Chemical Industry and Engineering Progress ›› 2021, Vol. 40 ›› Issue (7): 3791-3802.DOI: 10.16085/j.issn.1000-6613.2020-1633
• Materials science and technology • Previous Articles Next Articles
ZHOU Shuolin1(), LAI Jinhua2, YOU Gaolin1, LIU Xianxiang2, YIN Dulin2()
Received:
2020-08-17
Revised:
2020-11-12
Online:
2021-07-19
Published:
2021-07-06
Contact:
YIN Dulin
周硕林1(), 赖金花2, 游高林1, 刘贤响2, 尹笃林2()
通讯作者:
尹笃林
作者简介:
周硕林(1989—),男,博士,讲师,研究方向为催化及新材料。E-mail: 基金资助:
CLC Number:
ZHOU Shuolin, LAI Jinhua, YOU Gaolin, LIU Xianxiang, YIN Dulin. Progress in influence factors and applications of protonated titanate nanotubes prepared via hydrothermal method[J]. Chemical Industry and Engineering Progress, 2021, 40(7): 3791-3802.
周硕林, 赖金花, 游高林, 刘贤响, 尹笃林. 水热法制备质子化钛纳米管的影响因素及其应用研究进展[J]. 化工进展, 2021, 40(7): 3791-3802.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2020-1633
前体 | 水热温度,时间/℃,h | 氢氧化钠浓度/mol·L-1 | 比表面积/m2·g-1 | 孔体积/cm3·g-1 | 纳米管外径,内径/ nm | 参考文献 |
---|---|---|---|---|---|---|
金红石型TiO2 | 180,8 | 10 | 20 | — | 9.6,4.8 | [ |
锐钛矿型TiO2 | 150~155,24 | 10 | 286 | 0.947 | 12,6 | [ |
锐钛矿型TiO2 | 160,24 | — | 234 | 0.62 | — | [ |
锐钛矿型TiO2 | 160,48 | — | 314 | 0.81 | — | [ |
锐钛矿型TiO2 | 160,72 | — | 182 | 0.74 | — | [ |
锐钛矿型TiO2 | 130,6 | 8 | 210.32 | — | 8 | [ |
P25 | 150,24 | 10 | 325.4 | — | — | [ |
P25 | 180,10 | 10 | 156.42 | 0.316 | 27.48,16.90 | [ |
P25 | 180,24 | 10 | 197.70 | 0.325 | 25.21,15.91 | [ |
P25 | 180,48 | 10 | 20.88 | 0.060 | 37.78,9.44 | [ |
P25 | 120,48 | 10 | 408 | 2.43 | 8,3.5 | [ |
无定形的TiO2 | 室温,48 | 10 | 735 | 1.63 | 3,0.7 | [ |
前体 | 水热温度,时间/℃,h | 氢氧化钠浓度/mol·L-1 | 比表面积/m2·g-1 | 孔体积/cm3·g-1 | 纳米管外径,内径/ nm | 参考文献 |
---|---|---|---|---|---|---|
金红石型TiO2 | 180,8 | 10 | 20 | — | 9.6,4.8 | [ |
锐钛矿型TiO2 | 150~155,24 | 10 | 286 | 0.947 | 12,6 | [ |
锐钛矿型TiO2 | 160,24 | — | 234 | 0.62 | — | [ |
锐钛矿型TiO2 | 160,48 | — | 314 | 0.81 | — | [ |
锐钛矿型TiO2 | 160,72 | — | 182 | 0.74 | — | [ |
锐钛矿型TiO2 | 130,6 | 8 | 210.32 | — | 8 | [ |
P25 | 150,24 | 10 | 325.4 | — | — | [ |
P25 | 180,10 | 10 | 156.42 | 0.316 | 27.48,16.90 | [ |
P25 | 180,24 | 10 | 197.70 | 0.325 | 25.21,15.91 | [ |
P25 | 180,48 | 10 | 20.88 | 0.060 | 37.78,9.44 | [ |
P25 | 120,48 | 10 | 408 | 2.43 | 8,3.5 | [ |
无定形的TiO2 | 室温,48 | 10 | 735 | 1.63 | 3,0.7 | [ |
酸 | 酸浓度/mol·L-1 | 水热温度,时间/℃,h | 比表面积/m2·g-1 | 孔体积/cm3·g-1 | 参考文献 |
---|---|---|---|---|---|
HCl | 0.025 | 140,20 | 206 | 0.52 | [ |
HCl | 0.05 | 140,20 | 239 | 0.53 | [ |
HCl | 0.075 | 140,20 | 227 | 0.55 | [ |
HCl | 0.1 | 140,20 | 218 | 0.53 | [ |
HCl | 0.1 | 130,24 | 307 | 0.85 | [ |
HCl | 0.5 | 130,24 | 392 | 1.13 | [ |
HCl | 1.0 | 130,24 | 333 | 0.56 | [ |
HCl | — | 140,24 | 375 | 1.33 | [ |
H2SO4 | — | 140,24 | 369 | 1.49 | [ |
HNO3 | — | 140,24 | 422 | 1.37 | [ |
HAc | 0.1 | 135,72 | 324 | 1.13 | [ |
酸 | 酸浓度/mol·L-1 | 水热温度,时间/℃,h | 比表面积/m2·g-1 | 孔体积/cm3·g-1 | 参考文献 |
---|---|---|---|---|---|
HCl | 0.025 | 140,20 | 206 | 0.52 | [ |
HCl | 0.05 | 140,20 | 239 | 0.53 | [ |
HCl | 0.075 | 140,20 | 227 | 0.55 | [ |
HCl | 0.1 | 140,20 | 218 | 0.53 | [ |
HCl | 0.1 | 130,24 | 307 | 0.85 | [ |
HCl | 0.5 | 130,24 | 392 | 1.13 | [ |
HCl | 1.0 | 130,24 | 333 | 0.56 | [ |
HCl | — | 140,24 | 375 | 1.33 | [ |
H2SO4 | — | 140,24 | 369 | 1.49 | [ |
HNO3 | — | 140,24 | 422 | 1.37 | [ |
HAc | 0.1 | 135,72 | 324 | 1.13 | [ |
催化剂 | 应用 | 能带/eV | 文献 |
---|---|---|---|
TNTs | 光催化降解亚甲基蓝 | 3.00 | [ |
TNTs | 光催化降解亚甲基蓝 | 3.15 | [ |
Fe/TNTs | 光催化降解活性红X-3B | 3.02~2.75 | [ |
Fe-TNTs | 光催化降解罗丹明B | 2.83~2.60 | [ |
La3+-TNTs | 光催化降解气态乙苯 | — | [ |
Co-TNTs | 光催化降解亚甲基蓝 | — | [ |
Mo-TNTs | 光催化还原NO2和CO2 | <2.6 | [ |
SnO2/TNTs | 光催化降解亚甲基蓝 | — | [ |
SnO2/TNTs | 光催化降解亚甲基蓝 | — | [ |
(Cu/TNTs_O)_R | 光催化灭活大肠杆菌 | — | [ |
MnO2/TNTs | 光催化降解17β-雌二醇 | 2.7 | [ |
Ag@TNTs-0.5 | 光催化降解阿替洛尔 | 2.76 | [ |
Ag@TNTs-1.0 | 光催化降解阿替洛尔 | 2.87 | [ |
Ag@TNTs-2.5 | 光催化降解阿替洛尔 | 2.73 | [ |
Al-Fe-TNTs | 光催化降解腐殖酸 | 3.06 | [ |
Pt-V2O5/TNTs | 光催化降解罗丹明B | 2.7 | [ |
Pt-WO3/TNTs | 光催化降解罗丹明B | 2.9 | [ |
C-TNTs | 光催化氧化、吸附汞 | 3.17 | [ |
N-TNTs | 光催化降解罗丹明B | — | [ |
C/S@TNTs | 光催化分解水制氢 | 2.33 | [ |
C,N,F/TNTs | 光催化降解甲基橙 | 3.04 | [ |
Cu,N-TNTs | 光催化降解双酚A | — | [ |
rGO/TNTs | 光催化降解亚甲基蓝 | — | [ |
TNTs@GO | 光催化降解亚甲基蓝 | — | [ |
SWCNTs/TNTs | 光催化乙醛 | — | [ |
CQDs/TNTs | 光催化降解亚甲基蓝 | — | [ |
维生素B12-TNTs | 光催化降解苯酚、罗丹明B | 3.11 | [ |
FeTCPP/TNTs | 光催化降解亚甲基蓝 | — | [ |
催化剂 | 应用 | 能带/eV | 文献 |
---|---|---|---|
TNTs | 光催化降解亚甲基蓝 | 3.00 | [ |
TNTs | 光催化降解亚甲基蓝 | 3.15 | [ |
Fe/TNTs | 光催化降解活性红X-3B | 3.02~2.75 | [ |
Fe-TNTs | 光催化降解罗丹明B | 2.83~2.60 | [ |
La3+-TNTs | 光催化降解气态乙苯 | — | [ |
Co-TNTs | 光催化降解亚甲基蓝 | — | [ |
Mo-TNTs | 光催化还原NO2和CO2 | <2.6 | [ |
SnO2/TNTs | 光催化降解亚甲基蓝 | — | [ |
SnO2/TNTs | 光催化降解亚甲基蓝 | — | [ |
(Cu/TNTs_O)_R | 光催化灭活大肠杆菌 | — | [ |
MnO2/TNTs | 光催化降解17β-雌二醇 | 2.7 | [ |
Ag@TNTs-0.5 | 光催化降解阿替洛尔 | 2.76 | [ |
Ag@TNTs-1.0 | 光催化降解阿替洛尔 | 2.87 | [ |
Ag@TNTs-2.5 | 光催化降解阿替洛尔 | 2.73 | [ |
Al-Fe-TNTs | 光催化降解腐殖酸 | 3.06 | [ |
Pt-V2O5/TNTs | 光催化降解罗丹明B | 2.7 | [ |
Pt-WO3/TNTs | 光催化降解罗丹明B | 2.9 | [ |
C-TNTs | 光催化氧化、吸附汞 | 3.17 | [ |
N-TNTs | 光催化降解罗丹明B | — | [ |
C/S@TNTs | 光催化分解水制氢 | 2.33 | [ |
C,N,F/TNTs | 光催化降解甲基橙 | 3.04 | [ |
Cu,N-TNTs | 光催化降解双酚A | — | [ |
rGO/TNTs | 光催化降解亚甲基蓝 | — | [ |
TNTs@GO | 光催化降解亚甲基蓝 | — | [ |
SWCNTs/TNTs | 光催化乙醛 | — | [ |
CQDs/TNTs | 光催化降解亚甲基蓝 | — | [ |
维生素B12-TNTs | 光催化降解苯酚、罗丹明B | 3.11 | [ |
FeTCPP/TNTs | 光催化降解亚甲基蓝 | — | [ |
催化剂 | 催化合成反应 | 酸量/mmol·g-1 | 参考文献 |
---|---|---|---|
TNTs | 甲苯与苄基氯的傅克反应 | 0.35 | [ |
TNTs | 2-甲基呋喃与正丁醛的羟烷基化反应 | 1.1 | [ |
TNTs | 苯甲醛与环己酮的缩合反应 | 0.206 | [ |
TNTs | 甘油与丙酮的缩合反应 | 0.25~0.33 | [ |
TNTs | 合成氨基膦酸酯 | 3.775 | [ |
Nb/TNTs | 甲苯与苯甲醇的傅克反应 | 0.22 | [ |
La/TNTs | 氰基乙酸乙酯与丁醛的缩合反应 | — | [ |
Pt/TNTs | 甘油与丙酮的缩合反应 | 0.261 | [ |
TNTs-SO3H | 乙酰丙酸与正丁醇的酯化反应 | 0.5~0.634 | [ |
催化剂 | 催化合成反应 | 酸量/mmol·g-1 | 参考文献 |
---|---|---|---|
TNTs | 甲苯与苄基氯的傅克反应 | 0.35 | [ |
TNTs | 2-甲基呋喃与正丁醛的羟烷基化反应 | 1.1 | [ |
TNTs | 苯甲醛与环己酮的缩合反应 | 0.206 | [ |
TNTs | 甘油与丙酮的缩合反应 | 0.25~0.33 | [ |
TNTs | 合成氨基膦酸酯 | 3.775 | [ |
Nb/TNTs | 甲苯与苯甲醇的傅克反应 | 0.22 | [ |
La/TNTs | 氰基乙酸乙酯与丁醛的缩合反应 | — | [ |
Pt/TNTs | 甘油与丙酮的缩合反应 | 0.261 | [ |
TNTs-SO3H | 乙酰丙酸与正丁醇的酯化反应 | 0.5~0.634 | [ |
吸附剂 | 比表面积/m2·g-1 | 吸附底物 | 吸附能力/mg·g-1 | 参考文献 |
---|---|---|---|---|
TNTs | 325.4 | Zn(Ⅱ) | 139.44 | [ |
TNTs | 272.31 | Pb(Ⅱ) | 520.83 | [ |
TNTs | 272.31 | Cd(Ⅱ) | 238.61 | [ |
TNTs | 240.2 | Cd(Ⅱ) | 239.8 | [ |
TNTs | 272.31 | Cu(Ⅱ) | 120 | [ |
TNTs | 367.0 | Cu(Ⅱ) | 160 | [ |
TNTs | 272 | U(Ⅵ) | 333 | [ |
PA/TNTs | 295.4 | U(Ⅵ) | 276.1 | [ |
TNTs@PAC | 654.2 | Pb(Ⅱ) | 318.5 | [ |
NH2-TNTs | 243.3 | Cr(Ⅵ) | 153.85 | [ |
TEOA-TNTs | 82.02 | Ag(Ⅰ) | 396 | [ |
吸附剂 | 比表面积/m2·g-1 | 吸附底物 | 吸附能力/mg·g-1 | 参考文献 |
---|---|---|---|---|
TNTs | 325.4 | Zn(Ⅱ) | 139.44 | [ |
TNTs | 272.31 | Pb(Ⅱ) | 520.83 | [ |
TNTs | 272.31 | Cd(Ⅱ) | 238.61 | [ |
TNTs | 240.2 | Cd(Ⅱ) | 239.8 | [ |
TNTs | 272.31 | Cu(Ⅱ) | 120 | [ |
TNTs | 367.0 | Cu(Ⅱ) | 160 | [ |
TNTs | 272 | U(Ⅵ) | 333 | [ |
PA/TNTs | 295.4 | U(Ⅵ) | 276.1 | [ |
TNTs@PAC | 654.2 | Pb(Ⅱ) | 318.5 | [ |
NH2-TNTs | 243.3 | Cr(Ⅵ) | 153.85 | [ |
TEOA-TNTs | 82.02 | Ag(Ⅰ) | 396 | [ |
吸附剂 | 比表面积 /m2·g-1 | 吸附底物 | 吸附能力/mg·g-1 | 参考文献 |
---|---|---|---|---|
TNTs | 197.7 | 亚甲基蓝 | 21.9 | [ |
TNTs | 157.9 | 亚甲基蓝 | 133.33 | [ |
TNTs | 393.3 | 碱性品红 | 68.6 | [ |
TNTs-CTAC | 277.4 | 2,4,6-三氯苯酚 | 59.85 | [ |
TNTs-CTAC | 277.4 | 土霉素 | 64.09 | [ |
TNTs-CTAC | 277.4 | 2,4-二氯苯酚 | 51.74 | [ |
TNTs-CTAC | 277.4 | 托拉酰胺 | 25.27 | [ |
TNTs-CTAC | 277.4 | 卡托普利 | 35.55 | [ |
TNTs-DDBAB | 257 | 苯酚 | 226.24 | [ |
MTNTs-ODA | — | 油 | >150 | [ |
吸附剂 | 比表面积 /m2·g-1 | 吸附底物 | 吸附能力/mg·g-1 | 参考文献 |
---|---|---|---|---|
TNTs | 197.7 | 亚甲基蓝 | 21.9 | [ |
TNTs | 157.9 | 亚甲基蓝 | 133.33 | [ |
TNTs | 393.3 | 碱性品红 | 68.6 | [ |
TNTs-CTAC | 277.4 | 2,4,6-三氯苯酚 | 59.85 | [ |
TNTs-CTAC | 277.4 | 土霉素 | 64.09 | [ |
TNTs-CTAC | 277.4 | 2,4-二氯苯酚 | 51.74 | [ |
TNTs-CTAC | 277.4 | 托拉酰胺 | 25.27 | [ |
TNTs-CTAC | 277.4 | 卡托普利 | 35.55 | [ |
TNTs-DDBAB | 257 | 苯酚 | 226.24 | [ |
MTNTs-ODA | — | 油 | >150 | [ |
吸附剂 | 比表面积/m2·g-1 | 孔体积/cm3·g-1 | 吸附温度/℃ | 吸附能力/mg·g-1 | 参考文献 |
---|---|---|---|---|---|
TNTs | 57.3 | 0.154 | 30 | 15.4 | [ |
TNTs-MEA-56 | 55.66 | 0.38 | 60 | 55 | [ |
TNTs-EDA-47 | 67.84 | 0.40 | 60 | 62.48 | [ |
TNTs-TETA-51 | 57.36 | 0.38 | 60 | 126.28 | [ |
TNTs-TEPA-22 | 118.17 | 0.55 | 60 | 99.44 | [ |
TNTs-TEPA-43 | 57.93 | 0.41 | 60 | 174.24 | [ |
TNTs-TEPA-69 | 28.64 | 0.26 | 60 | 192.28 | [ |
TNTs-TEPA-91 | 13.24 | 0.15 | 60 | 181.72 | [ |
TNTs | 320.4 | 1.07 | 100 | 10.1 | [ |
PEI-TNTs-20 | 178.3 | 0.73 | 100 | 42.1 | [ |
PEI-TNTs-33 | 93.3 | 0.49 | 100 | 90.8 | [ |
PEI-TNTs-43 | 40.2 | 0.26 | 100 | 113.5 | [ |
PEI-TNTs-50 | 17.2 | 0.1 | 100 | 130.8 | [ |
TPEDA-TNTs | 122 | 0.482 | 25 | 52.8 | [ |
吸附剂 | 比表面积/m2·g-1 | 孔体积/cm3·g-1 | 吸附温度/℃ | 吸附能力/mg·g-1 | 参考文献 |
---|---|---|---|---|---|
TNTs | 57.3 | 0.154 | 30 | 15.4 | [ |
TNTs-MEA-56 | 55.66 | 0.38 | 60 | 55 | [ |
TNTs-EDA-47 | 67.84 | 0.40 | 60 | 62.48 | [ |
TNTs-TETA-51 | 57.36 | 0.38 | 60 | 126.28 | [ |
TNTs-TEPA-22 | 118.17 | 0.55 | 60 | 99.44 | [ |
TNTs-TEPA-43 | 57.93 | 0.41 | 60 | 174.24 | [ |
TNTs-TEPA-69 | 28.64 | 0.26 | 60 | 192.28 | [ |
TNTs-TEPA-91 | 13.24 | 0.15 | 60 | 181.72 | [ |
TNTs | 320.4 | 1.07 | 100 | 10.1 | [ |
PEI-TNTs-20 | 178.3 | 0.73 | 100 | 42.1 | [ |
PEI-TNTs-33 | 93.3 | 0.49 | 100 | 90.8 | [ |
PEI-TNTs-43 | 40.2 | 0.26 | 100 | 113.5 | [ |
PEI-TNTs-50 | 17.2 | 0.1 | 100 | 130.8 | [ |
TPEDA-TNTs | 122 | 0.482 | 25 | 52.8 | [ |
21 | LINGHU Wensheng, SUN Yanxia, YANG Hai, et al. Macroscopic and spectroscopic exploration on the removal performance of titanate nanotubes towards Zn(Ⅱ)[J]. Journal of Molecular Liquids, 2017, 244: 146-153. |
22 | SUBRAMANIAM M N, GOH P S, ABDULLAH N, et al. Adsorption and photocatalytic degradation of methylene blue using high surface area titanate nanotubes (TNT) synthesized via hydrothermal method[J]. Journal of Nanoparticle Research, 2017, 19(6): 220. |
23 | Misaki OTA, HIROTA Yuichiro, UCHIDA Yoshiaki, et al. Low temperature synthesized H2Ti3O7 nanotubes with a high CO2 adsorption property by amine modification[J]. Langmuir, 2018, 34(23): 6814-6819. |
24 | YUAN Zhongyong, SU Baolian. Titanium oxide nanotubes, nanofibers and nanowires[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2004, 241: 173-183. |
25 | Thu Ha Thi VU, Hang Thi AU, TRAN Lien Thi, et al. Synthesis of titanium dioxide nanotubes via one-step dynamic hydrothermal process[J]. Journal of Materials Science, 2014, 49(16): 5617-5625. |
26 | Mariana HINOJOSA-REYES, Roberto CAMPOSECO-SOLIS, RUIZ Facundo. H2Ti3O7 titanate nanotubes for highly effective adsorption of basic fuchsin dye for water purification[J]. Microporous and Mesoporous Materials, 2019, 276: 183-191. |
27 | GYAWALI Gobinda, Jieun SON, HAO Nguyen Huy, et al. Synthesis of TiO2 nanotubes using different alkaline media and their applications in photocatalysis and DSSCs[J]. Research on Chemical Intermediates, 2017, 43(9): 5055-5065. |
28 | BAVYKIN Dmitry V, CRESSEY Barbara A, LIGHT Mark E, et al. An aqueous, alkaline route to titanate nanotubes under atmospheric pressure conditions[J]. Nanotechnology, 2008, 19(27): 275604. |
29 | CHIANG H L H, OU H H, HUANG C W. Adsorption of Cu(Ⅱ) in aqueous solution using microwave-assisted titanate nanotubes[J]. Applied Nanoscience, 2019, 9(4): 505-514. |
30 | Laura TORRENTE-MURCIANO, LAPKIN Alexei A, CHADWICK David. Synthesis of high aspect ratio titanate nanotubes[J]. Journal of Materials Chemistry, 2010, 20(31): 6484-6489. |
31 | SONG I, LEE H, KIM D H. Rotation-assisted hydrothermal synthesis of thermally stable multiwalled titanate nanotubes and their application to selective catalytic reduction of NO with NH3[J]. ACS Applied Materials & Interfaces, 2018, 10(49): 42249-42257. |
32 | POUDEL B, WANG W Z, DAMES C, et al. Formation of crystallized titania nanotubes and their transformation into nanowires[J]. Nanotechnology, 2005, 16(9): 1935-1940. |
1 | OU H H, LO S L. Review of titania nanotubes synthesized via the hydrothermal treatment: fabrication, modification, and application[J]. Separation and Purification Technology, 2007, 58(1): 179-191. |
2 | ROY Poulomi, BERGER Steffen, SCHMUKI Patrik. TiO2 nanotubes: synthesis and applications[J]. Angewandte Chemie International Edition, 2011, 50(13): 2904-2939. |
33 | QAMAR M, YOON C R, OH H J, et al. Effect of post treatments on the structure and thermal stability of titanate nanotubes[J]. Nanotechnology, 2006, 17(24): 5922-5929. |
34 | TSAI C Y, LIU C W, CHAN Y H, et al. Development of HCl-treated titania nanotube photocatalysts for dye photodegradation and low-concentration elemental mercury removal[J]. Catalysis Today, 2017, 297: 113-123. |
35 | CAMPOSECO Roberto, CASTILLO Salvador, MEJIACENTENO Isidro, et al. Synthesis of protonated titanate nanotubes tailored by the washing step: effect upon acid properties and photocatalytic activity[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2017, 341: 87-96. |
36 | SLUBAN Melita, COJOCARU Bogdan, PARVULESCU Vasile I, et al. Protonated titanate nanotubes as solid acid catalyst for aldol condensation[J]. Journal of Catalysis, 2017, 346: 161-169. |
37 | BAVYKIN Dmitry V, CARRAVETTA Marina, KULAK Alexander N, et al. Application of magic-angle spinning NMR to examine the nature of protons in titanate nanotubes[J]. Chemistry of Materials, 2010, 22(8): 2458-2465. |
38 | KUKOVECZ Akos, Mária HODOS, Zoltán KÓNYA, et al. Complex-assisted one-step synthesis of ion-exchangeable titanate nanotubes decorated with CdS nanoparticles[J]. Chemical Physics Letters, 2005, 411(4/5/6): 445-449. |
39 | SANTOS-LÓPEZ Iván Alonso, HANDY Brent E, Roberto GARCÍA-DE-LEÓN. Titanate nanotubes as support of solid base catalyst[J]. Thermochimica Acta, 2013, 567: 85-92. |
40 | NIAN J N, CHEN S A, TSAI C C, et al. Structural feature and catalytic performance of Cu species distributed over TiO2 nanotubes[J]. The Journal of Physical Chemistry B, 2006, 110(51): 25817-25824. |
41 | BAVYKIN Dmitry V, LAPKIN Alexei A, PLUCINSKI Pawel K, et al. TiO2 nanotube-supported ruthenium(Ⅲ) hydrated oxide: a highly active catalyst for selective oxidation of alcohols by oxygen[J]. Journal of Catalysis, 2005, 235(1): 10-17. |
42 | CAMPOSECO Roberto, CASTILLO Salvador, NAVARRETE J, et al. Synthesis, characterization and photocatalytic activity of TiO2 nanostructures: nanotubes, nanofibers, nanowires and nanoparticles[J]. Catalysis Today, 2016, 266: 90-101. |
43 | WEI Xiuzhen, WANG Huijuan, ZHU Guangfeng, et al. Iron-doped TiO2 nanotubes with high photocatalytic activity under visible light synthesized by an ultrasonic-assisted sol-hydrothermal method[J]. Ceramics International, 2013, 39(4): 4009-4016. |
44 | PANG Yean Ling, ABDULLAH Ahmad Zuhairi. Effect of low Fe3+ doping on characteristics, sonocatalytic activity and reusability of TiO2 nanotubes catalysts for removal of Rhodamine B from water[J]. Journal of Hazardous Materials, 2012, 235/236: 326-335. |
45 | CHENG Zhuowei, FENG Li, CHEN Jianmeng, et al. Photocatalytic conversion of gaseous ethylbenzene on lanthanum-doped titanium dioxide nanotubes[J]. Journal of Hazardous Materials, 2013, 254/255: 354-363. |
46 | BARROCAS B, SILVESTRE A J, ROLO A G, et al. The effect of ionic Co presence on the structural, optical and photocatalytic properties of modified cobalt-titanate nanotubes[J]. Physical Chemistry Chemical Physics, 2016, 18(27): 18081-18093. |
47 | NGUYEN N H, WU H Y, BAI H. Photocatalytic reduction of NO2 and CO2 using molybdenum-doped titania nanotubes[J]. Chemical Engineering Journal, 2015, 269: 60-66. |
48 | TSAI C Y, LIU C W, FAN C, et al. Synthesis of a SnO2/TNT heterojunction nanocomposite as a high-performance photocatalyst[J]. The Journal of Physical Chemistry C, 2017, 121(11): 6050-6059. |
49 | Viet Pham VAN, Tran Hong HUY, SANG Nguyen Xuan, et al. One-step hydrothermal synthesis and characterisation of SnO2 nanoparticle-loaded TiO2 nanotubes with high photocatalytic performance under sunlight[J]. Journal of Materials Science, 2018, 53(5): 3364-3374. |
50 | ERJAVEC Boštjan, Tatjana TIŠLER, TCHERNYCHOVA Elena, et al. Self-doped Cu-deposited titania nanotubes as efficient visible light photocatalyst[J]. Catalysis Letters, 2017, 147(7): 1686-1695. |
51 | DU Penghui, CHANG Junjun, ZHAO He, et al. Sea-buckthorn-like MnO2 decorated titanate nanotubes with oxidation property and photocatalytic activity for enhanced degradation of 17β-estradiol under solar light[J]. ACS Applied Energy Materials, 2018, 1(5): 2123-2133. |
52 | Mariana HINOJOSA-REYES, Roberto CAMPOSECO-SOLÍS, RUIZ Facundo, et al. H2Ti3O7 nanotubes decorated with silver nanoparticles for photocatalytic degradation of atenolol[J]. Journal of Nanomaterials, 2017. DOI: 10.1155/2017/9610419. |
53 | YUAN Rongfang, ZHOU Beihai, HUA Duo, et al. Enhanced photocatalytic degradation of humic acids using Al and Fe co-doped TiO2 nanotubes under UV/ozonation for drinking water purification[J]. Journal of Hazardous Materials, 2013, 262: 527-538. |
54 | CAMPOSECO Roberto, CASTILLO Salvador, Mariana HINOJOSA-REYES, et al. Pt-V2O5/NT and Pt-WO3/NT titanate nanotubes with strong photocatalytic activity under visible light[J]. Chemistry Select, 2019, 4(3): 1023-1030. |
55 | ZHUANG Zhuokai, YANG Zhenmei, ZHOU Siyao, et al. Synergistic photocatalytic oxidation and adsorption of elemental mercury by carbon modified titanium dioxide nanotubes under visible light LED irradiation[J]. Chemical Engineering Journal, 2014, 253: 16-23. |
56 | HU Chengching, Tzuchien HSU, Liheng KAO. One-step cohydrothermal synthesis of nitrogen-doped titanium oxide nanotubes with enhanced visible light photocatalytic activity[J]. International Journal of Photoenergy, 2012. DOI:10.1155/2012/391958. |
57 | YANG Xu, LIANG Huagen, WU Liangpeng, et al. High performance carbon/silica co-decorated TiO2 nanotubes for visible-light driven water splitting[J]. Materials Research Bulletin, 2017, 93: 162-169. |
58 | WANG X, WANG L L, GUO D, et al. Fabrication and photocatalytic performance of C, N, F-tridoped TiO2 nanotubes[J]. Catalysis Today, 2019, 327: 182-189. |
59 | DOONG Rueyan, LIAO Chunyi. Enhanced visible-light-responsive photodegradation of bisphenol A by Cu, N-codoped titanate nanotubes prepared by microwave-assisted hydrothermal method[J]. Journal of Hazardous materials, 2017, 322: 254-262. |
60 | NGUYEN C H, JUANG R S. Efficient removal of methylene blue dye by a hybrid adsorption-photocatalysis process using reduced graphene oxide/titanate nanotube composites for water reuse[J]. Journal of Industrial and Engineering Chemistry, 2019, 76: 296-309. |
61 | LEI Xiaoman, LI Xiaolong, RUAN Zhiqiang, et al. Adsorption-photocatalytic degradation of dye pollutant in water by graphite oxide grafted titanate nanotubes[J]. Journal of Molecular Liquids, 2018, 266: 122-131. |
62 | VIJAYAN Baiju K, DIMITRIJEVIC Nada M, Daniel FINKELSTEIN-SHAPIRO, et al. Coupling titania nanotubes and carbon nanotubes to create photocatalytic nanocomposites[J]. ACS Catalysis, 2012, 2(2): 223-229. |
63 | ZHAO Fenfen, RONG Yuefei, WAN Junmin, et al. High photocatalytic performance of carbon quantum Dots/TNTs composites for enhanced photogenerated charges separation under visible light[J]. Catalysis Today, 2018, 315: 162-170. |
64 | SILVA T A, DINIZ J, PAIXÃO L, et al. Novel titanate nanotubes-cyanocobalamin materials: synthesis and enhanced photocatalytic properties for pollutants removal[J]. Solid State Sciences, 2017, 63: 30-41. |
65 | WEI Meng, WAN Junmin, HU Zhiwen, et al. Preparation, characterization and visible-light-driven photocatalytic activity of a novel Fe(Ⅲ) porphyrin-sensitized TiO2 nanotube photocatalyst[J]. Applied Surface Science, 2017, 391: 267-274. |
66 | KITANO Masaaki, NAKAJIMA Kiyotaka, KONDO Junko N, et al. Protonated titanate nanotubes as solid acid catalyst[J]. Journal of the American Chemical Society, 2010, 132(19): 6622-6623. |
67 | LI Shanshan, LI Ning, LI Guangyi, et al. Protonated titanate nanotubes as a highly active catalyst for the synthesis of renewable diesel and jet fuel range alkanes[J]. Applied Catalysis B: Environmental, 2015, 170/171: 124-134. |
68 | REDDY Bhoomireddy Rajendra Prasad, REDDY Peddiahgari Vasu Govardhana, REDDY Bijivemula N. Efficient solvent free synthesis of tertiary α-aminophosphonates using H2Ti3O7 nanotubes as a reusable solid-acid catalyst[J]. New Journal of Chemistry, 2015, 39(12): 9605-9610. |
69 | WADA Emiko, KITANO Masaaki, YAMAMOTO Kazuto, et al. Synthesis of niobium-doped titanate nanotubes as solid acid catalysts [J]. Catalysis Science & Technology, 2016, 6(13): 4832-4839. |
70 | SANTOS Neilson M DOS, ROCHA Jardel M, MATOS Jose M E, et al. Metal cations intercalated titanate nanotubes as catalysts for α,β unsaturated esters production[J]. Applied Catalysis A: General, 2013, 454: 74-80. |
71 | GOMES Igor S, DE CARVALHO Davi C, OLIVEIRA Alcineia C, et al. On the reasons for deactivation of titanate nanotubes with metals catalysts in the acetalization of glycerol with acetone[J]. Chemical Engineering Journal, 2018, 334: 1927-1942. |
72 | 周硕林, 刘贤响, 徐琼, 等. 磺酸功能化钛纳米管催化合成乙酰丙酸正丁酯[J]. 精细化工, 2017, 34(8): 875-879. |
ZHOU Shuolin, LIU Xianxiang, XU Qiong, et al. Sulfonic acid-functionalized titanium oxide nanotubes as a solid acid catalyst for synthesis of n-butyl levulinate[J]. Fine Chemicals, 2017, 34(8): 875-879. | |
73 | ZHOU Shuolin, JIANG Dabo, LIU Xianxiang, et al. Titanate nanotubes-bonded organosulfonic acid as solid acid catalyst for synthesis of butyl levulinate[J]. RSC Advances, 2018, 8(7): 3657-3662. |
74 | ZHOU Shuolin, LIU Xianxiang, LAI Jinhua, et al. Covalently linked organo-sulfonic acid modified titanate nanotube hybrid nanostructures for the catalytic esterification of levulinic acid with n-butyl alcohol[J]. Chemical Engineering Journal, 2019, 361: 571-577. |
75 | REDDY Bhoomireddy Rajendra Prasad, REDDY Motakatla Venkata Krishna, REDDY Peddiahgari Vasu Govardhana, et al. Protonated trititanate nanotubes: an efficient catalyst for one-pot three-component coupling of benzothiazole amines, heterocyclic aldehydes, and dialkyl/diaryl phosphites with a greener perspective[J]. Tetrahedron Letters, 2016, 57(6): 696-702. |
76 | KITANO Masaaki, WADA Emiko, NAKAJIMA Kiyotaka, et al. Protonated titanate nanotubes with Lewis and Brønsted acidity: relationship between nanotube structure and catalytic activity[J]. Chemistry of Materials, 2013, 25(3): 385-393. |
77 | WADA Emiko, KITANO Masaaki, NAKAJIMA Kiyotaka, et al. Effect of preparation conditions on the structural and acid catalytic properties of protonated titanate nanotubes[J]. Journal of Materials Chemistry A, 2013, 1(41): 12768-12774. |
78 | CAMPOSECO Roberto, CASTILLO Salvador, Isidro MEJIA-CENTENO, et al. Effect of the Ti/Na molar ratio on the acidity and the structure of TiO2 nanostructures: nanotubes, nanofibers and nanowires[J]. Materials Characterization, 2014, 90: 113-120. |
79 | Roberto CAMPOSECO R, CASTILLO Salvador, Isidro MEJÍA-CENTENO, et al. Boosted surface acidity in TiO2 and Al2O3-TiO2 nanotubes as catalytic supports[J]. Applied Surface Science, 2015, 356: 115-123. |
80 | CAMPOSECO Roberto, CASTILLO Salvador, Isidro MEJIA-CENTENO, et al. Behavior of Lewis and Brönsted surface acidity featured by Ag, Au, Ce, La, Fe, Mn, Pd, Pt, V and W decorated on protonated titanate nanotubes[J]. Microporous and Mesoporous Materials, 2016, 236: 235-243. |
81 | XIONG Lin, CHEN Cheng, CHEN Qing, et al. Adsorption of Pb(Ⅱ) and Cd(Ⅱ) from aqueous solutions using titanate nanotubes prepared via hydrothermal method[J]. Journal of Hazardous Materials, 2011, 189(3): 741-748. |
82 | WANG Ting, LIU Wen, XU Nan, et al. Adsorption and desorption of Cd(Ⅱ) onto titanate nanotubes and efficient regeneration of tubular structures[J]. Journal of Hazardous Materials, 2013, 250/251: 379-386. |
83 | ZHENG Tong, WANG Ting, MA Ruoqi, et al. Influences of isolated fractions of natural organic matter on adsorption of Cu(Ⅱ) by titanate nanotubes[J]. Science of the Total Environment, 2019, 650: 1412-1418. |
84 | LIU Wen, ZHAO Xiao, WANG Ting, et al. Adsorption of U(Ⅵ) by multilayer titanate nanotubes: effects of inorganic cations, carbonate and natural organic matter[J]. Chemical Engineering Journal, 2016, 286: 427-435. |
85 | YUAN Fang, WU Chunfang, CAI Yawen, et al. Synthesis of phytic acid-decorated titanate nanotubes for high efficient and high selective removal of U(Ⅵ)[J]. Chemical Engineering Journal, 2017, 322: 353-365. |
86 | MA Jun, LI Fan, QIAN Tianwei, et al. Natural organic matter resistant powder activated charcoal supported titanate nanotubes for adsorption of Pb(Ⅱ)[J]. Chemical Engineering Journal, 2017, 315: 191-200. |
87 | WANG Lei, LIU Wen, WANG Ting, et al. Highly efficient adsorption of Cr(Ⅵ) from aqueous solutions by amino-functionalized titanate nanotubes[J]. Chemical Engineering Journal, 2013, 225: 153-163. |
88 | WANG Hui, ZHENG Long, LIU Gonggang, et al. Enhanced adsorption of Ag+ on triethanolamine modified titanate nanotubes[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 537: 28-35. |
89 | XIONG Lin, YANG Ye, Jiaxing MAI, et al. Adsorption behavior of methylene blue onto titanate nanotubes[J]. Chemical Engineering Journal, 2010, 156(2): 313-320. |
90 | Carolina ORONA-NÁVAR, Raul GARCÍA-MORALES, Rodrigo RUBIO-GOVEA, et al. Adsorptive removal of emerging pollutants from groundwater by using modified titanate nanotubes[J]. Journal of Environmental Chemical Engineering, 2018, 6(4): 5332-5340. |
91 | HU Lihe, ZHANG Jixiang, LI Nian, et al. Adsorption of phenol from aqueous solutions using interlayer modified titanate nanotubes[J]. Journal of Chemical Technology & Biotechnology, 2018, 93(8): 2208-2215. |
92 | PATOWARY Manoj, ANANTHAKRISHNAN Rajakumar, PATHAK Khanindra. Effective oil removal from water by magnetically driven superhydrophobic and oleophilic magnetic titania nanotubes[J]. Environmental Science and Pollution Research, 2017, 24(22): 18063-18072. |
93 | BHATTA Lakshminarayana Kudinalli Gopalakrishna, SUBRAMANYAM Seetharamu, CHENGALA Madhusoodana D, et al. Low-temperature CO2 adsorption on titania nanotubes (TNTs)[J]. Surfaces and Interfaces, 2017, 8: 158-162. |
94 | SONG Fujiao, ZHAO Yunxia, CAO Yan, et al. Capture of carbon dioxide from flue gases by amine-functionalized TiO2 nanotubes[J]. Applied Surface Science, 2013, 268: 124-128. |
95 | LIU Jie, LIU Yue, WU Zhongbiao, et al. Polyethyleneimine functionalized protonated titanate nanotubes as superior carbon dioxide adsorbents[J]. Journal of Colloid and Interface Science, 2012, 386(1): 392-397. |
96 | LIU Yue, LIU Jie, YAO Weiyuan, et al. The effects of surface acidity on CO2 adsorption over amine functionalized protonated titanate nanotubes[J]. RSC Advances, 2013, 3(41): 18803-18810. |
97 | SIM S, CHO E B, CHATTERJEE S. H2 and CO2 uptake for hydrogen titanate (H2Ti3O7) nanotubes and nanorods at ambient temperature and pressure[J]. Chemical Engineering Journal, 2016, 303: 64-72. |
3 | AMEUR Nawal, BACHIR Redouane. Study of 1D titanate-based materials-new modification of the synthesis procedure and surface properties-recent applications[J]. ChemistrySelect, 2020, 5(3): 1164-1185. |
4 | 汪静茹, 李文尧, 姚宝殿. 水热法制备二氧化钛纳米管:形成机理、影响因素及应用[J]. 材料导报, 2016, 30(5): 144-152. |
WANG Jingru, LI Wenyao, YAO Baodian. Hydrothermally produced titania nanotubes: formation mechanism, influence factors and applications[J]. Material Review, 2016, 30(5): 144-152. | |
5 | KASUGA Tomoko, HIRAMATSU Masayoshi, HOSON Akihiko, et al. Formation of titanium oxide nanotube[J]. Langmuir, 1998, 14(12): 3160-3163. |
6 | KASUGA Tomoko, HIRAMATSU Masayoshi, HOSON Akihiko, et al. Titania nanotubes prepared by chemical processing[J]. Advanced Materials, 1999, 11(15): 1307-1311. |
7 | DU G H, CHEN Q, CHE R C, et al. Preparation and structure analysis of titanium oxide nanotubes[J]. Applied Physics Letters, 2001, 79(22): 3702-3704. |
8 | WANG Y Q, HU G Q, DUAN X F, et al. Microstructure and formation mechanism of titanium dioxide nanotubes[J]. Chemical Physics Letters, 2002, 365(5/6): 427-431. |
9 | YAO B D, CHAN Y F, ZHANG X Y, et al. Formation mechanism of TiO2 nanotubes[J]. Applied Physics Letters, 2003, 82(2): 281-283. |
10 | BAVYKIN Dmitry V, PARMON Valentin N, LAPKIN Alexei A, et al. The effect of hydrothermal conditions on the mesoporous structure of TiO2 nanotubes[J]. Journal of Materials Chemistry, 2004, 14(22): 3370-3377. |
11 | YANG Jianjun, JIN Zhensheng, WANG Xiaodong, et al. Study on composition, structure and formation process of nanotube Na2Ti2O4(OH)2[J]. Dalton Transactions, 2003, 20: 3898-3901. |
12 | NAKAHIRA Atsushi, KUBO Takashi, NUMAKO Chiya. Formation mechanism of TiO2-derived titanate nanotubes prepared by the hydrothermal process[J]. Inorganic Chemistry, 2010, 49(13): 5845-5852. |
13 | PANG Y L, LIM S, ONG H C, et al. A critical review on the recent progress of synthesizing techniques and fabrication of TiO2-based nanotubes photocatalysts[J]. Applied Catalysis A: General, 2014, 481: 127-142. |
14 | TSAI C C, TENG H. Structural features of nanotubes synthesized from NaOH treatment on TiO2 with different post-treatments[J]. Chemistry of Materials, 2006, 18(2): 367-373. |
15 | SALLEM Fadoua, CHASSAGNON Rémi, MEGRICHE Adel, et al. Effect of mechanical stirring and temperature on dynamic hydrothermal synthesis of titanate nanotubes[J]. Journal of Alloys and Compounds, 2017, 722: 785-796. |
16 | Alberto SANDOVAl, Cristina HERNÁNDEZ-VENTURA, KLIMOVA Tatiana E. Titanate nanotubes for removal of methylene blue dye by combined adsorption and photocatalysis[J]. Fuel, 2017, 198: 22-30. |
17 | Luciana FERNÁNDEZ-WERNER, PIGNANELLI Fernando, MONTENEGRO Benjamín, et al. Characterization of titanate nanotubes for energy applications[J]. Journal of Energy Storage, 2017, 12: 66-77. |
18 | DE CARVALHO Davi C, OLIVEIRa Alcemira C, FERREIRA Odair P, et al. Titanate nanotubes as acid catalysts for acetalization of glycerol with acetone: influence of the synthesis time and the role of structure on the catalytic performance[J]. Chemical Engineering Journal, 2017, 313: 1454-1467. |
19 | LI Xuezhao, LIU Wen, NI Jinren. Short-cut synthesis of tri-titanate nanotubes using nano-anatase: mechanism and application as an excellent adsorbent[J]. Microporous and Mesoporous Materials, 2015, 213: 40-47. |
20 | LÓPEZ Zavala Miguel Ngel, LOZANO Morales Samuel Alejandro, Manuel VILA-SANTOS. Synthesis of stable TiO2 nanotubes: effect of hydrothermal treatment, acid washing and annealing temperature[J]. Heliyon, 2017, 3(11): e00456. |
[1] | ZHANG Mingyan, LIU Yan, ZHANG Xueting, LIU Yake, LI Congju, ZHANG Xiuling. Research progress of non-noble metal bifunctional catalysts in zinc-air batteries [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 276-286. |
[2] | SHI Yongxing, LIN Gang, SUN Xiaohang, JIANG Weigeng, QIAO Dawei, YAN Binhang. Research progress on active sites in Cu-based catalysts for CO2 hydrogenation to methanol [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 287-298. |
[3] | XIE Luyao, CHEN Songzhe, WANG Laijun, ZHANG Ping. Platinum-based catalysts for SO2 depolarized electrolysis [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 299-309. |
[4] | YANG Xiazhen, PENG Yifan, LIU Huazhang, HUO Chao. Regulation of active phase of fused iron catalyst and its catalytic performance of Fischer-Tropsch synthesis [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 310-318. |
[5] | WANG Lele, YANG Wanrong, YAO Yan, LIU Tao, HE Chuan, LIU Xiao, SU Sheng, KONG Fanhai, ZHU Canghai, XIANG Jun. Influence of spent SCR catalyst blending on the characteristics and deNO x performance for new SCR catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 489-497. |
[6] | DENG Liping, SHI Haoyu, LIU Xiaolong, CHEN Yaoji, YAN Jingying. Non-noble metal modified vanadium titanium-based catalyst for NH3-SCR denitrification simultaneous control VOCs [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 542-548. |
[7] | WANG Shengyan, DENG Shuai, ZHAO Ruikai. Research progress on carbon dioxide capture technology based on electric swing adsorption [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 233-245. |
[8] | CHENG Tao, CUI Ruili, SONG Junnan, ZHANG Tianqi, ZHANG Yunhe, LIANG Shijie, PU Shi. Analysis of impurity deposition and pressure drop increase mechanisms in residue hydrotreating unit [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4616-4627. |
[9] | WANG Peng, SHI Huibing, ZHAO Deming, FENG Baolin, CHEN Qian, YANG Da. Recent advances on transition metal catalyzed carbonylation of chlorinated compounds [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4649-4666. |
[10] | GAO Yanjing. Analysis of international research trend of single-atom catalysis technology [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4667-4676. |
[11] | ZHANG Qi, ZHAO Hong, RONG Junfeng. Research progress of anti-toxicity electrocatalysts for oxygen reduction reaction in PEMFC [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4677-4691. |
[12] | GE Quanqian, XU Mai, LIANG Xian, WANG Fengwu. Research progress on the application of MOFs in photoelectrocatalysis [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4692-4705. |
[13] | WANG Weitao, BAO Tingyu, JIANG Xulu, HE Zhenhong, WANG Kuan, YANG Yang, LIU Zhaotie. Oxidation of benzene to phenol over aldehyde-ketone resin based metal-free catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4706-4715. |
[14] | GE Yafen, SUN Yu, XIAO Peng, LIU Qi, LIU Bo, SUN Chengying, GONG Yanjun. Research progress of zeolite for VOCs removal [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4716-4730. |
[15] | WU Haibo, WANG Xilun, FANG Yanxiong, JI Hongbing. Progress of the development and application of 3D printing catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 3956-3964. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |