21 |
LINGHU Wensheng, SUN Yanxia, YANG Hai, et al. Macroscopic and spectroscopic exploration on the removal performance of titanate nanotubes towards Zn(Ⅱ)[J]. Journal of Molecular Liquids, 2017, 244: 146-153.
|
22 |
SUBRAMANIAM M N, GOH P S, ABDULLAH N, et al. Adsorption and photocatalytic degradation of methylene blue using high surface area titanate nanotubes (TNT) synthesized via hydrothermal method[J]. Journal of Nanoparticle Research, 2017, 19(6): 220.
|
23 |
Misaki OTA, HIROTA Yuichiro, UCHIDA Yoshiaki, et al. Low temperature synthesized H2Ti3O7 nanotubes with a high CO2 adsorption property by amine modification[J]. Langmuir, 2018, 34(23): 6814-6819.
|
24 |
YUAN Zhongyong, SU Baolian. Titanium oxide nanotubes, nanofibers and nanowires[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2004, 241: 173-183.
|
25 |
Thu Ha Thi VU, Hang Thi AU, TRAN Lien Thi, et al. Synthesis of titanium dioxide nanotubes via one-step dynamic hydrothermal process[J]. Journal of Materials Science, 2014, 49(16): 5617-5625.
|
26 |
Mariana HINOJOSA-REYES, Roberto CAMPOSECO-SOLIS, RUIZ Facundo. H2Ti3O7 titanate nanotubes for highly effective adsorption of basic fuchsin dye for water purification[J]. Microporous and Mesoporous Materials, 2019, 276: 183-191.
|
27 |
GYAWALI Gobinda, Jieun SON, HAO Nguyen Huy, et al. Synthesis of TiO2 nanotubes using different alkaline media and their applications in photocatalysis and DSSCs[J]. Research on Chemical Intermediates, 2017, 43(9): 5055-5065.
|
28 |
BAVYKIN Dmitry V, CRESSEY Barbara A, LIGHT Mark E, et al. An aqueous, alkaline route to titanate nanotubes under atmospheric pressure conditions[J]. Nanotechnology, 2008, 19(27): 275604.
|
29 |
CHIANG H L H, OU H H, HUANG C W. Adsorption of Cu(Ⅱ) in aqueous solution using microwave-assisted titanate nanotubes[J]. Applied Nanoscience, 2019, 9(4): 505-514.
|
30 |
Laura TORRENTE-MURCIANO, LAPKIN Alexei A, CHADWICK David. Synthesis of high aspect ratio titanate nanotubes[J]. Journal of Materials Chemistry, 2010, 20(31): 6484-6489.
|
31 |
SONG I, LEE H, KIM D H. Rotation-assisted hydrothermal synthesis of thermally stable multiwalled titanate nanotubes and their application to selective catalytic reduction of NO with NH3[J]. ACS Applied Materials & Interfaces, 2018, 10(49): 42249-42257.
|
32 |
POUDEL B, WANG W Z, DAMES C, et al. Formation of crystallized titania nanotubes and their transformation into nanowires[J]. Nanotechnology, 2005, 16(9): 1935-1940.
|
1 |
OU H H, LO S L. Review of titania nanotubes synthesized via the hydrothermal treatment: fabrication, modification, and application[J]. Separation and Purification Technology, 2007, 58(1): 179-191.
|
2 |
ROY Poulomi, BERGER Steffen, SCHMUKI Patrik. TiO2 nanotubes: synthesis and applications[J]. Angewandte Chemie International Edition, 2011, 50(13): 2904-2939.
|
33 |
QAMAR M, YOON C R, OH H J, et al. Effect of post treatments on the structure and thermal stability of titanate nanotubes[J]. Nanotechnology, 2006, 17(24): 5922-5929.
|
34 |
TSAI C Y, LIU C W, CHAN Y H, et al. Development of HCl-treated titania nanotube photocatalysts for dye photodegradation and low-concentration elemental mercury removal[J]. Catalysis Today, 2017, 297: 113-123.
|
35 |
CAMPOSECO Roberto, CASTILLO Salvador, MEJIACENTENO Isidro, et al. Synthesis of protonated titanate nanotubes tailored by the washing step: effect upon acid properties and photocatalytic activity[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2017, 341: 87-96.
|
36 |
SLUBAN Melita, COJOCARU Bogdan, PARVULESCU Vasile I, et al. Protonated titanate nanotubes as solid acid catalyst for aldol condensation[J]. Journal of Catalysis, 2017, 346: 161-169.
|
37 |
BAVYKIN Dmitry V, CARRAVETTA Marina, KULAK Alexander N, et al. Application of magic-angle spinning NMR to examine the nature of protons in titanate nanotubes[J]. Chemistry of Materials, 2010, 22(8): 2458-2465.
|
38 |
KUKOVECZ Akos, Mária HODOS, Zoltán KÓNYA, et al. Complex-assisted one-step synthesis of ion-exchangeable titanate nanotubes decorated with CdS nanoparticles[J]. Chemical Physics Letters, 2005, 411(4/5/6): 445-449.
|
39 |
SANTOS-LÓPEZ Iván Alonso, HANDY Brent E, Roberto GARCÍA-DE-LEÓN. Titanate nanotubes as support of solid base catalyst[J]. Thermochimica Acta, 2013, 567: 85-92.
|
40 |
NIAN J N, CHEN S A, TSAI C C, et al. Structural feature and catalytic performance of Cu species distributed over TiO2 nanotubes[J]. The Journal of Physical Chemistry B, 2006, 110(51): 25817-25824.
|
41 |
BAVYKIN Dmitry V, LAPKIN Alexei A, PLUCINSKI Pawel K, et al. TiO2 nanotube-supported ruthenium(Ⅲ) hydrated oxide: a highly active catalyst for selective oxidation of alcohols by oxygen[J]. Journal of Catalysis, 2005, 235(1): 10-17.
|
42 |
CAMPOSECO Roberto, CASTILLO Salvador, NAVARRETE J, et al. Synthesis, characterization and photocatalytic activity of TiO2 nanostructures: nanotubes, nanofibers, nanowires and nanoparticles[J]. Catalysis Today, 2016, 266: 90-101.
|
43 |
WEI Xiuzhen, WANG Huijuan, ZHU Guangfeng, et al. Iron-doped TiO2 nanotubes with high photocatalytic activity under visible light synthesized by an ultrasonic-assisted sol-hydrothermal method[J]. Ceramics International, 2013, 39(4): 4009-4016.
|
44 |
PANG Yean Ling, ABDULLAH Ahmad Zuhairi. Effect of low Fe3+ doping on characteristics, sonocatalytic activity and reusability of TiO2 nanotubes catalysts for removal of Rhodamine B from water[J]. Journal of Hazardous Materials, 2012, 235/236: 326-335.
|
45 |
CHENG Zhuowei, FENG Li, CHEN Jianmeng, et al. Photocatalytic conversion of gaseous ethylbenzene on lanthanum-doped titanium dioxide nanotubes[J]. Journal of Hazardous Materials, 2013, 254/255: 354-363.
|
46 |
BARROCAS B, SILVESTRE A J, ROLO A G, et al. The effect of ionic Co presence on the structural, optical and photocatalytic properties of modified cobalt-titanate nanotubes[J]. Physical Chemistry Chemical Physics, 2016, 18(27): 18081-18093.
|
47 |
NGUYEN N H, WU H Y, BAI H. Photocatalytic reduction of NO2 and CO2 using molybdenum-doped titania nanotubes[J]. Chemical Engineering Journal, 2015, 269: 60-66.
|
48 |
TSAI C Y, LIU C W, FAN C, et al. Synthesis of a SnO2/TNT heterojunction nanocomposite as a high-performance photocatalyst[J]. The Journal of Physical Chemistry C, 2017, 121(11): 6050-6059.
|
49 |
Viet Pham VAN, Tran Hong HUY, SANG Nguyen Xuan, et al. One-step hydrothermal synthesis and characterisation of SnO2 nanoparticle-loaded TiO2 nanotubes with high photocatalytic performance under sunlight[J]. Journal of Materials Science, 2018, 53(5): 3364-3374.
|
50 |
ERJAVEC Boštjan, Tatjana TIŠLER, TCHERNYCHOVA Elena, et al. Self-doped Cu-deposited titania nanotubes as efficient visible light photocatalyst[J]. Catalysis Letters, 2017, 147(7): 1686-1695.
|
51 |
DU Penghui, CHANG Junjun, ZHAO He, et al. Sea-buckthorn-like MnO2 decorated titanate nanotubes with oxidation property and photocatalytic activity for enhanced degradation of 17β-estradiol under solar light[J]. ACS Applied Energy Materials, 2018, 1(5): 2123-2133.
|
52 |
Mariana HINOJOSA-REYES, Roberto CAMPOSECO-SOLÍS, RUIZ Facundo, et al. H2Ti3O7 nanotubes decorated with silver nanoparticles for photocatalytic degradation of atenolol[J]. Journal of Nanomaterials, 2017. DOI: 10.1155/2017/9610419.
|
53 |
YUAN Rongfang, ZHOU Beihai, HUA Duo, et al. Enhanced photocatalytic degradation of humic acids using Al and Fe co-doped TiO2 nanotubes under UV/ozonation for drinking water purification[J]. Journal of Hazardous Materials, 2013, 262: 527-538.
|
54 |
CAMPOSECO Roberto, CASTILLO Salvador, Mariana HINOJOSA-REYES, et al. Pt-V2O5/NT and Pt-WO3/NT titanate nanotubes with strong photocatalytic activity under visible light[J]. Chemistry Select, 2019, 4(3): 1023-1030.
|
55 |
ZHUANG Zhuokai, YANG Zhenmei, ZHOU Siyao, et al. Synergistic photocatalytic oxidation and adsorption of elemental mercury by carbon modified titanium dioxide nanotubes under visible light LED irradiation[J]. Chemical Engineering Journal, 2014, 253: 16-23.
|
56 |
HU Chengching, Tzuchien HSU, Liheng KAO. One-step cohydrothermal synthesis of nitrogen-doped titanium oxide nanotubes with enhanced visible light photocatalytic activity[J]. International Journal of Photoenergy, 2012. DOI:10.1155/2012/391958.
|
57 |
YANG Xu, LIANG Huagen, WU Liangpeng, et al. High performance carbon/silica co-decorated TiO2 nanotubes for visible-light driven water splitting[J]. Materials Research Bulletin, 2017, 93: 162-169.
|
58 |
WANG X, WANG L L, GUO D, et al. Fabrication and photocatalytic performance of C, N, F-tridoped TiO2 nanotubes[J]. Catalysis Today, 2019, 327: 182-189.
|
59 |
DOONG Rueyan, LIAO Chunyi. Enhanced visible-light-responsive photodegradation of bisphenol A by Cu, N-codoped titanate nanotubes prepared by microwave-assisted hydrothermal method[J]. Journal of Hazardous materials, 2017, 322: 254-262.
|
60 |
NGUYEN C H, JUANG R S. Efficient removal of methylene blue dye by a hybrid adsorption-photocatalysis process using reduced graphene oxide/titanate nanotube composites for water reuse[J]. Journal of Industrial and Engineering Chemistry, 2019, 76: 296-309.
|
61 |
LEI Xiaoman, LI Xiaolong, RUAN Zhiqiang, et al. Adsorption-photocatalytic degradation of dye pollutant in water by graphite oxide grafted titanate nanotubes[J]. Journal of Molecular Liquids, 2018, 266: 122-131.
|
62 |
VIJAYAN Baiju K, DIMITRIJEVIC Nada M, Daniel FINKELSTEIN-SHAPIRO, et al. Coupling titania nanotubes and carbon nanotubes to create photocatalytic nanocomposites[J]. ACS Catalysis, 2012, 2(2): 223-229.
|
63 |
ZHAO Fenfen, RONG Yuefei, WAN Junmin, et al. High photocatalytic performance of carbon quantum Dots/TNTs composites for enhanced photogenerated charges separation under visible light[J]. Catalysis Today, 2018, 315: 162-170.
|
64 |
SILVA T A, DINIZ J, PAIXÃO L, et al. Novel titanate nanotubes-cyanocobalamin materials: synthesis and enhanced photocatalytic properties for pollutants removal[J]. Solid State Sciences, 2017, 63: 30-41.
|
65 |
WEI Meng, WAN Junmin, HU Zhiwen, et al. Preparation, characterization and visible-light-driven photocatalytic activity of a novel Fe(Ⅲ) porphyrin-sensitized TiO2 nanotube photocatalyst[J]. Applied Surface Science, 2017, 391: 267-274.
|
66 |
KITANO Masaaki, NAKAJIMA Kiyotaka, KONDO Junko N, et al. Protonated titanate nanotubes as solid acid catalyst[J]. Journal of the American Chemical Society, 2010, 132(19): 6622-6623.
|
67 |
LI Shanshan, LI Ning, LI Guangyi, et al. Protonated titanate nanotubes as a highly active catalyst for the synthesis of renewable diesel and jet fuel range alkanes[J]. Applied Catalysis B: Environmental, 2015, 170/171: 124-134.
|
68 |
REDDY Bhoomireddy Rajendra Prasad, REDDY Peddiahgari Vasu Govardhana, REDDY Bijivemula N. Efficient solvent free synthesis of tertiary α-aminophosphonates using H2Ti3O7 nanotubes as a reusable solid-acid catalyst[J]. New Journal of Chemistry, 2015, 39(12): 9605-9610.
|
69 |
WADA Emiko, KITANO Masaaki, YAMAMOTO Kazuto, et al. Synthesis of niobium-doped titanate nanotubes as solid acid catalysts [J]. Catalysis Science & Technology, 2016, 6(13): 4832-4839.
|
70 |
SANTOS Neilson M DOS, ROCHA Jardel M, MATOS Jose M E, et al. Metal cations intercalated titanate nanotubes as catalysts for α,β unsaturated esters production[J]. Applied Catalysis A: General, 2013, 454: 74-80.
|
71 |
GOMES Igor S, DE CARVALHO Davi C, OLIVEIRA Alcineia C, et al. On the reasons for deactivation of titanate nanotubes with metals catalysts in the acetalization of glycerol with acetone[J]. Chemical Engineering Journal, 2018, 334: 1927-1942.
|
72 |
周硕林, 刘贤响, 徐琼, 等. 磺酸功能化钛纳米管催化合成乙酰丙酸正丁酯[J]. 精细化工, 2017, 34(8): 875-879.
|
|
ZHOU Shuolin, LIU Xianxiang, XU Qiong, et al. Sulfonic acid-functionalized titanium oxide nanotubes as a solid acid catalyst for synthesis of n-butyl levulinate[J]. Fine Chemicals, 2017, 34(8): 875-879.
|
73 |
ZHOU Shuolin, JIANG Dabo, LIU Xianxiang, et al. Titanate nanotubes-bonded organosulfonic acid as solid acid catalyst for synthesis of butyl levulinate[J]. RSC Advances, 2018, 8(7): 3657-3662.
|
74 |
ZHOU Shuolin, LIU Xianxiang, LAI Jinhua, et al. Covalently linked organo-sulfonic acid modified titanate nanotube hybrid nanostructures for the catalytic esterification of levulinic acid with n-butyl alcohol[J]. Chemical Engineering Journal, 2019, 361: 571-577.
|
75 |
REDDY Bhoomireddy Rajendra Prasad, REDDY Motakatla Venkata Krishna, REDDY Peddiahgari Vasu Govardhana, et al. Protonated trititanate nanotubes: an efficient catalyst for one-pot three-component coupling of benzothiazole amines, heterocyclic aldehydes, and dialkyl/diaryl phosphites with a greener perspective[J]. Tetrahedron Letters, 2016, 57(6): 696-702.
|
76 |
KITANO Masaaki, WADA Emiko, NAKAJIMA Kiyotaka, et al. Protonated titanate nanotubes with Lewis and Brønsted acidity: relationship between nanotube structure and catalytic activity[J]. Chemistry of Materials, 2013, 25(3): 385-393.
|
77 |
WADA Emiko, KITANO Masaaki, NAKAJIMA Kiyotaka, et al. Effect of preparation conditions on the structural and acid catalytic properties of protonated titanate nanotubes[J]. Journal of Materials Chemistry A, 2013, 1(41): 12768-12774.
|
78 |
CAMPOSECO Roberto, CASTILLO Salvador, Isidro MEJIA-CENTENO, et al. Effect of the Ti/Na molar ratio on the acidity and the structure of TiO2 nanostructures: nanotubes, nanofibers and nanowires[J]. Materials Characterization, 2014, 90: 113-120.
|
79 |
Roberto CAMPOSECO R, CASTILLO Salvador, Isidro MEJÍA-CENTENO, et al. Boosted surface acidity in TiO2 and Al2O3-TiO2 nanotubes as catalytic supports[J]. Applied Surface Science, 2015, 356: 115-123.
|
80 |
CAMPOSECO Roberto, CASTILLO Salvador, Isidro MEJIA-CENTENO, et al. Behavior of Lewis and Brönsted surface acidity featured by Ag, Au, Ce, La, Fe, Mn, Pd, Pt, V and W decorated on protonated titanate nanotubes[J]. Microporous and Mesoporous Materials, 2016, 236: 235-243.
|
81 |
XIONG Lin, CHEN Cheng, CHEN Qing, et al. Adsorption of Pb(Ⅱ) and Cd(Ⅱ) from aqueous solutions using titanate nanotubes prepared via hydrothermal method[J]. Journal of Hazardous Materials, 2011, 189(3): 741-748.
|
82 |
WANG Ting, LIU Wen, XU Nan, et al. Adsorption and desorption of Cd(Ⅱ) onto titanate nanotubes and efficient regeneration of tubular structures[J]. Journal of Hazardous Materials, 2013, 250/251: 379-386.
|
83 |
ZHENG Tong, WANG Ting, MA Ruoqi, et al. Influences of isolated fractions of natural organic matter on adsorption of Cu(Ⅱ) by titanate nanotubes[J]. Science of the Total Environment, 2019, 650: 1412-1418.
|
84 |
LIU Wen, ZHAO Xiao, WANG Ting, et al. Adsorption of U(Ⅵ) by multilayer titanate nanotubes: effects of inorganic cations, carbonate and natural organic matter[J]. Chemical Engineering Journal, 2016, 286: 427-435.
|
85 |
YUAN Fang, WU Chunfang, CAI Yawen, et al. Synthesis of phytic acid-decorated titanate nanotubes for high efficient and high selective removal of U(Ⅵ)[J]. Chemical Engineering Journal, 2017, 322: 353-365.
|
86 |
MA Jun, LI Fan, QIAN Tianwei, et al. Natural organic matter resistant powder activated charcoal supported titanate nanotubes for adsorption of Pb(Ⅱ)[J]. Chemical Engineering Journal, 2017, 315: 191-200.
|
87 |
WANG Lei, LIU Wen, WANG Ting, et al. Highly efficient adsorption of Cr(Ⅵ) from aqueous solutions by amino-functionalized titanate nanotubes[J]. Chemical Engineering Journal, 2013, 225: 153-163.
|
88 |
WANG Hui, ZHENG Long, LIU Gonggang, et al. Enhanced adsorption of Ag+ on triethanolamine modified titanate nanotubes[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 537: 28-35.
|
89 |
XIONG Lin, YANG Ye, Jiaxing MAI, et al. Adsorption behavior of methylene blue onto titanate nanotubes[J]. Chemical Engineering Journal, 2010, 156(2): 313-320.
|
90 |
Carolina ORONA-NÁVAR, Raul GARCÍA-MORALES, Rodrigo RUBIO-GOVEA, et al. Adsorptive removal of emerging pollutants from groundwater by using modified titanate nanotubes[J]. Journal of Environmental Chemical Engineering, 2018, 6(4): 5332-5340.
|
91 |
HU Lihe, ZHANG Jixiang, LI Nian, et al. Adsorption of phenol from aqueous solutions using interlayer modified titanate nanotubes[J]. Journal of Chemical Technology & Biotechnology, 2018, 93(8): 2208-2215.
|
92 |
PATOWARY Manoj, ANANTHAKRISHNAN Rajakumar, PATHAK Khanindra. Effective oil removal from water by magnetically driven superhydrophobic and oleophilic magnetic titania nanotubes[J]. Environmental Science and Pollution Research, 2017, 24(22): 18063-18072.
|
93 |
BHATTA Lakshminarayana Kudinalli Gopalakrishna, SUBRAMANYAM Seetharamu, CHENGALA Madhusoodana D, et al. Low-temperature CO2 adsorption on titania nanotubes (TNTs)[J]. Surfaces and Interfaces, 2017, 8: 158-162.
|
94 |
SONG Fujiao, ZHAO Yunxia, CAO Yan, et al. Capture of carbon dioxide from flue gases by amine-functionalized TiO2 nanotubes[J]. Applied Surface Science, 2013, 268: 124-128.
|
95 |
LIU Jie, LIU Yue, WU Zhongbiao, et al. Polyethyleneimine functionalized protonated titanate nanotubes as superior carbon dioxide adsorbents[J]. Journal of Colloid and Interface Science, 2012, 386(1): 392-397.
|
96 |
LIU Yue, LIU Jie, YAO Weiyuan, et al. The effects of surface acidity on CO2 adsorption over amine functionalized protonated titanate nanotubes[J]. RSC Advances, 2013, 3(41): 18803-18810.
|
97 |
SIM S, CHO E B, CHATTERJEE S. H2 and CO2 uptake for hydrogen titanate (H2Ti3O7) nanotubes and nanorods at ambient temperature and pressure[J]. Chemical Engineering Journal, 2016, 303: 64-72.
|
3 |
AMEUR Nawal, BACHIR Redouane. Study of 1D titanate-based materials-new modification of the synthesis procedure and surface properties-recent applications[J]. ChemistrySelect, 2020, 5(3): 1164-1185.
|
4 |
汪静茹, 李文尧, 姚宝殿. 水热法制备二氧化钛纳米管:形成机理、影响因素及应用[J]. 材料导报, 2016, 30(5): 144-152.
|
|
WANG Jingru, LI Wenyao, YAO Baodian. Hydrothermally produced titania nanotubes: formation mechanism, influence factors and applications[J]. Material Review, 2016, 30(5): 144-152.
|
5 |
KASUGA Tomoko, HIRAMATSU Masayoshi, HOSON Akihiko, et al. Formation of titanium oxide nanotube[J]. Langmuir, 1998, 14(12): 3160-3163.
|
6 |
KASUGA Tomoko, HIRAMATSU Masayoshi, HOSON Akihiko, et al. Titania nanotubes prepared by chemical processing[J]. Advanced Materials, 1999, 11(15): 1307-1311.
|
7 |
DU G H, CHEN Q, CHE R C, et al. Preparation and structure analysis of titanium oxide nanotubes[J]. Applied Physics Letters, 2001, 79(22): 3702-3704.
|
8 |
WANG Y Q, HU G Q, DUAN X F, et al. Microstructure and formation mechanism of titanium dioxide nanotubes[J]. Chemical Physics Letters, 2002, 365(5/6): 427-431.
|
9 |
YAO B D, CHAN Y F, ZHANG X Y, et al. Formation mechanism of TiO2 nanotubes[J]. Applied Physics Letters, 2003, 82(2): 281-283.
|
10 |
BAVYKIN Dmitry V, PARMON Valentin N, LAPKIN Alexei A, et al. The effect of hydrothermal conditions on the mesoporous structure of TiO2 nanotubes[J]. Journal of Materials Chemistry, 2004, 14(22): 3370-3377.
|
11 |
YANG Jianjun, JIN Zhensheng, WANG Xiaodong, et al. Study on composition, structure and formation process of nanotube Na2Ti2O4(OH)2[J]. Dalton Transactions, 2003, 20: 3898-3901.
|
12 |
NAKAHIRA Atsushi, KUBO Takashi, NUMAKO Chiya. Formation mechanism of TiO2-derived titanate nanotubes prepared by the hydrothermal process[J]. Inorganic Chemistry, 2010, 49(13): 5845-5852.
|
13 |
PANG Y L, LIM S, ONG H C, et al. A critical review on the recent progress of synthesizing techniques and fabrication of TiO2-based nanotubes photocatalysts[J]. Applied Catalysis A: General, 2014, 481: 127-142.
|
14 |
TSAI C C, TENG H. Structural features of nanotubes synthesized from NaOH treatment on TiO2 with different post-treatments[J]. Chemistry of Materials, 2006, 18(2): 367-373.
|
15 |
SALLEM Fadoua, CHASSAGNON Rémi, MEGRICHE Adel, et al. Effect of mechanical stirring and temperature on dynamic hydrothermal synthesis of titanate nanotubes[J]. Journal of Alloys and Compounds, 2017, 722: 785-796.
|
16 |
Alberto SANDOVAl, Cristina HERNÁNDEZ-VENTURA, KLIMOVA Tatiana E. Titanate nanotubes for removal of methylene blue dye by combined adsorption and photocatalysis[J]. Fuel, 2017, 198: 22-30.
|
17 |
Luciana FERNÁNDEZ-WERNER, PIGNANELLI Fernando, MONTENEGRO Benjamín, et al. Characterization of titanate nanotubes for energy applications[J]. Journal of Energy Storage, 2017, 12: 66-77.
|
18 |
DE CARVALHO Davi C, OLIVEIRa Alcemira C, FERREIRA Odair P, et al. Titanate nanotubes as acid catalysts for acetalization of glycerol with acetone: influence of the synthesis time and the role of structure on the catalytic performance[J]. Chemical Engineering Journal, 2017, 313: 1454-1467.
|
19 |
LI Xuezhao, LIU Wen, NI Jinren. Short-cut synthesis of tri-titanate nanotubes using nano-anatase: mechanism and application as an excellent adsorbent[J]. Microporous and Mesoporous Materials, 2015, 213: 40-47.
|
20 |
LÓPEZ Zavala Miguel Ngel, LOZANO Morales Samuel Alejandro, Manuel VILA-SANTOS. Synthesis of stable TiO2 nanotubes: effect of hydrothermal treatment, acid washing and annealing temperature[J]. Heliyon, 2017, 3(11): e00456.
|