Chemical Industry and Engineering Progress ›› 2021, Vol. 40 ›› Issue (5): 2581-2592.DOI: 10.16085/j.issn.1000-6613.2020-1243
• Industrial catalysis • Previous Articles Next Articles
KE Yihu1(), LI Jingyun1, LIU Chunling2, DONG Wensheng2, LIU Hai1
Received:
2020-07-02
Online:
2021-05-24
Published:
2021-05-06
Contact:
KE Yihu
通讯作者:
柯义虎
作者简介:
柯义虎(1984—),男,博士,讲师,硕士生导师,研究方向为多相催化。E-mail:基金资助:
CLC Number:
KE Yihu, LI Jingyun, LIU Chunling, DONG Wensheng, LIU Hai. Zn(Al)O composite oxides supported Au catalysts for selective oxidation of glycerol to 1, 3-dihydroxyacetone[J]. Chemical Industry and Engineering Progress, 2021, 40(5): 2581-2592.
柯义虎, 李景云, 刘春玲, 董文生, 刘海. Zn(Al)O复合氧化物负载Au催化剂催化氧化甘油制备1,3-二羟基丙酮[J]. 化工进展, 2021, 40(5): 2581-2592.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2020-1243
催化剂 | Au负载量/% | Zn质量分数/% | Al质量分数/% | Au/Al原子比 | Zn/Al原子比 | SBET /m2·g-1 | Vp/m3·g-1 | Dp/nm |
---|---|---|---|---|---|---|---|---|
Au/Zn(Al)O-1 | 1.37 | 33.4 | 12.8 | 0.015 | 1.08 | 113.8 | 0.16 | 7.7 |
Au/Zn(Al)O-2 | 1.21 | 41.1 | 7.6 | 0.022 | 2.23 | 66.2 | 0.21 | 13.6 |
Au/Zn(Al)O-3 | 1.15 | 46.5 | 5.6 | 0.028 | 3.45 | 37.7 | 0.20 | 22.3 |
Au/Zn(Al)O-4 | 1.33 | 54.0 | 3.6 | 0.051 | 6.23 | 34.9 | 0.21 | 25.0 |
Au/Zn(Al)O-5 | 1.43 | 60.2 | 2.6 | 0.075 | 9.58 | 30.7 | 0.17 | 22.5 |
Au/Zn(Al)O-6 | 1.14 | 64.9 | 2.2 | 0.071 | 12.25 | 28.9 | 0.17 | 22.9 |
催化剂 | Au负载量/% | Zn质量分数/% | Al质量分数/% | Au/Al原子比 | Zn/Al原子比 | SBET /m2·g-1 | Vp/m3·g-1 | Dp/nm |
---|---|---|---|---|---|---|---|---|
Au/Zn(Al)O-1 | 1.37 | 33.4 | 12.8 | 0.015 | 1.08 | 113.8 | 0.16 | 7.7 |
Au/Zn(Al)O-2 | 1.21 | 41.1 | 7.6 | 0.022 | 2.23 | 66.2 | 0.21 | 13.6 |
Au/Zn(Al)O-3 | 1.15 | 46.5 | 5.6 | 0.028 | 3.45 | 37.7 | 0.20 | 22.3 |
Au/Zn(Al)O-4 | 1.33 | 54.0 | 3.6 | 0.051 | 6.23 | 34.9 | 0.21 | 25.0 |
Au/Zn(Al)O-5 | 1.43 | 60.2 | 2.6 | 0.075 | 9.58 | 30.7 | 0.17 | 22.5 |
Au/Zn(Al)O-6 | 1.14 | 64.9 | 2.2 | 0.071 | 12.25 | 28.9 | 0.17 | 22.9 |
催化剂 | Au 4f7/2结合能/eV | Zn 2p3/2结合能/eV | Al 2p3/2结合能/eV | O 1s结合能/eV | Au/Al原子比 | Zn/Al原子比 |
---|---|---|---|---|---|---|
Au/Zn(Al)O-1 | 83.57 | 1021.86 | 74.01 | 530.61 | 0.023 | 0.148 |
Au/Zn(Al)O-2 | 83.48 | 1021.73 | 74.15 | 531.84 | 0.044 | 0.294 |
Au/Zn(Al)O-3 | 83.41 | 1021.73 | 74.19 | 530.13 | 0.087 | 0.583 |
Au/Zn(Al)O-4 | 83.43 | 1021.71 | 74.33 | 530.15 | 0.180 | 1.060 |
Au/Zn(Al)O-5 | 83.51 | 1021.83 | 74.55 | 530.25 | 1.431 | 9.73 |
Au/Zn(Al)O-6 | 83.54 | 1021.64 | 74.70 | 530.10 | 0.102 | 1.172 |
催化剂 | Au 4f7/2结合能/eV | Zn 2p3/2结合能/eV | Al 2p3/2结合能/eV | O 1s结合能/eV | Au/Al原子比 | Zn/Al原子比 |
---|---|---|---|---|---|---|
Au/Zn(Al)O-1 | 83.57 | 1021.86 | 74.01 | 530.61 | 0.023 | 0.148 |
Au/Zn(Al)O-2 | 83.48 | 1021.73 | 74.15 | 531.84 | 0.044 | 0.294 |
Au/Zn(Al)O-3 | 83.41 | 1021.73 | 74.19 | 530.13 | 0.087 | 0.583 |
Au/Zn(Al)O-4 | 83.43 | 1021.71 | 74.33 | 530.15 | 0.180 | 1.060 |
Au/Zn(Al)O-5 | 83.51 | 1021.83 | 74.55 | 530.25 | 1.431 | 9.73 |
Au/Zn(Al)O-6 | 83.54 | 1021.64 | 74.70 | 530.10 | 0.102 | 1.172 |
催化剂 | 转化率 /% | 选择性/% | 转换频率 /s-1 | |||
---|---|---|---|---|---|---|
草酸 | 甘油酸 | 乙醇酸 | DHA | |||
Au/Zn(Al)O-1 | 28.9 | 1.8 | 2.4 | 2.4 | 93.4 | 0.0143 |
Au/Zn(Al)O-2 | 32.6 | 0.8 | 4.5 | 5.6 | 89.1 | 0.0339 |
Au/Zn(Al)O-3 | 48.2 | 0.6 | 2.0 | 5.8 | 91.6 | 0.0343 |
Au/Zn(Al)O-4 | 51.3 | 0.6 | 1.6 | 5.7 | 92.2 | 0.0302 |
Au/Zn(Al)O-5 | 58.5 | 0.4 | 0.9 | 3.4 | 95.3 | 0.0393 |
Au/Zn(Al)O-6 | 54.4 | 0.5 | 1.2 | 5.0 | 93.3 | 0.0459 |
催化剂 | 转化率 /% | 选择性/% | 转换频率 /s-1 | |||
---|---|---|---|---|---|---|
草酸 | 甘油酸 | 乙醇酸 | DHA | |||
Au/Zn(Al)O-1 | 28.9 | 1.8 | 2.4 | 2.4 | 93.4 | 0.0143 |
Au/Zn(Al)O-2 | 32.6 | 0.8 | 4.5 | 5.6 | 89.1 | 0.0339 |
Au/Zn(Al)O-3 | 48.2 | 0.6 | 2.0 | 5.8 | 91.6 | 0.0343 |
Au/Zn(Al)O-4 | 51.3 | 0.6 | 1.6 | 5.7 | 92.2 | 0.0302 |
Au/Zn(Al)O-5 | 58.5 | 0.4 | 0.9 | 3.4 | 95.3 | 0.0393 |
Au/Zn(Al)O-6 | 54.4 | 0.5 | 1.2 | 5.0 | 93.3 | 0.0459 |
催化剂 | 转化率/% | 选择性/% | |||
---|---|---|---|---|---|
草酸 | 甘油酸 | 乙醇酸 | DHA | ||
Au/Zn(Al)O-5-400 | 42.0 | 0.5 | 2.0 | 4.6 | 93.0 |
Au/Zn(Al)O-5-500 | 58.5 | 0.4 | 0.9 | 3.4 | 95.3 |
Au/Zn(Al)O-5-600 | 47.9 | 0.4 | 1.7 | 6.4 | 91.4 |
催化剂 | 转化率/% | 选择性/% | |||
---|---|---|---|---|---|
草酸 | 甘油酸 | 乙醇酸 | DHA | ||
Au/Zn(Al)O-5-400 | 42.0 | 0.5 | 2.0 | 4.6 | 93.0 |
Au/Zn(Al)O-5-500 | 58.5 | 0.4 | 0.9 | 3.4 | 95.3 |
Au/Zn(Al)O-5-600 | 47.9 | 0.4 | 1.7 | 6.4 | 91.4 |
催化剂 | Au 4f7/2结合能/eV | Zn 2p3/2结合能/eV | Al 2p3/2结合能/eV | Au/Al原子比 | Zn/Al原子比 | SBET/m2·g-1 | Vp/m3·g-1 | Dp/nm |
---|---|---|---|---|---|---|---|---|
Au/Zn(Al)O-5-400 | 83.43 | 1021.52 | 74.54 | 1.439 | 9.68 | 36.7 | 0.18 | 19.5 |
Au/Zn(Al)O-5-500 | 83.51 | 1021.83 | 74.55 | 1.431 | 9.73 | 30.7 | 0.17 | 22.5 |
Au/Zn(Al)O-5-600 | 83.35 | 1021.59 | 74.53 | 1.420 | 9.85 | 34.0 | 0.19 | 22.4 |
催化剂 | Au 4f7/2结合能/eV | Zn 2p3/2结合能/eV | Al 2p3/2结合能/eV | Au/Al原子比 | Zn/Al原子比 | SBET/m2·g-1 | Vp/m3·g-1 | Dp/nm |
---|---|---|---|---|---|---|---|---|
Au/Zn(Al)O-5-400 | 83.43 | 1021.52 | 74.54 | 1.439 | 9.68 | 36.7 | 0.18 | 19.5 |
Au/Zn(Al)O-5-500 | 83.51 | 1021.83 | 74.55 | 1.431 | 9.73 | 30.7 | 0.17 | 22.5 |
Au/Zn(Al)O-5-600 | 83.35 | 1021.59 | 74.53 | 1.420 | 9.85 | 34.0 | 0.19 | 22.4 |
反应 次数 | 转化率 /% | 选择性/% | Zn元素流失 /% | |||
---|---|---|---|---|---|---|
草酸 | 甘油酸 | 乙醇酸 | DHA | |||
1 | 58.5 | 0.4 | 0.9 | 3.4 | 95.3 | 3.41 |
2 | 17.3 | 0.6 | 5.2 | 3.6 | 90.7 | 2.20 |
3 | 9.5 | 0.9 | 7.1 | 2.3 | 89.7 | 1.74 |
反应 次数 | 转化率 /% | 选择性/% | Zn元素流失 /% | |||
---|---|---|---|---|---|---|
草酸 | 甘油酸 | 乙醇酸 | DHA | |||
1 | 58.5 | 0.4 | 0.9 | 3.4 | 95.3 | 3.41 |
2 | 17.3 | 0.6 | 5.2 | 3.6 | 90.7 | 2.20 |
3 | 9.5 | 0.9 | 7.1 | 2.3 | 89.7 | 1.74 |
1 | Amin TALEBIAN-KIAKALAIEH, AMIN Nor Aishah Saidina, RAJAEI Kourosh, et al. Oxidation of bio-renewable glycerol to value-added chemicals through catalytic and electro-chemical processes[J]. Applied Energy, 2018, 230: 1347-1379. |
2 | VILLA Alberto, DIMITRATOS Nikolaos, CHAN-THAW Carine E, et al. Glycerol oxidation using gold-containing catalysts[J]. Accounts of Chemical Research, 2015, 48(5): 1403-1412. |
3 | CORMA Avelino, IBORRA Sara, VELTY Alexandra. Chemical routes for the transformation of biomass into chemicals[J]. Chemical Reviews, 2007, 107(6): 2411-2502. |
4 | BEHR Arno, EILTING Jens, IRAWADI Ken, et al. Improved utilisation of renewable resources: new important derivatives of glycerol[J]. Green Chemistry, 2008, 10(1): 13-30. |
5 | ZHOU Chunhui, BELTRAMINI Jorge N, FAN Yongxian, et al. Chemoselective catalytic conversion of glycerol as a biorenewable source to valuable commodity chemicals[J]. Chemical Society Reviews, 2008, 37(3): 527-549. |
6 | CATTERTTIN Silvio, MCMORN Paul, JOHNSTON Peter, et al. Selective oxidation of glycerol to glyceric acid using a gold catalyst in aqueous sodium hydroxide[J]. Chemical Communications, 2002(7): 696-697. |
7 | DEMIREL Silvio, LEHNERT K, LUCAS M, et al. Use of renewables for the production of chemicals: glycerol oxidation over carbon supported gold catalysts[J]. Applied Catalysis B: Environmental, 2007, 70(1-4): 637-643. |
8 | BESSON M, GALLEZOT P, PINEL G. Conversion of biomass into chemicals over metal catalysts[J]. Chemical Reviews, 2014, 114(3): 1827-1870. |
9 | DODEKATOS Godekatos, Stefan SCHÜINENMANN, Harun TÜYSÜZ. Recent advances in thermo-, photo-, and electrocatalytic glycerol oxidation[J]. ACS Catalysis, 2018, 8(7): 6301-6333. |
10 | YANG Lihua, LI Xuewen, CHEN Ping, et al. Selective oxidation of glycerol in a base-free aqueous solution: a short review[J]. Chinese Journal of Catalysis, 2019, 40(7): 1020-1034. |
11 | KATRYNIOK Benjamin, KIMURA Hiroshi, Elżbieta SKRZYŃSKA, et al. Selective catalytic oxidation of glycerol: perspectives for high value chemicals[J]. Green Chemistry, 2011, 13(8): 1960-1979. |
12 | Juraj ŠVITEL, Ernest ŠTURDÍK. Product yield and by-product formation in glycerol conversion to dihydroxyacetone by Gluconobacter oxydans[J]. Journal of Fermentation and Bioengineering, 1994, 78(5): 351-355. |
13 | WEI Shenghua, SONG Qingxun, WEI Dongzhi. Production of Gluconobacter oxydans cells from low-cost culture medium for conversion of glycerol to dihydroxyacetone[J]. Preparative Biochemistry & Biotechnology, 2007, 37(2):113-121. |
14 | KIMURA H, TSUTO K, WAKISAKA T, et al. Selective oxidation of glycerol on a platinum-bismuth catalyst[J]. Applied Catalysis A: General, 1993, 96 (2): 217-228. |
15 | LIANG Dan, GAO Jing, WANG Junhua, et al. Selective oxidation of glycerol in a base-free aqueous solution over different sized Pt catalysts[J]. Catalysis Communications, 2009, 10(12): 1586-1590. |
16 | GAO Jing, LIANG Dan, CHEN Ping, et al. Oxidation of glycerol with oxygen in a base-free aqueous solution over Pt/AC and Pt/MWNTs catalysts[J]. Catalysis Letters, 2009, 130(1/2): 185-191. |
17 | LIANG Dan, GAO Jing, SUN Hui, et al. Selective oxidation of glycerol with oxygen in a base-free aqueous solution over MWNTs supported Pt catalysts[J]. Applied Catalysis B: Environmental, 2011, 106: 423-432. |
18 | CHEN Shasha, QI Puyu, CHEN Jin, et al. Platinum nanoparticles supported on N-doped carbon nanotubes for the selective oxidation of glycerol to glyceric acid in a base-free aqueous solution[J]. RSC Advances, 2015, 5: 31566-31574. |
19 | ZHANG Mengyuan, SHI Juanjuan, SUN Yanyan, et al. Selective oxidation of glycerol over nitrogen-doped carbon nanotubes supported platinum catalyst in base-free solution[J]. Catalysis Communications, 2015, 70: 72-76. |
20 | KIMURA Hiroshi. Selective oxidation of glycerol on a platinum-bismuth catalyst by using a fixed bed reactor[J]. Applied Catalysis A: General, 1993, 105(2): 147-158. |
21 | GARCIA Régis, BESSON Michèle, GALLEZOT Pierre. Chemoselective catalytic oxidation of glycerol with air on platinum metals[J]. Applied Catalysis A: General, 1995, 127(1/2): 165-176. |
22 | HU Wenbin, KNIGHT Daniel, LOWRY Brian, et al. Selective oxidation of glycerol to dihydroxyacetone over Pt-Bi/C catalyst: optimization of catalyst and reaction conditions[J]. Industrial & Engineering Chemistry Research, 2010, 49(21): 10876-10882. |
23 | BRANDNER A, LEHNERT K, BIENHOLZ A, et al. Production of biomass-derived chemicals and energy: chemocatalytic conversions of glycerol[J]. Topics in Catalysis, 2009, 52: 278-287. |
24 | LIANG Dan, CUI Shiyu, GAO Jing, et al. Glycerol oxidation with oxygen over bimetallic Pt-Bi catalysts under atmospheric pressure[J]. Chinese Journal of Catalysis, 2011, 32(11/12): 1831-1837. |
25 | NIE Renfeng, LIANG Dan, SHEN Lian, et al. Selective oxidation of glycerol with oxygen in base-free solution over MWCNTs supported PtSb alloy nanoparticles[J]. Applied Catalysis B: Environmental, 2012, 127: 212-220. |
26 | DOU Jian, ZHANG Bowei, LIU Hai, et al. Carbon supported Pt9Sn1 nanoparticles as an efficient nanocatalyst for glycerol oxidation[J]. Applied Catalysis B: Environmental, 2016, 180: 78-85. |
27 | HIRASAWA S, NAKAGAWA Y, TOMISHIGE K. Selective oxidation of glycerol to dihydroxyacetone over a Pd-Ag catalyst[J]. Catalysis Science & Technology, 2012, 2: 1150-1152. |
28 | HIRASAWA S, WATANABE H, KIZUKA T, et al. Performance, structure and mechanism of Pd-Ag alloy catalyst for selective oxidation of glycerol to dihydroxyacetone[J]. Journal of Catalysis, 2013, 300: 205-216. |
29 | HARUTA Masatake, KOBAYASHI Tetsuhiko, SANO Hiroshi, et al. Novel gold catalysts for the oxidation of carbon-monoxide at a temperature far below 0℃[J]. Chemistry Letters, 1987, 16(2): 405-408. |
30 | Núria LOPEZ, Mónica GARCIA-MOTA, Jaime GOMEZ-DIAZ. NH3 oxidation on oxygen-precovered Au(111): a density functional theory study on selectivity[J]. The Journal of Physical Chemistry C, 2008, 112: 247-252. |
31 | XU Bingjun, LIU Xiaoying, HAUBRICH Jan, et al. Selectivity control in gold-mediated esterification of methanol[J]. Angewandte Chemie: International Edition, 2009, 48: 4206-4209. |
32 | OUTKA Duane A, MADIX Robert J. Broensted basicity of atomic oxygen on the gold(110) surface: reactions with methanol, acetylene, water, and ethylene[J]. Journal of the American Chemical Society, 1987, 109: 1708-1714. |
33 | HE Lin, NI Ji, WANG Lucun, et al. Aqueous room-temperature gold-catalyzed chemoselective transfer hydrogenation of aldehydes[J]. Chemistry, 2009, 15(44):11833-11836. |
34 | DU Xianlong, HE Lin, ZHAO She, et al. Hydrogen-independent reductive transformation of carbohydrate biomass into γ-valeroiactone and pyrrolidone derivatives with supported gold catalysts[J]. Angewandte Chemie: International Edition, 2011, 50(34): 7815-7819. |
35 | HE Lin, WANG Lucun, SUN Hao, et al. Efficient and selective room-temperature gold-catalyzed reduction of nitro compounds with CO and H2O as the hydrogen source[J]. Angewandte Chemie International Edition, 2009, 48(50): 9538-9541. |
36 | RODRIGUES Elodie G, PEREIRA Manuel F R, DELGADO Juan J, et al. Enhancement of the selectivity to dihydroxyacetone in glycerol oxidation using gold nanoparticles supported on carbon nanotubes[J]. Catalysis Communications, 2011, 16: 64-69. |
37 | PORTS Francesca, PRATI Laura. Selective oxidation of glycerol to sodium glycerate with gold-on-carbon catalyst: an insight into reaction selectivity[J]. Journal of Catalysis, 2004, 224(2): 397-403. |
38 | KETCHIE Willian C, MURAYAMA Mitsuhiro, DAVIS Robert J. Selective oxidation of glycerol over carbon-supported AuPd catalysts[J]. Journal of Catalysis, 2007, 250(2): 264-273. |
39 | RODRIGUES Elodie G, PEREIRA Manuel F R, CHEN Xiaowei, et al. Influence of activated carbon surface chemistry on the activity of Au/AC catalysts in glycerol oxidation[J]. Journal of Catalysis, 2011, 281(1): 119-127. |
40 | SUN Yanyan, LI Xuewen, WANG Jiangguo, et al. Carbon film encapsulated Pt NPs for selective oxidation of alcohols in acidic aqueous solution[J]. Applied Catalysis B: Environmental, 2017, 218(5): 538-544. |
41 | YANG Lihua, LI Xuewen, SUN Yangyang, et al. Selective oxidation of glycerol in base-free conditions over N-doped carbon film coated carbon supported Pt catalysts[J]. Catalysis Communications, 2017, 101: 107-110. |
42 | DIMITRATOS Nikolaos, VILLA Aaberto, PRATI Laura, et al. Effect of the preparation method of supported Au nanoparticles in the liquid phase oxidation of glycerol[J]. Applied Catalysis A: General, 2016, 514: 267-275. |
43 | ZHANG Mengyuan, SUN Yanyan, SHI Juanjuan, et al. Selective glycerol oxidation using platinum nanoparticles supported on multi-walled carbon nanotubes and nitrogen-doped graphene hybrid[J]. Chinese Journal of Catalysis, 2017, 38(3): 537-544. |
44 | LIANG Dan, GAO Jing, WANG Junhua, et al. Bimetallic Pt-Cu catalysts for glycerol oxidation with oxygen in a base-free aqueous solution[J]. Catalysis Communications, 2011, 12(12): 1059-1062. |
45 | TINCOCO Miguel, Susana FERNANDEZ-GARCIA, VILLA Alberto, et al. Selective oxidation of glycerol on morphology controlled ceria nanomaterials[J]. Catalysis Science & Technology, 2019, 9(9): 2328-2334. |
46 | PURUSHOTHAMAN Rajeesh Kumar Pazhavelikkakath, HAVEREN J VAN, VAN ES D S, et al. An efficient one pot conversion of glycerol to lactic acid using bimetallic gold-platinum catalysts on a nanocrystalline CeO2 support[J]. Applied Catalysis B: Environmental, 2014, 147: 92-100. |
47 | DIMITRATOS Nikolaos, LOPEZ-SANCHEZ Jose Antonic, ANTHONYKUTTY Jinto Manjaly, et al. Oxidation of glycerol using gold-palladium alloy-supported nanocrystals[J]. Physical Chemistry Chemical Physics, 2009, 11(25): 4952-4961. |
48 | XU Jilei, ZHANG Hongye, ZHAO Yanfei, et al. Selective oxidation of glycerol to lactic acid under acidic conditions using AuPd/TiO2 catalyst[J]. Green Chemistry, 2013, 15(6):1520-1525. |
49 | MUSIALSKA Karolina, FINOCCHIO Elisabetta, SOBCZAK Izabela, et al. Characterization of alumina- and niobia-supported gold catalysts used for oxidation of glycerol[J]. Applied Catalysis A: General, 2010, 384(1/2): 70-77. |
50 | PAN Yongning, WU Guandong, HE Yufei, et al. Identification of the Au/ZnO interface as the specific active site for the selective oxidation of the secondary alcohol group in glycerol[J]. Journal of Catalysis, 2019, 369: 222-232. |
51 | MENG Ye, ZOU Shihui, ZHOU Yuheng, et al. Activating molecular oxygen by Au/ZnO to selectively oxidize glycerol to dihydroxyacetone[J]. Catalysis Science & Technology, 2018, 8(10): 2524-2528. |
52 | LIU Shusen, SUN Keqiang, XU Boqing. Specific selectivity of Au-catalyzed oxidation of glycerol and other C3-polyols in water without the presence of a base[J]. ACS Catalysis, 2014, 4(7): 2226-2230. |
53 | 袁德玲. CuNiTi类水滑石衍生物富氧丙烯选择性催化还原NO的研究[D].大连:大连理工大学,2013. |
YUAN Deling. CuNiTi hydrotalcite-derived catalysts for selective catalytic reduction of NO with C3H6 under lean-burn conditions[D]. Dalian: Dalian University of Technology, 2013. | |
54 | XU Chunli, SUN Jun, ZHAO Binbin, et al. On the study of KF/Zn(Al)O catalyst for biodiesel production from vegetable oil[J]. Applied Catalysis B: Environmental, 2010, 99(1/2): 111-117. |
55 | MURCIA-MASCAROS S, NAVARRO R M, GOMEZ-SAINERO L, et al. Oxidative methanol reforming reactions on CuZnAl catalysts derived from hydrotalcite-like precursors[J]. Journal of Catalysis, 2001, 198(2): 338-347. |
56 | CHOUDARY B M, KANTAM M L, RAHMAN A, et al. The first example of activation of molecular oxygen by nickel in Ni-Al hydrotalcite: a novel protocol for the selective oxidation of alcohols[J]. Angewandte Chemie: International Edition, 2001, 113(4): 785-788. |
57 | BARRAULT J, DEROUAULT A, COURTOIS G, et al. On the catalytic properties of mixed oxides obtained from the Cu-Mg-Al LDH precursors in the process of hydrogenation of the cinnamaldehyde[J]. Applied Catalysis A: General, 2004, 262(1): 43-51. |
58 | LI Landong, YU Jiejun, HAO Zhengping, et al. Novel Ru-Mg-Al-O catalyst derived from hydrotalcite-like compound for NO storage/decomposition/reduction[J]. The Journal of Physical Chemistry C, 2007, 111(28): 10552-10559. |
59 | KE Yihu, LI Xiaohua, LI Jifan, et al. Conversion of glycerol to dihydroxyacetone over Au catalysts on various supports[J]. Journal of Chemical Technology & Biotechnology, 2020, 95(4): 1153-1162. |
60 | MOREAU Francois, BOND Geoffrey C, TAYLOR Adrian O. Gold on titania catalysts for the oxidation of carbon monoxide: control of pH during preparation with various gold contents[J]. Journal of Catalysis, 2005, 231(1): 105-114. |
61 | MOREAU Francois, BOND Geoffrey C. Gold on titania catalysts, influence of some physicochemical parameters on the activity and stability for the oxidation of carbon monoxide[J]. Applied Catalysis A: General, 2006, 302(1): 110-117. |
62 | YOU Kuenjiun, CHANG Chingtu, LIAW Biingjye, et al. Selective hydrogenation of α,β-unsaturated aldehydes over Au/MgxAlO hydrotalcite catalysts[J]. Applied Catalysis A: General, 2009, 361(1/2): 65-71. |
63 | PATZK􀆕 Ágnes, KUN Robert, HORNOK Viktória,et al. ZnAl-layer double hydroxides as photocatalysts for oxidation of phenol in aqueous solution[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2005, 265(1/2/3): 64-72. |
64 | WOLF Anke, Ferdi SCHÜTH. A systematic study of the synthesis conditions for the preparation of highly active gold catalysts[J]. Applied Catalysis A: General, 2002, 226: 1-13. |
65 | LEPPELT R, SCHUMACHER B, PLZAK V, et al. Kinetics and mechanism of the low-temperature water-gas shift reaction on Au/CeO2 catalysts in an idealized reaction atmosphere[J]. Journal of Catalysis, 2006, 244(2): 137-152. |
66 | 毕博. 新型杂多酸类水滑石插层材料的制备和吸附、光催化性能研究[D]. 长春:东北师范大学,2012. |
BI Bo. Study on preparation, adsorption and photocatalytic performance of polyoxometalated layered double hydroxides[D]. Changchun: Northeast Normal University, 2012. | |
67 | REICHLE Walter T. Catalytic reactions by thermally activated, synthetic, anionic clay minerals[J]. Journal of Catalysis, 1985, 94(2): 547-557. |
[1] | ZHANG Mingyan, LIU Yan, ZHANG Xueting, LIU Yake, LI Congju, ZHANG Xiuling. Research progress of non-noble metal bifunctional catalysts in zinc-air batteries [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 276-286. |
[2] | ZHENG Qian, GUAN Xiushuai, JIN Shanbiao, ZHANG Changming, ZHANG Xiaochao. Photothermal catalysis synthesis of DMC from CO2 and methanol over Ce0.25Zr0.75O2 solid solution [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 319-327. |
[3] | WANG Zhengkun, LI Sifang. Green synthesis of gemini surfactant decyne diol [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 400-410. |
[4] | GAO Yufei, LU Jinfeng. Mechanism of heterogeneous catalytic ozone oxidation:A review [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 430-438. |
[5] | GU Yongzheng, ZHANG Yongsheng. Dynamic behavior and kinetic model of Hg0 adsorption by HBr-modified fly ash [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 498-509. |
[6] | DENG Liping, SHI Haoyu, LIU Xiaolong, CHEN Yaoji, YAN Jingying. Non-noble metal modified vanadium titanium-based catalyst for NH3-SCR denitrification simultaneous control VOCs [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 542-548. |
[7] | WANG Fu'an. Consumption and emission reduction of the reactor of 300kt/a propylene oxide process [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 213-218. |
[8] | GENG Yuanze, ZHOU Junhu, ZHANG Tianyou, ZHU Xiaoyu, YANG Weijuan. Homogeneous/heterogeneous coupled combustion of heptane in a partially packed bed burner [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4514-4521. |
[9] | GAO Yanjing. Analysis of international research trend of single-atom catalysis technology [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4667-4676. |
[10] | WANG Weitao, BAO Tingyu, JIANG Xulu, HE Zhenhong, WANG Kuan, YANG Yang, LIU Zhaotie. Oxidation of benzene to phenol over aldehyde-ketone resin based metal-free catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4706-4715. |
[11] | GE Yafen, SUN Yu, XIAO Peng, LIU Qi, LIU Bo, SUN Chengying, GONG Yanjun. Research progress of zeolite for VOCs removal [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4716-4730. |
[12] | LEI Wei, JIANG Weijia, WANG Yugao, HE Minghao, SHEN Jun. Synthesis of N,S co-doped coal-based carbon quantum dots by electrochemical oxidation and its application in Fe3+ detection [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4799-4807. |
[13] | LI Dongze, ZHANG Xiang, TIAN Jian, HU Pan, YAO Jie, ZHU Lin, BU Changsheng, WANG Xinye. Research progress of NO x reduction by carbonaceous substances for denitration in cement kiln [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4882-4893. |
[14] | WANG Chen, BAI Haoliang, KANG Xue. Performance study of high power UV-LED heat dissipation and nano-TiO2 photocatalytic acid red 26 coupling system [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4905-4916. |
[15] | ZHU Chuanqiang, RU Jinbo, SUN Tingting, XIE Xingwang, LI Changming, GAO Shiqiu. Characteristics of selective non-catalytic reduction of NO x with solid polymer denitration agent [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4939-4946. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |