Chemical Industry and Engineering Progress ›› 2019, Vol. 38 ›› Issue (05): 2222-2232.DOI: 10.16085/j.issn.1000-6613.2018-1506

• Materials science and technology • Previous Articles     Next Articles

Research progress of anode materials for high performance sodium-ion batteries

Ziyi ZHU(),Yingjie ZHANG,Peng DONG,Qi MENG,Xiaoyuan ZENG,Yanjia ZHANG,Jinmei JI,Qiugu HE,Yongtai LI,Xue LI()   

  1. Key Laboratory of Advanced Battery Materials of Yunnan Province, National and Local Joint Engineering Laboratory for Lithium-ion Batteries and Materials Preparation Technology, Kunming University of Science and Technology,Kunming 650093,Yunnan,China
  • Received:2018-07-22 Revised:2019-01-11 Online:2019-05-05 Published:2019-05-05
  • Contact: Xue LI

高性能钠离子电池负极材料的研究进展

朱子翼(),张英杰,董鹏,孟奇,曾晓苑,章艳佳,吉金梅,和秋谷,黎永泰,李雪()   

  1. 昆明理工大学锂离子电池及材料制备技术国家地方联合工程实验室,云南省先进电池材料重点实验室,云南 昆明 650093
  • 通讯作者: 李雪
  • 作者简介:<named-content content-type="corresp-name">朱子翼</named-content>(1991—),男,硕士,研究方向为先进二次电池及相关能源材料。E-mail:<email>471096347@qq.com</email>。|李雪,博士,副教授,研究方向为先进二次电池及相关能源材料,包括锂离子电池和钠离子电池。E-mail:<email>438616074@qq.com</email>。
  • 基金资助:
    国家自然科学基金(51604132,51764029);云南省应用基础研究计划(2017FB085,2017FD091)

Abstract:

Anode materials is one of the key factors for the commercialization of sodium-ion batteries (SIBs), and the related in-depth research in recent years has led to some breakthrough. However, the large radius of sodium-ion has a great impact on the battery performance. This article systematically reviews the new results of anode materials for SIBs in the preparation and performance characteristics, covering carbon-based materials, titanium-based compounds, alloy materials, metal compounds and organic compounds and the focus is on the structure-performance relationship. The key issues and strategies related to the research and development of SIBs anode materials are highlighted. In addition, the perspective and new directions of SIBs are briefly outlined. It is necessary to develop new modification methods to realize carbon coating, nanostructure, porous morphology and element doping in order to meet the requirements of different energy storage fields.

Key words: carbon-based materials, titanium-based compounds, alloy materials, metal compounds, organic compounds

摘要:

负极材料的研究是钠离子电池实现商业化生产的关键要素之一,近年来已经取得了突破性进展。但是较大半径的钠离子在嵌/脱过程中对负极材料结构的影响非常大,进而导致可逆容量迅速降低。本文系统综述了钠离子电池负极材料的最新研究成果,阐述了碳基材料、钛基化合物、合金材料、金属化合物和有机化合物5类负极材料的制备工艺,并分析了这些材料的性能特点:碳基材料的研发技术成熟,但比容量和倍率性能有待提高;钛基化合物的结构性能良好,倍率性能出色,但存在比容量较低的缺点;合金材料和金属化合物都具有较高的理论比容量,但循环性能较差;有机化合物的研发尚处于起步阶段,有待深入研究。基于现有的研究基础,总结了材料的改性方法和取得的效果,并展望了钠离子电池负极材料的研究方向,分析指出表面碳包覆可以提升材料的电子传导性,纳米结构可以缩短钠离子的传输途径,多孔形貌有利于电解质对材料的浸润,而元素掺杂可以提升材料的反应活性,最终获得高性能钠离子电池负极材料。

关键词: 碳基材料, 钛基化合物, 合金材料, 金属化合物, 有机化合物

CLC Number: 

京ICP备12046843号-2;京公网安备 11010102001994号
Copyright © Chemical Industry and Engineering Progress, All Rights Reserved.
E-mail: hgjz@cip.com.cn
Powered by Beijing Magtech Co. Ltd