Chemical Industry and Engineering Progress ›› 2021, Vol. 40 ›› Issue (5): 2593-2602.DOI: 10.16085/j.issn.1000-6613.2020-1273
• Industrial catalysis • Previous Articles Next Articles
ZANG Jiazhong1,2(
), WANG Yinbin1,2, HONG Luwei1,2, YU Haibin1,2(
), PENG Xiaowei1,2, LI Chen1,2, WANG Yang1,2, GUO Chunlei1,2
Received:2020-07-06
Online:2021-05-24
Published:2021-05-06
Contact:
YU Haibin
臧甲忠1,2(
), 王银斌1,2, 洪鲁伟1,2, 于海斌1,2(
), 彭晓伟1,2, 李晨1,2, 汪洋1,2, 郭春垒1,2
通讯作者:
于海斌
作者简介:臧甲忠(1979—),男,硕士,高级工程师,从事化工催化材料及工艺技术的开发与应用。E-mail:CLC Number:
ZANG Jiazhong, WANG Yinbin, HONG Luwei, YU Haibin, PENG Xiaowei, LI Chen, WANG Yang, GUO Chunlei. Application of hydrocracking and hydroalkylation to enhance the value of C9 aromatics[J]. Chemical Industry and Engineering Progress, 2021, 40(5): 2593-2602.
臧甲忠, 王银斌, 洪鲁伟, 于海斌, 彭晓伟, 李晨, 汪洋, 郭春垒. 临氢裂解及烷基化组合技术应用于C9混合芳烃的高值化[J]. 化工进展, 2021, 40(5): 2593-2602.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2020-1273
| 序号 | 名称 | 规格 | 厂家 |
|---|---|---|---|
| 1 | 硫酸铝 | 分析纯 | 天津市化学试剂批发公司 |
| 2 | 浓硫酸 | 纯度98% | 天津市化学试剂批发公司 |
| 3 | 水玻璃 | 固含量26% | 天津市化学试剂批发公司 |
| 4 | 正丁胺 | 分析纯 | 天津市化学试剂批发公司 |
| 5 | CTAB | 分析纯 | 天津市化学试剂批发公司 |
| 6 | 硫酸铵 | 分析纯 | 天津市化学试剂批发公司 |
| 7 | 六水硝酸镍 | 分析纯 | 天津市化学试剂批发公司 |
| 8 | 拟薄水铝石 | 工业品 | 山西铝业公司 |
| 9 | ZSM-5分子筛 | SiO2/Al2O3=25 | 中海油天津化工研究设计院有限公司 |
| 序号 | 名称 | 规格 | 厂家 |
|---|---|---|---|
| 1 | 硫酸铝 | 分析纯 | 天津市化学试剂批发公司 |
| 2 | 浓硫酸 | 纯度98% | 天津市化学试剂批发公司 |
| 3 | 水玻璃 | 固含量26% | 天津市化学试剂批发公司 |
| 4 | 正丁胺 | 分析纯 | 天津市化学试剂批发公司 |
| 5 | CTAB | 分析纯 | 天津市化学试剂批发公司 |
| 6 | 硫酸铵 | 分析纯 | 天津市化学试剂批发公司 |
| 7 | 六水硝酸镍 | 分析纯 | 天津市化学试剂批发公司 |
| 8 | 拟薄水铝石 | 工业品 | 山西铝业公司 |
| 9 | ZSM-5分子筛 | SiO2/Al2O3=25 | 中海油天津化工研究设计院有限公司 |
| 样品 | Al2O3/% | SiO2/% | SiO2/Al2O3 | NiO/% |
|---|---|---|---|---|
| Z-1 | 5.22 | 94.53 | 30.8 | — |
| Z-2 | 2.85 | 96.90 | 57.8 | — |
| C-1 | 32.66 | 63.65 | — | 2.9 |
| C-2 | 31.10 | 63.84 | — | 4.1 |
| 样品 | Al2O3/% | SiO2/% | SiO2/Al2O3 | NiO/% |
|---|---|---|---|---|
| Z-1 | 5.22 | 94.53 | 30.8 | — |
| Z-2 | 2.85 | 96.90 | 57.8 | — |
| C-1 | 32.66 | 63.65 | — | 2.9 |
| C-2 | 31.10 | 63.84 | — | 4.1 |
| 样品 | SBET/m2·g-1 | Smicro/m2·g-1 | Sext/m2·g-1 | Vtotal/mL·g-1 | Vmicro/mL·g-1 | D/nm |
|---|---|---|---|---|---|---|
| S-1 | 316.5 | 117.8 | 198.7 | 0.313 | 0.064 | 3.96 |
| S-2 | 325.3 | 96.0 | 229.3 | 0.348 | 0.051 | 4.28 |
| C-1 | 305.7 | 115.2 | 190.5 | 0.291 | 0.063 | 3.81 |
| C-2 | 308.4 | 104.1 | 204.3 | 0.310 | 0.053 | 4.02 |
| 样品 | SBET/m2·g-1 | Smicro/m2·g-1 | Sext/m2·g-1 | Vtotal/mL·g-1 | Vmicro/mL·g-1 | D/nm |
|---|---|---|---|---|---|---|
| S-1 | 316.5 | 117.8 | 198.7 | 0.313 | 0.064 | 3.96 |
| S-2 | 325.3 | 96.0 | 229.3 | 0.348 | 0.051 | 4.28 |
| C-1 | 305.7 | 115.2 | 190.5 | 0.291 | 0.063 | 3.81 |
| C-2 | 308.4 | 104.1 | 204.3 | 0.310 | 0.053 | 4.02 |
| 催化剂 | 酸量/mmol·g-1 | 酸强度/℃ |
|---|---|---|
| S-1 | 0.412 | 415.1 |
| S-2 | 0.378 | 420.3 |
| C-1 | 0.335 | 385.7 |
| C-2 | 0.314 | 377.5 |
| 催化剂 | 酸量/mmol·g-1 | 酸强度/℃ |
|---|---|---|
| S-1 | 0.412 | 415.1 |
| S-2 | 0.378 | 420.3 |
| C-1 | 0.335 | 385.7 |
| C-2 | 0.314 | 377.5 |
| 组分 | 质量分数/% |
|---|---|
| 非芳 | 4.47 |
| 甲苯 | 1.10 |
| 二甲苯 | 8.20 |
三甲苯 偏三甲苯 | 40.90 27.26 |
| 甲乙苯 | 28.27 |
| 丙苯 | 5.53 |
| C | 11.53 |
| 合计/% | 100 |
| 组分 | 质量分数/% |
|---|---|
| 非芳 | 4.47 |
| 甲苯 | 1.10 |
| 二甲苯 | 8.20 |
三甲苯 偏三甲苯 | 40.90 27.26 |
| 甲乙苯 | 28.27 |
| 丙苯 | 5.53 |
| C | 11.53 |
| 合计/% | 100 |
| 样品 | 油相收率/% | BTX质量分数/% | 三甲苯质量分数/% | 丙苯质量分数/% | 甲乙苯质量分数/% | C |
|---|---|---|---|---|---|---|
| 原料 | — | 9.30 | 40.90 | 5.53 | 28.27 | 11.53 |
| 油相产物 | 91.37 | 50.43 | 33.38 | 0.06 | 4.83 | 6.96 |
| 样品 | 油相收率/% | BTX质量分数/% | 三甲苯质量分数/% | 丙苯质量分数/% | 甲乙苯质量分数/% | C |
|---|---|---|---|---|---|---|
| 原料 | — | 9.30 | 40.90 | 5.53 | 28.27 | 11.53 |
| 油相产物 | 91.37 | 50.43 | 33.38 | 0.06 | 4.83 | 6.96 |
| 样品 | 气相收率 /% | 乙烷质量分数 /% | 乙烯质量分数/% | 丙烷质量分数/% | 丙烯质量分数/% |
|---|---|---|---|---|---|
| 气相产物 | 8.63 | 72.27 | 0.18 | 21.27 | 0.06 |
| 样品 | 气相收率 /% | 乙烷质量分数 /% | 乙烯质量分数/% | 丙烷质量分数/% | 丙烯质量分数/% |
|---|---|---|---|---|---|
| 气相产物 | 8.63 | 72.27 | 0.18 | 21.27 | 0.06 |
| 组分 | 质量分数/% |
|---|---|
| 苯 | 4.25 |
| 甲苯 | 21.40 |
| 二甲苯 | 23.67 |
| 均三甲苯 | 6.99 |
| 偏三甲苯 | 19.99 |
| 连三甲苯 | 6.30 |
| 均四甲苯 | 0.93 |
| 偏四甲苯 | 1.27 |
| 连四甲苯 | 0.33 |
| 合计/% | 85.13 |
| 组分 | 质量分数/% |
|---|---|
| 苯 | 4.25 |
| 甲苯 | 21.40 |
| 二甲苯 | 23.67 |
| 均三甲苯 | 6.99 |
| 偏三甲苯 | 19.99 |
| 连三甲苯 | 6.30 |
| 均四甲苯 | 0.93 |
| 偏四甲苯 | 1.27 |
| 连四甲苯 | 0.33 |
| 合计/% | 85.13 |
| 温度/℃ | 苯质量分数/% | 甲苯质量分数/% | 二甲苯质量分数/% | 偏三甲苯质量分数/% | 均四甲苯质量分数/% | 均四甲苯选择性/% |
|---|---|---|---|---|---|---|
| 350 | 3.04 | 13.07 | 21.38 | 23.31 | 9.40 | 68.9 |
| 370 | 2.34 | 10.28 | 18.69 | 21.95 | 13.22 | 85.0 |
| 390 | 2.38 | 10.33 | 20.41 | 22.13 | 13.55 | 82.3 |
| 410 | 2.63 | 11.70 | 20.63 | 22.50 | 11.74 | 75.7 |
| 温度/℃ | 苯质量分数/% | 甲苯质量分数/% | 二甲苯质量分数/% | 偏三甲苯质量分数/% | 均四甲苯质量分数/% | 均四甲苯选择性/% |
|---|---|---|---|---|---|---|
| 350 | 3.04 | 13.07 | 21.38 | 23.31 | 9.40 | 68.9 |
| 370 | 2.34 | 10.28 | 18.69 | 21.95 | 13.22 | 85.0 |
| 390 | 2.38 | 10.33 | 20.41 | 22.13 | 13.55 | 82.3 |
| 410 | 2.63 | 11.70 | 20.63 | 22.50 | 11.74 | 75.7 |
压力 /MPa | 乙烷质量分数 /% | 乙烯质量分数 /% | 丙烷质量分数 /% | 丙烯质量分数 /% |
|---|---|---|---|---|
| 2.0 | 65.87 | 8.66 | 11.36 | 3.01 |
| 3.0 | 69.08 | 0.78 | 13.04 | 0.46 |
| 4.0 | 71.93 | 0.17 | 17.86 | 0.25 |
压力 /MPa | 乙烷质量分数 /% | 乙烯质量分数 /% | 丙烷质量分数 /% | 丙烯质量分数 /% |
|---|---|---|---|---|
| 2.0 | 65.87 | 8.66 | 11.36 | 3.01 |
| 3.0 | 69.08 | 0.78 | 13.04 | 0.46 |
| 4.0 | 71.93 | 0.17 | 17.86 | 0.25 |
| 压力/MPa | 苯质量分数/% | 甲苯质量分数/% | 二甲苯质量分数/% | 偏三甲苯质量分数/% | 均四甲苯质量分数/% | 均四甲苯选择性/% |
|---|---|---|---|---|---|---|
| 2.0 | 2.32 | 10.20 | 19.26 | 21.65 | 12.98 | 84.9 |
| 3.0 | 2.34 | 10.28 | 18.69 | 21.95 | 13.22 | 85.0 |
| 4.0 | 2.46 | 10.61 | 19.21 | 21.90 | 13.34 | 84.8 |
| 压力/MPa | 苯质量分数/% | 甲苯质量分数/% | 二甲苯质量分数/% | 偏三甲苯质量分数/% | 均四甲苯质量分数/% | 均四甲苯选择性/% |
|---|---|---|---|---|---|---|
| 2.0 | 2.32 | 10.20 | 19.26 | 21.65 | 12.98 | 84.9 |
| 3.0 | 2.34 | 10.28 | 18.69 | 21.95 | 13.22 | 85.0 |
| 4.0 | 2.46 | 10.61 | 19.21 | 21.90 | 13.34 | 84.8 |
| 空速/h-1 | 苯质量分数/% | 甲苯质量分数/% | 二甲苯质量分数/% | 偏三甲苯质量分数/% | 均四甲苯质量分数/% | 均四甲苯选择性/% |
|---|---|---|---|---|---|---|
| 1.5 | 1.89 | 8.59 | 19.82 | 21.59 | 15.07 | 74.4 |
| 2.0 | 2.34 | 10.28 | 18.69 | 21.95 | 13.22 | 85.0 |
| 2.5 | 2.90 | 13.75 | 22.89 | 21.24 | 8.85 | 66.4 |
| 空速/h-1 | 苯质量分数/% | 甲苯质量分数/% | 二甲苯质量分数/% | 偏三甲苯质量分数/% | 均四甲苯质量分数/% | 均四甲苯选择性/% |
|---|---|---|---|---|---|---|
| 1.5 | 1.89 | 8.59 | 19.82 | 21.59 | 15.07 | 74.4 |
| 2.0 | 2.34 | 10.28 | 18.69 | 21.95 | 13.22 | 85.0 |
| 2.5 | 2.90 | 13.75 | 22.89 | 21.24 | 8.85 | 66.4 |
| 甲醇配比 | 苯质量分数/% | 甲苯质量分数/% | 二甲苯质量分数/% | 偏三甲苯质量分数/% | 均四甲苯质量分数/% | 均四甲苯选择性/% | 甲醇甲基利用率/% |
|---|---|---|---|---|---|---|---|
| 1∶2 | 1.68 | 7.28 | 16.97 | 21.22 | 17.24 | 87.9 | 28.2 |
| 1∶3 | 2.34 | 10.28 | 18.69 | 21.95 | 13.22 | 85.0 | 30.6 |
| 1∶4 | 2.86 | 13.62 | 22.84 | 21.37 | 8.98 | 72.8 | 27.3 |
| 甲醇配比 | 苯质量分数/% | 甲苯质量分数/% | 二甲苯质量分数/% | 偏三甲苯质量分数/% | 均四甲苯质量分数/% | 均四甲苯选择性/% | 甲醇甲基利用率/% |
|---|---|---|---|---|---|---|---|
| 1∶2 | 1.68 | 7.28 | 16.97 | 21.22 | 17.24 | 87.9 | 28.2 |
| 1∶3 | 2.34 | 10.28 | 18.69 | 21.95 | 13.22 | 85.0 | 30.6 |
| 1∶4 | 2.86 | 13.62 | 22.84 | 21.37 | 8.98 | 72.8 | 27.3 |
| 运行天数/天 | 油相产物收率/% | C5~C9馏分质量分数/% | 均四甲苯质量分数/% | C | 尾气中氢气体积分数/% |
|---|---|---|---|---|---|
| 4 | 86.94 | 80.98 | 12.95 | 6.07 | 84.27 |
| 5 | 86.27 | 80.90 | 12.95 | 6.15 | 81.93 |
| 6 | 88.03 | 80.99 | 13.00 | 6.01 | 79.55 |
| 7 | 86.06 | 80.88 | 12.98 | 6.14 | 80.87 |
| 8 | 86.84 | 80.88 | 12.93 | 6.18 | 83.23 |
| 9 | 86.82 | 81.07 | 12.99 | 5.95 | 83.82 |
| 10 | 87.99 | 80.95 | 12.97 | 6.09 | 80.83 |
| 11 | 87.58 | 80.74 | 13.01 | 6.25 | 79.80 |
| 12 | 86.38 | 80.95 | 13.02 | 6.04 | 80.96 |
| 13 | 86.51 | 80.98 | 13.04 | 5.98 | 81.76 |
| 平均值 | 86.94 | 80.93 | 12.98 | 6.09 | 81.70 |
| 运行天数/天 | 油相产物收率/% | C5~C9馏分质量分数/% | 均四甲苯质量分数/% | C | 尾气中氢气体积分数/% |
|---|---|---|---|---|---|
| 4 | 86.94 | 80.98 | 12.95 | 6.07 | 84.27 |
| 5 | 86.27 | 80.90 | 12.95 | 6.15 | 81.93 |
| 6 | 88.03 | 80.99 | 13.00 | 6.01 | 79.55 |
| 7 | 86.06 | 80.88 | 12.98 | 6.14 | 80.87 |
| 8 | 86.84 | 80.88 | 12.93 | 6.18 | 83.23 |
| 9 | 86.82 | 81.07 | 12.99 | 5.95 | 83.82 |
| 10 | 87.99 | 80.95 | 12.97 | 6.09 | 80.83 |
| 11 | 87.58 | 80.74 | 13.01 | 6.25 | 79.80 |
| 12 | 86.38 | 80.95 | 13.02 | 6.04 | 80.96 |
| 13 | 86.51 | 80.98 | 13.04 | 5.98 | 81.76 |
| 平均值 | 86.94 | 80.93 | 12.98 | 6.09 | 81.70 |
| 项目 | 物料名称 | 收率 /% | 数量 /万吨·a-1 | 单价 /元·t-1 | 金额 /万元 |
|---|---|---|---|---|---|
| 消耗 | C9混合芳烃 | 9 | -5000 | -45000 | |
| 甲醇 | 3 | -2300 | -6900 | ||
| 氢气 | 0.076 | -15000 | -1140 | ||
| 加工费 | 12 | -200 | -2400 | ||
| 催化剂 | 15 | -200000 | -300 | ||
| 产出 | 气相产物 | 1.426① | 2000 | 2852 | |
| C5~C9混合芳烃 | 70.36 | 7.26 | 5800 | 40656 | |
| 均四甲苯 | 11.28 | 1.16 | 14000 | 16240 | |
| C | 5.29 | 0.54 | 3000 | 1620 | |
| 水 | 1.69 | -50 | -84.5 | ||
| 合计 | 86.93 | 5543.5 |
| 项目 | 物料名称 | 收率 /% | 数量 /万吨·a-1 | 单价 /元·t-1 | 金额 /万元 |
|---|---|---|---|---|---|
| 消耗 | C9混合芳烃 | 9 | -5000 | -45000 | |
| 甲醇 | 3 | -2300 | -6900 | ||
| 氢气 | 0.076 | -15000 | -1140 | ||
| 加工费 | 12 | -200 | -2400 | ||
| 催化剂 | 15 | -200000 | -300 | ||
| 产出 | 气相产物 | 1.426① | 2000 | 2852 | |
| C5~C9混合芳烃 | 70.36 | 7.26 | 5800 | 40656 | |
| 均四甲苯 | 11.28 | 1.16 | 14000 | 16240 | |
| C | 5.29 | 0.54 | 3000 | 1620 | |
| 水 | 1.69 | -50 | -84.5 | ||
| 合计 | 86.93 | 5543.5 |
| 1 | 戴厚良. 芳烃技术[M]. 北京: 中国石化出版社, 2014: 258-270, 570-575. |
| DAI Houliang. Aromatic technology[M]. Beijing: China Petrochemical Press, 2014: 258-270, 570-575. | |
| 2 | 宋彬彬, 刘海涛. 重整C9芳烃制取偏三甲苯、均三甲苯的技术与产品市场[J]. 化学工业, 2016, 34(3): 36-39. |
| SONG Binbin, LIU Haitao. Market and technological advance on comprehensive utilization of C9 heavy aromatics[J]. Chemical Industry, 2016, 34(3): 36-39. | |
| 3 | 杨靖华, 曹祖宾, 庄丹. C9馏分制备芳烃溶剂油[J]. 化工进展, 2007, 26(9): 1323-1327. |
| YANG Jinghua, CAO Zubin, ZHUANG Dan. Aromatic solvent naphtha produced by-product C9 factions[J]. Chemical Industry and Engineering Progress, 2007, 26(9): 1323-1327. | |
| 4 | 米多, 刘权益, 刘建华, 等. C9芳烃石油树脂生产技术进展[J]. 弹性体, 2010,20(3): 81-85. |
| MI Duo, LIU Quanyi, LIU Jianhua, et al. Technological advance on C9 petroleum resin[J]. China Elastomerics, 2010, 20(3): 81-85. | |
| 5 | 臧甲忠, 郭春垒, 范景新, 等. C9+重芳烃增产BTX技术进展[J]. 化工进展, 2017, 36(4): 1278-1287. |
| ZANG Jiazhong, GUO Chunlei, FAN Jingxin, et al. Advance in BTX production increase technology from C9+ heavy aromatics[J]. Chemical Industry and Engineering Progress, 2017, 36(4): 1278-1287. | |
| 6 | 刘初春. 中国炼油行业高质量发展的问题与思考[J]. 国际石油经济, 2020, 28(5): 35-40. |
| LIU Chuchun. High-quality development of China's oil refining industry[J]. International Petroleum Economics, 2020, 28(5): 35-40. | |
| 7 | 张磊,黄扬. 聚酯化纤-PTA-PX-原油炼化产业链行业发展现状及趋势简析[J]. 现代金融, 2020(1): 27-30, 10. |
| ZHANG Lei, HUANG Yang. Development status and trend of polyester chemical fiber-PTA-PX-crude oil refining industry chain[J]. Contemporary Finance, 2020(1): 27-30, 10. | |
| 8 | 梁超. 国Ⅴ国Ⅵ汽油的调和分析[J]. 中国石油和化工标准与质量, 2018, 38(2): 35-36, 38. |
| LIANG Chao. Analysis on blending of national Ⅴ and national Ⅵ gasoline[J]. China Petroleum and Chemical Standard and Quality, 2018, 38(2): 35-36, 38. | |
| 9 | 汪家铭. 聚酰亚胺产业现状与市场前景[J]. 乙醛醋酸化工, 2013(11): 28-31. |
| WANG Jiaming. Current situation and market prospect of polyimide industry[J]. Acetaldehyde Acetic Acid Chemical Industry, 2013(11): 28-31. | |
| 10 | 魏文康, 虞鑫海, 李智杰, 等. 聚酰亚胺材料在电子电器领域的应用[J]. 合成技术及应用, 2020, 35(1): 33-36. |
| WEI Wenkang, YU Xinhai, LI Zhijie, et al. Application of polyimide materials in electronic and electrical field[J]. Synthetic Technology & Application, 2020, 35(1): 33-36. | |
| 11 | 2019—2024年聚酰亚胺(PI)行业市场深度调研及投资前景预测分析报告[R]. 北京新思界国际信息咨询有限公司, 2019-05-29. |
| In depth market research and investment prospect forecast analysis report of polyimide (PI) industry from 2019 to 2024[R]. Beijing Newsijie International Information Consulting Co., Ltd., 2019-05-29. | |
| 12 | 丁建飞, 潘卫春, 吴义彪, 等. 均苯四甲酸二酐制备方法的研究进展[J]. 化工新型材料, 2012, 40(11): 15-17. |
| DING Jianfei, PAN Weichun, WU Yibiao, et al. Progress in research on preparation of pyromellitic dianhydride[J]. New Chemical Materials, 2012, 40(11): 15-17. | |
| 13 | 郭春垒, 于海斌, 臧甲忠, 等. 一种甲醇制均四甲苯的方法: CN103864562B[P]. 2015-07-08. |
| GUO Chunlei, YU Haibin, ZANG Jiazhong, et al. A method of producing durene from methanol: CN103864562B[P]. 2015-07-08. | |
| 14 | 伍川, 黄培, 王晓东, 等. 均四甲苯的制备及应用[J]. 化工技术与开发, 2004, 33(3): 24-28. |
| WU Chuan, HUANG Pei, WANG Xiaodong, et al. Preparation and application of durene[J]. Technology & Development of Chemical Industry, 2004, 33(3): 24-28. | |
| 15 | 关颖. 国内外C10综合利用技术及其发展趋势[J]. 化学工业, 2017, 35(5): 32-37, 64. |
| GUAN Ying. Domestic and foreign C10 comprehensive utilization technology and development trend[J]. Chemical Industry, 2017, 35(5): 32-37, 64. | |
| 16 | 杨秀娜, 姜阳, 齐慧敏. 多级孔ZSM-5分子筛的制备及其催化甲醇芳构化反应性能[J]. 化工进展, 2016, 35(11): 3536-3541. |
| YANG Xiuna, JIANG Yang, QI Huimin. Synthesis of hierarchical ZSM-5 molecular sieves and evaluation of their catalytic performance in methanol aromatization[J]. Chemical Industry and Engineering Progress, 2016, 35(11): 3536-3541. | |
| 17 | YASHIMA T, INAKA A, NAMBA S. Selective formation of 1,2,4,5-tetramethylbenzene by the alkylation of 1,2,4-trimethylbenzene with methanol on HZSM-5 type zeolite catalysts[J]. Journal of the Japan Petroleum Institute, 1985, 28(1): 13-18. |
| 18 | NOOR P, KHANMOHAMMADI M, ROOZBEHANI B, et al. Introduction of table sugar as a soft second template in ZSM-5 nanocatalyst and its effect on product distribution and catalyst lifetime in methanol to gasoline conversion[J]. Journal of Energy Chemistry, 2018, 27(2): 582-590. |
| 19 | 陶克毅, 臧雅茹, 贾同文, 等. 在HZSM-5上偏三甲苯-甲醇烷基化合成均四甲苯的研究[J]. 石油学报(石油加工), 1989, 5(1): 33-38. |
| TAO Keyi, ZANG Yaru, JIA Tongwen, et al. Alkylation of 1,2,4-trimethylbenzene with methanol on HZSM-5 zeolite catalysts to form durene[J]. Acta Petrolei Sinica(Petroleum Processing Section), 1989, 5(1): 33-38. | |
| 20 | 程明珠. C8芳烃中乙苯在纳米HZSM-5沸石上选择性催化裂解[D]. 大连: 大连理工大学, 2008. |
| CHENG Mingzhu. Selective catalytic cracking of ethylbenzene in C8 aromatics over nano-HZSM-5 Zeolite[D]. Dalian: Dalian University of Technology, 2008. | |
| 21 | 曾昭槐. 择形催化[M]. 北京: 中国石化出版社, 1994: 91, 264-272, 474. |
| ZENG Zhaohuai. Shape-selective catalysis[M]. Beijing: China Petrochemical Press, 1994: 91, 264-272, 474. | |
| 22 | 侯扬飞, 于明煊, 张娇玉, 等. 不同金属改性对ZSM-5分子筛催化正戊烷和甲醇共芳构化反应性能的影响[J]. 石油炼制与化工, 2019, 50(8): 46-51. |
| HOU Yangfei, YU Mingxuan, ZHANG Jiaoyu, et al. Effect of modified ZSM-5 zeolite with different metals on n-pentane and methanol co-aromatization[J]. Petroleum Processing and Petrochemicals, 2019, 50(8): 46-51. | |
| 23 | PORTILLA M T, LLOPIS F J, MARTÍNEZ C, et al. Structure-reactivity relationship for aromatics transalkylation and isomerization process with TNU-9, MCM-22 and ZSM-5 zeolites, and their industrial implications[J]. Applied Catalysis A: General, 2011, 393(1/2): 257-268. |
| 24 | AL-KHATTA S S, ALI S A, OSMAN M S, et al. Influence of toluene-tetramethylbenzene transalkylation on heavy aromatics conversion to xylenes[J]. Journal of Industrial and Engineering Chemistry, 2015, 21: 1077-1088. |
| 25 | SERRA J M, GUILLON E, CORMA A. A rational design of alkyl-aromatics dealkylation-transalkylation catalysts using C8 and C9 alkyl-aromatics as reactants[J]. Journal of Catalysis, 2004, 227: 459-469. |
| 26 | KO A N, KUO C T. Isomerization and disproportionation of 1,2,4-trimethylbenzene over HY zeolite[J]. Journal of the Chinese Chemical Society, 1994, 41(2): 145-150. |
| 27 | LIM D, JANG J, KIM T, et al. Selective hydrodealkylation of C9+ aromatics to benzene, toluene, and xylenes(BTX) over a Pt/H-ZSM-5 catalyst[J]. Journal of Molecular Catalysis A: Chemical, 2015, 407: 147-151. |
| 28 | MAXIMOV A L, MAGOMEDOVA M V, GALANOVA E G, et al. Primary and secondary reactions in the synthesis of hydrocarbons from dimethyl ether over a Pd-Zn-HZSM-5/Al2O3 catalyst[J]. Fuel Processing Technology, 2020, 199: 106281. |
| 29 | 凌春雷. 偏三甲苯的甲醇烷基化制均四甲苯的反应工艺研究[D]. 上海: 华东理工大学, 2006. |
| LENG Chunlei. Study on synthesis of durene from 1,2,4-trimethylbenzene-methanol alkylation[D]. Shanghai: East China University of Science and Technology, 2006. | |
| 30 | 李瑞江, 凌春雷, 朱学栋, 等. 偏三甲苯甲醇烷基化制备均四甲苯的工艺研究[J]. 精细石油化工, 2009, 26(1): 64-68. |
| LI Ruijiang, LING Chunlei, ZHU Xuedong, et al. Synthesis of durene by alkylation of 1,2,4,5-tetramethylbenzene with methanol[J]. Speciality Petrochemicals, 2009, 26(1): 64-68. |
| [1] | KONG Qian, SUN Jinchao, GE Jiaqi, ZHANG Peng, MA Yanlong, LIU Baijun. Effect of precipitant on the hydrocracking performance of NiW/TiO2-ASA catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(1): 265-271. |
| [2] | HAN Jingjing, TAN Juan, LIU Jing, LIU Yu. Controllable synthesis of small size ZSM-22 zeolites and their performance in the production of bio-jet fuel by hydrocracking and hydroisomerization of long-chain normal bio-paraffins [J]. Chemical Industry and Engineering Progress, 2022, 41(4): 1916-1924. |
| [3] | DU Yanze, QIN Bo, WANG Huigang, HAO Wenyue, GAO Hang, FANG Xiangchen. Development of hierarchical zeolites in hydrocracking catalysts of heavy oil [J]. Chemical Industry and Engineering Progress, 2021, 40(4): 1859-1867. |
| [4] | Ce XIAN, Yichao MAO, Xiangyun LONG, Ping YANG, Qinghe YANG. Advances on the application of zeolite Y in the producing light aromatic hydrocarbons from dicyclic aromatics hydrocracking [J]. Chemical Industry and Engineering Progress, 2020, 39(S1): 133-140. |
| [5] | Yu LIU, Juan TAN, Jing LIU, Huifeng WANG. Production of bio-jet fuel by hydrocracking and hydroisomerization of long-chain normal bio-paraffins over Pt/ZSM-35 catalysts [J]. Chemical Industry and Engineering Progress, 2020, 39(12): 5086-5094. |
| [6] | SONG Changcai, DENG Zhonghuo, NIU Chuanfeng. Advances in production of chemicals such as light oilfins from heavy oil [J]. Chemical Industry and Engineering Progress, 2019, 38(s1): 86-94. |
| [7] | Wennian WANG, Gaowei WANG, Huanxin GAO, Weimin YANG. Progress in synthesis of cyclohexylbenzene and the catalysts [J]. Chemical Industry and Engineering Progress, 2019, 38(01): 324-333. |
| [8] | HUANG Tangshun, WANG Zijun, ZHANG Shuhong, LIU Bixin, GUO Xin. Research progress of kinetic modeling of hydrocracking of heavy oil [J]. Chemical Industry and Engineering Progress, 2017, 36(S1): 149-154. |
| [9] | LI Zhonghua, XIAO Wu, HE Gaohong, DU Yanze, FANG Xiangchen, LUO Li. Optimization and reformation of heat exchanger network for wax oil hydrocracking unit by pinch technology and exergy analysis [J]. Chemical Industry and Engineering Progress, 2017, 36(04): 1231-1239. |
| [10] | GE Panzhu. Comprehensive utilization technologies of LCO and developments [J]. Chemical Industry and Engineering Progree, 2016, 35(S1): 79-86. |
| [11] | REN Wenpo, LI Zhenyu, LI Xuejing, JIN Yuhao. Application situation and new progress of residuum deep hydrocracking technologies [J]. Chemical Industry and Engineering Progree, 2016, 35(08): 2309-2316. |
| [12] | YANG Xu, WANG Kun, XIAO Xiang, ZHOU Jing, SHI Bin, YAN Liexiang. Operation optimization of hydrocracking reaction process based on rough set and intelligent visualization optimization method [J]. Chemical Industry and Engineering Progree, 2016, 35(03): 722-726. |
| [13] | HU Xinyue, CHEN Ping, LIU Xuejun, LU Leigang, ZHANG Haiyan, LU Meizhen, YU Fengwen, JI Jianbing. Production of liquid biofuels: Normal bio-alkane selective hydrocracking over Pt/ZSM-5 catalysts [J]. Chemical Industry and Engineering Progree, 2015, 34(04): 1007-1013. |
| [14] | YANG Chao1,JIANG Jian1,LU Dan2,CAO Fahai1. Advances in Fischer-Tropsch wax hydrocracking process [J]. Chemical Industry and Engineering Progree, 2013, 32(12): 2882-2891. |
| [15] | ZHANG Tianyong1,5,ZHU Jiayou1,LI Bin1,2,4,JIANG Shuang1,CHEN Song1,5,WANG Shuhua3,5. A new process for preparation of 4,4'-dihydroxydiphenylsulfone [J]. Chemical Industry and Engineering Progree, 2013, 32(11): 2719-2722. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
|
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |