation [J]. Chemical Industry and Engineering Progress, 2022, 41(10): 5612-5618. |
[5] | ZHOU Shuolin, LAI Jinhua, YOU Gaolin, LIU Xianxiang, YIN Dulin. Progress in influence factors and applications of protonated titanate nanotubes prepared via hydrothermal method [J]. Chemical Industry and Engineering Progress, 2021, 40(7): 3791-3802. |
[6] | KE Yihu, LI Jingyun, LIU Chunling, DONG Wensheng, LIU Hai. Zn(Al)O composite oxides supported Au catalysts for selective oxidation of glycerol to 1, 3-dihydroxyacetone [J]. Chemical Industry and Engineering Progress, 2021, 40(5): 2581-2592. |
[7] | Xinyu MENG, Jie XU, Jie WAN, Yanjun LIU, Xiaoli WANG, Jun ZHANG, Feng ZHENG, Jianfei KAN, Gongde WU. Research and industrialization progress in synthesis of glycerol carbonate [J]. Chemical Industry and Engineering Progress, 2020, 39(9): 3739-3749. |
[8] | Dongxiang WANG, Chen WANG, Shijie WANG, Guizhuan XU, Chun CHANG. Research status and development trend of high-value utilization of crude glycerol [J]. Chemical Industry and Engineering Progress, 2020, 39(8): 3041-3048. |
[9] | Jue HOU, Chunhu LI. Catalysts and technology for the synthesis of allyl alcohol from glycerol [J]. Chemical Industry and Engineering Progress, 2020, 39(7): 2648-2655. |
[10] | Cheng ZENG, Guojie SONG, Haiyan SUN, Shuxian GUO, Chaoran MENG, Fubao SUN. Isolation and structural characterization of glycerol extracted sugarcane bagasse lignin [J]. Chemical Industry and Engineering Progress, 2020, 39(11): 4418-4426. |
[11] | Qi HAN, Haiyan LI, Ying YANG, Baijun LIU. Influence of the SiO2/Al2O3 ratio on the performance of USY zeolites for the gas-phase dehydration of glycerol to acrolein [J]. Chemical Industry and Engineering Progress, 2019, 38(06): 2791-2795. |
[12] | Xiaofeng ZHOU, Lianghua WU, Jiale JIANG. Research progress of acrylonitrile production from renewable biomass [J]. Chemical Industry and Engineering Progress, 2019, 38(04): 1815-1822. |
[13] | Lungang CHEN,Xinghua ZHANG,Qi ZHANG,Chenguang WANG,Longlong MA. Progress in aviation biofuel technology by catalysis synthesis of platform molecules from lignocelluloses depolymerization [J]. Chemical Industry and Engineering Progress, 2019, 38(03): 1269-1282. |
[14] | YU Xinlei, MAO Yufeng, ZHANG Xiaoxia, LU Lingxue, WANG Zhiwen, CHEN Tao. Recent progress in microbial production of 3-hydroxypropionic acid [J]. Chemical Industry and Engineering Progress, 2018, 37(11): 4427-4436. |
[15] | WANG Huiguo, WANG Hongyu, LUO Guohua, XU Xin. Research progress of catalyst in catalytic hydrogenolysis of glycerol to 1,2-propanediol [J]. Chemical Industry and Engineering Progress, 2018, 37(06): 2214-2221. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 625
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 346
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |