Chemical Industry and Engineering Progress ›› 2019, Vol. 38 ›› Issue (04): 1815-1822.DOI: 10.16085/j.issn.1000-6613.2018-1313
• Materials science and technology • Previous Articles Next Articles
Xiaofeng ZHOU(),Lianghua WU,Jiale JIANG
Received:
2018-06-26
Revised:
2018-09-04
Online:
2019-04-05
Published:
2019-04-05
作者简介:
周晓峰(1979 —),男,博士,副研究员,研究方向为丙烯腈催化剂。E-mail:<email>zhouxf.sshy@sinopec.com</email>。
CLC Number:
Xiaofeng ZHOU, Lianghua WU, Jiale JIANG. Research progress of acrylonitrile production from renewable biomass[J]. Chemical Industry and Engineering Progress, 2019, 38(04): 1815-1822.
周晓峰, 吴粮华, 姜家乐. 以生物质为原料合成丙烯腈的研究进展[J]. 化工进展, 2019, 38(04): 1815-1822.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2018-1313
1 | 姜其舟 . 丙烯腈行业生产现状分析[J]. 山东化工, 2018, 47(7): 56-57, 59. |
JIANG Q Z . An overview of the production capacity of acrylonitrile industry[J]. Shandong Chemical Industry, 2018, 47(7): 56-57, 59. | |
2 | GRASSELLI R K , LUGMAIR C G , VOLPE J A F . Towards an understanding of the reaction pathways in propane ammoxidation based on the distribution of elements at the active centers of the M1 phase of the MoV(Nb,Ta)TeO system[J]. Topics in Catalysis, 2011, 54(10): 595-604. |
3 | 钱伯章 . 旭化成在泰国的丙烯腈、甲基丙烯酸甲酯和纺黏设施投产[J]. 合成纤维, 2013, 42(4): 15. |
QIAN B Z . The PTT Asahi new acrylonitrile and methyl methacrylate plants in Thailand were commissioned[J]. Synthetic Fiber in China, 2013, 42(4): 15. | |
4 | Gardner Business Media, Inc . Southern Research Inst. receives DOE award to advance low cost carbon fiber from biomass [EB/OL]. [2014-09-01].. |
5 | 孙启梅, 王崇辉, 王领民, 等 .生物柴油副产物粗甘油的综合利用[J].化工进展, 2017, 36(s1): 161-166. |
SUN Q M , WANG C H , WANG L M , et al . Integrated utilization of crude glycerol as a by-product of biodiesel production[J]. Chemical Industry and Engineering Progress, 2017, 36(s1): 161-166. | |
6 | 李春义 . 甘油催化脱水制备丙烯醛的研究[D].青岛: 中国石油大学(华东), 2013. |
LI C Y . Study on the catalytic dehydration of glycerol to acrolein [D].Qingdao: China University of Petroleum(East China), 2013. | |
7 | GUERRERO-PÉREZ M O , BAÑARES M A . New reaction: conversion of glycerol into acrylonitrile[J]. ChemSusChem, 2008, 1: 511-513. |
8 | CARSTEN L , SÉBASTIEN P , BENJAMIN K , et al . Glycerol conversion to acrylonitrile by consecutive dehydration over WO3/TiO2 and ammoxidation over Sb-(Fe,V)-O[J]. Applied Catalysis B: Environmental, 2013, 132/133: 170-182. |
9 | CARSTEN L , SÉBASTIEN P , BENJAMIN K , et al . Reply to the letter to the editor concerning the comments of M.A. Banares and M.O. Guerrero-Pérez to the article “Glycerol conversion to acrylonitrile by consecutive dehydration over WO3/TiO2 and ammoxidation over Sb-(Fe,V)-O”[J].Applied Catalysis B: Environmental, 2014, 148/149: 604-605. |
10 | BAÑARES M A , GUERRERO-PÉREZ M O . Comments on “Glycerol conversion to acrylonitrile by consecutive dehydration over WO3/TiO2 and ammoxidation over Sb-(Fe,V)-O”[J]. Applied Catalysis B: Environmental, 2014, 148/149: 601-603. |
11 | CALVINO-CASILDA V , GUERRERO-PÉREZ M O , BAÑARES M A . Microwave-activated direct synthesis of acrylonitrile from glycerol under mild conditions: effect of niobium as dopant of the V-Sb oxide catalytic system[J]. Applied Catalysis B: Environmental, 2010, 95: 192-196. |
12 | France Arkema . Method for the synthesis of acrylonitrile from glycerol: US 8829223[P].2014-09-09. |
13 | GRASSELLI R K , TRIFIRO F . Acrylonitrile from biomass: still far from being a sustainable process[J]. Topics in Catalysis, 2016, 59: 1651-1658. |
14 | 阿肯马法国公司 . 从甘油合成丙烯醛的方法:CN101896451[P]. 2010-11-24. |
France Arkema . Method for the synthesis of acrolein from glycerol: CN 101896451[P]. 2010-11-24. | |
15 | 阿肯马法国公司 . 丙烯醛的制备方法:CN101379017[P]. 2013-01-02. |
France Arkema . Acrolein preparation method: CN101379017[P]. 2013-01-02. | |
16 | 阿肯马法国公司 . 由甘油制造丙烯醛和/或丙烯酸的方法:CN 104220409[P]. 2017-02-8. |
France Arkema . Method for producing acrolein and/or acrylic acid from glycerol: CN104220409[P]. 2017-02-08. | |
17 | 阿肯马法国公司 . 使甘油脱水为丙烯醛的方法: CN101119955[P]. 2011-06-22. |
France Arkema . Process for dehydrating glycerol to acrolein: CN 101119955[P]. 2011-06-22. | |
18 | 阿肯马法国公司 . 由甘油制造丙烯醛的方法:CN105348054[P]. 2016-02-24. |
France Arkema . Process for manufacturing acrolein from glycerol: CN 105348054 [P]. 2016-02-24. | |
19 | 阿肯马法国公司 . 由甘油制造丙烯醛的方法:CN101801902[P]. 2015-01-28. |
France Arkema . Process for manufacturing acrolein from glycerol: CN101801902[P]. 2015-01-28. | |
20 | 阿肯马法国公司 . 由甘油制造丙烯醛的方法:CN102197015[P]. 2011-09-21. |
France Arkema . Process for manufacturing acrolein from glycerol: CN 102197015[P]. 2011-09-21. | |
21 | 阿肯马法国公司 . 制备丙烯醛/丙烯酸的改进方法:CN103328428 [P]. 2015-12-23. |
France Arkema . Improved process for manufacturing acrolein/acrylic acid: CN 103328428[P]. 2015-12-23. | |
22 | 阿肯马法国公司 . 由甘油制备丙烯醛或丙烯酸的方法:CN 102066301[P]. 2011-05-18. |
France Arkema . Process for manufacturing acrolein or acrylic acid from glycerin: CN102066301[P]. 2011-05-18. | |
23 | 阿肯马法国公司 . 使甘油脱水为丙烯醛的方法:CN101119956 [P]. 2012-02-15. |
France Arkema . Process for dehydrating glycerol to acrolein: CN101119956[P]. 2012-02-15. | |
24 | 阿肯马法国公司 . 通过丙三醇脱水制造丙烯醛的方法:CN 102046574 [P]. 2011-05-04. |
France Arkema . Method for producing acrolein by means of dehydration of glycerol: CN102046574 [P]. 2011-05-04. | |
25 | Group Arkema . Successful Arkema & hte research project in glycerol to acrolein and acrylic acid conversion [EB/OL]. [2019-03-12]. . |
26 | HIROKAZU K , SHOGO I , KENJI H , et al . Conversion of glycerol to acrolein by mesoporous sulfated zirconia-silica catalyst[J]. Chinese Journal of Catalysis, 2017, 38: 420-425. |
27 | RODRIGUES M V , VIGNATTI C , GARETTO T , et al . Glycerol dehydration catalyzed by MWW zeolites and the changes in the catalyst deactivation caused by porosity modification[J]. Applied Catalysis A: General, 2015, 495: 84-91. |
28 | CHRISTIAN H , ANDREAS L , JAN G M B . Pore condensation in glycerol dehydration: modification of a mixed oxide catalyst[J]. Topics in Catalysis, 2017, 60: 1462-1472. |
29 | 清华大学 . 丙烯醛制备方法:CN104387249[P]. 2017-03-01. |
University Tsinghua . Preparation method of acraldehyde: CN104387249[P]. 2017-03-01. | |
30 | 复旦大学 . 甘油脱水制备丙烯醛用的多级孔ZSM-5催化剂及其制备方法:CN105621452[P]. 2016-06-01. |
University Fudan . Multistage pore ZSM-5 catalyst for preparing acrolein by glycerol dehydration and preparation method of catalyst: CN105621452[P]. 2016-06-01. | |
31 | 复旦大学 . 用于甘油脱水制丙烯醛的多级孔ZSM-5沸石催化剂及其制备方法和应用: CN103638965[P]. 2015-12-30. |
University Fudan . Hierarchical porous ZSM-5 zeolite catalyst for preparing acrolein through glycerin dehydration as well as preparation method and application of hierarchical porous ZSM-5 zeolite catalyst: CN103638965[P]. 2015-12-30. | |
32 | 复旦大学 . 一种用于甘油脱水制丙烯醛的纳米ZSM-5/γ-Al2O3复合催化剂及其制备方法和应用:CN104475147[P]. 2017-01-25. |
University Fudan . Nano ZSM-5/gamma-Al2O3 composite catalyst for preparing acraldehyde by glycerol dehydration, and preparation method and application thereof: CN104475147[P]. 2017-01-25. | |
33 | 阿肯马法国公司 . 从甘油合成丙烯腈的方法:CN101636381[P]. 2014-10-15. |
France Arkema . Method for the synthesis of acrylonitrile from glycerol: CN101636381[P]. 2014-10-15. | |
34 | KOLTUNOV K Y , SOBOLEY V I , BONDAREVA V M . Oxidation, oxidative esterification and ammoxidation of acrolein overmetal oxides: do these reactions include nucleophilic acylsubstitution?[J]. Catalysis Today, 2017, 279: 90-94. |
35 | THANH-BINH N , DUBOIS J , KALIAGUINEA S . Ammoxidation of acrolein to acrylonitrile over bismuth molybdatecatalysts[J]. Applied Catalysis A: General, 2016, 520: 7-12. |
36 | 肖雁秋 . 玉米秸秆原料生物炼制生产谷氨酸的研究[D]. 上海: 华东理工大学, 2014. |
XIAO Y Q . Study on glutamic acid fermentation using corn stover as raw material through biorefinery technology[D]. Shanghai: East University of Science and Technology, 2014. | |
37 | JÉRÔME L N , ELINOR L S , MAURICE C R , et al . Biobased synthesis of acrylonitrile from glutamic acid[J]. Green Chemistry, 2011, 13: 807-809. |
38 | ANDRADA B , JÉRÔME L N , ELINOR L S , et al . Selective oxidative decarboxylation of amino acids to produce industrially relevant nitriles by vanadium chloroperoxidase[J]. ChemSusChem, 2012, 5: 1199-1202. |
39 | MIRANDA M O , PIETRANGELO A , HILLMYER M A , et al . Catalytic decarbonylation of biomass-derived carboxylic acids as efficient route to commodity monomers[J]. Green Chemistry, 2012, 14: 490-494. |
40 | LAMMENS T M , POTTING J , SANDERS J P M , et al . Environmental comparison of bio-based chemicals from glutamic acid with their petrochemical equivalents[J]. Environmental Science & Technology, 2011, 45: 8521-8528. |
41 | LAMMENS T M , GANGARAPU S , FRANSSEN M C R , et al . Techno-economic assessment of the production of bio-based chemicals from glutamic acid[J]. Biofuels Bioproducts Biorefining, 2012, 6 (2): 177-187. |
42 | ISIKGORA F H , BECER C R . Lignocellulosic biomass: a sustainable platform for the production of bio-based chemicals and polymers[J]. Polymer Chemistry, 2015, 6: 4497-4559. |
43 | KARP E M , EATON T R , NOGUÉ V S , et al . Renewable acrylonitrile production[J]. Science, 2017, 358: 1307-1310. |
44 | GUERRERO-PÉREZ M O , BAÇARES M A . Metrics of acrylonitrile: from biomass vs. petrochemical route[J]. Catalysis Today, 2015, 239: 25-30. |
45 | ROMAND S , GOH J . Acrylonitrile process evaluation/research planing[R]. San Francisco: Nexant,Inc, 2015: 8. |
46 | 芦长椿 . 碳纤维供求状况与生产成本[J].合成纤维, 2013, 42(2): 1-5. |
LU C C . The demand and supply status of carbon fibers and its production cost[J]. Synthetic Fiber in China, 2013, 42(2): 1-5. | |
47 | 赵稼祥 . 碳纤维低成本制备技术[J]. 高科技纤维与应用, 2003, 28(6): 12-14. |
ZHAO J X . Low cost manufacturing technology for carbon fibers[J]. Hi-Tech Fiber & Application, 2003, 28(6): 12-14. |
[1] | ZHANG Mingyan, LIU Yan, ZHANG Xueting, LIU Yake, LI Congju, ZHANG Xiuling. Research progress of non-noble metal bifunctional catalysts in zinc-air batteries [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 276-286. |
[2] | SHI Yongxing, LIN Gang, SUN Xiaohang, JIANG Weigeng, QIAO Dawei, YAN Binhang. Research progress on active sites in Cu-based catalysts for CO2 hydrogenation to methanol [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 287-298. |
[3] | XIE Luyao, CHEN Songzhe, WANG Laijun, ZHANG Ping. Platinum-based catalysts for SO2 depolarized electrolysis [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 299-309. |
[4] | YANG Xiazhen, PENG Yifan, LIU Huazhang, HUO Chao. Regulation of active phase of fused iron catalyst and its catalytic performance of Fischer-Tropsch synthesis [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 310-318. |
[5] | WANG Lele, YANG Wanrong, YAO Yan, LIU Tao, HE Chuan, LIU Xiao, SU Sheng, KONG Fanhai, ZHU Canghai, XIANG Jun. Influence of spent SCR catalyst blending on the characteristics and deNO x performance for new SCR catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 489-497. |
[6] | DENG Liping, SHI Haoyu, LIU Xiaolong, CHEN Yaoji, YAN Jingying. Non-noble metal modified vanadium titanium-based catalyst for NH3-SCR denitrification simultaneous control VOCs [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 542-548. |
[7] | CHENG Tao, CUI Ruili, SONG Junnan, ZHANG Tianqi, ZHANG Yunhe, LIANG Shijie, PU Shi. Analysis of impurity deposition and pressure drop increase mechanisms in residue hydrotreating unit [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4616-4627. |
[8] | WANG Peng, SHI Huibing, ZHAO Deming, FENG Baolin, CHEN Qian, YANG Da. Recent advances on transition metal catalyzed carbonylation of chlorinated compounds [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4649-4666. |
[9] | ZHANG Qi, ZHAO Hong, RONG Junfeng. Research progress of anti-toxicity electrocatalysts for oxygen reduction reaction in PEMFC [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4677-4691. |
[10] | GE Quanqian, XU Mai, LIANG Xian, WANG Fengwu. Research progress on the application of MOFs in photoelectrocatalysis [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4692-4705. |
[11] | WANG Weitao, BAO Tingyu, JIANG Xulu, HE Zhenhong, WANG Kuan, YANG Yang, LIU Zhaotie. Oxidation of benzene to phenol over aldehyde-ketone resin based metal-free catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4706-4715. |
[12] | GE Yafen, SUN Yu, XIAO Peng, LIU Qi, LIU Bo, SUN Chengying, GONG Yanjun. Research progress of zeolite for VOCs removal [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4716-4730. |
[13] | XIANG Yang, HUANG Xun, WEI Zidong. Recent progresses in the activity and selectivity improvement of electrocatalytic organic synthesis [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4005-4014. |
[14] | WANG Yaogang, HAN Zishan, GAO Jiachen, WANG Xinyu, LI Siqi, YANG Quanhong, WENG Zhe. Strategies for regulating product selectivity of copper-based catalysts in electrochemical CO2 reduction [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4043-4057. |
[15] | LIU Yi, FANG Qiang, ZHONG Dazhong, ZHAO Qiang, LI Jinping. Cu facets regulation of Ag/Cu coupled catalysts for electrocatalytic reduction of carbon dioxide [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4136-4142. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |