[1] 樊栓狮, 谢应明, 郭开华, 等. 空调蓄冷及气体水合物蓄冷技术[J]. 化学工报, 2003, 54(1):131-134.
[2] 钱文强. 水合物浆体的流动相变换热与结晶过程可视化的研究[D]. 上海:上海交通大学, 2013.
[3] 马志伟. 水合物浆体流动相变和蓄冷特性研究[D]. 上海:上海交通大学, 2012.
[4] 朱昌盛, 刘妮, 齐亚茹. 笼型水合物浆体生成和流动特性的研究进展[J]. 制冷技术, 2015, 35(6):52-62.
[5] 郭开华, 舒碧芬. 空调蓄冷及气体水合物蓄冷[J]. 制冷, 1995, 53(3):15-21.
[6] 陈伟军, 刘妮, 肖晨, 等. CO2水合物浆在蓄冷空调中的应用前景[J]. 制冷学报, 2012, 3:1-5.
[7] 王树立, 代文杰, 刘墨夫, 等. 鼠李糖脂促进CO2水合物生成实验[J]. 常州大学学报(自然科学版), 2017(4):66-72.
[8] ANTHONY D, LAURENCE F, SANDRINE M, et al. Modeling of the available latent heat of a CO2 hydrate slurry in an experimental loop applied to secondary refrigeration[J]. Chemical Engineering Process, 2006, 45(3):184-192.
[9] OSMANN Sari, JIN Hu, FREDERIC Brun, et al. In-situ study of the thermal properties of hydrate slurry by high pressure DSC[C]//International Congress of Refrigeration, Beijing, 2007.
[10] GOLOMBOK M, INEKE E, LUZARDO J C R, et al. Resolving CO2 and methane hydrate formation kinetics[J]. Environmental Chemistry Letters, 2009, 7(4):325-330.
[11] 刘妮, 轩小波, 李菊, 等. 温度扰动促进CO2水合物生成特性的实验研究[J]. 中国电机工程学报, 2010, 30(17):41-44.
[12] DELAHAYE A, FOURNAISON L, MARINHAS S, et al. Rheological study of CO2 hydrate slurry in a dynamic loop applied to secondary refrigeration[J]. Chemical Engineering Science, 2008, 63(13):3551-3559.
[13] WEST O R, TSOURIS C, LEE S, et al. Negatively buoyant CO2 hydrate composite forocean carbon sequestIation[J]. AIChE Journal, 2003, 49(1):283-285.
[14] MYRE Denis. Synthesis of carbon dioxide hydrates in a slury bubble column[D]. Ottawa:University of Ottawa, 2011.
[15] LIN W, DELAHAYE A, FOUMAISON L Phase equilibrium and dissociation enthalpy for semi-clathmte of CO2+TBAB[J]. Fluid Phase Equilibria, 2008, 264:220-227.
[16] DELAHAYE A, FOURNAISON L, MARINHAS S. Effect of THF on equilibrium pressure and dissociation enthalpy of CO2 hydrates applied to secondary refrigeration[J]. Ind. Eng. Chem. Res., 2006, 45(1):391-397.
[17] MARTINEZL M C, DALMAZZONE D, FURST W, et al. Thermodynamic properties of THF+CO2 hydrates in relation with refrigeration applications[J]. AlChE J., 2008, 54(4):1088-1095.
[18] 李玉星, 朱超, 王武昌. 表面活性剂促进CO2水合物生成的实验及动力学模型[J]. 石油化工, 2012, 41(6):699-703.
[19] 宋琦, 王树立, 武雪兰, 等. 水合物技术应用与展望[J]. 油气储运, 2009, 28(9):5-9.
[20] TOMLINSON J J, CLATHRATE S, CONJUGATING B. New materials for thermal storage[J]. ASHRAE Trans., 1985, 91(1):1931-1937.
[21] CARBAJO J J. A direct-contact-charged direct-contact-discharged cool storage system using gas hydrate[J]. ASHRAE Trans., 1985, 91(2):258-266.
[22] AKIYA T, TOMIO S, OSWA M, et al. Phase equilibria of some alternative refrigerants hydrates and their mixtures using for cool storage material[C]//IECEC Proc. of the 32th, Intersociety Energy Conversion Engineering Conference, 1997:1652-1655.
[23] HASHIMOTO S, MIYAUCHI H, INOUE Y, et al. Three-phase equilibrium relations and hydrate dissociation enthalpies for hydrofluorocarbon hydrate systems:HFC-134a, -125, and -143a hydrates[J]. J. Chen. Eng. Data. 2010, 55:4951-4955.
[24] MORI Y, MORI T. Formation of gas hydrate with CFC alternative R134a[J]. AlChE Journal, 1989, 35(7):1227-1228.
[25] 陈晶贵, 樊栓狮, 梁德青, 等. HCFC-141b水合物空调系统实验研究[J]. 化工学报, 2003, 54(1):125-130.
[26] KOBAYASHI M, NISHIUMI H. Vapor-liquid equilibria for the pure, binary and ternary systems containing HFC32, HFC125 and HFC134a[J]. Fluid Phase Equilib, 1998, 144(1/2):191-202.
[27] PARK J Y, LIM J S, LEE B G, et al. Phase equilibria of CFC alternative refrigerant mixture:HFC-227ea +HFC-32+HFC-134a+HFC-152a[J]. Int. J. Thermophys, 2001, 22(3):901-917.
[28] 刘勇, 郭开华, 梁德青, 等. 混合制冷剂水合物晶体生成和分解过程研究[J]. 哈尔滨工业大学学报, 2004, 36(2):242-245.
[29] 毕月虹, 郭廷伟, 朱庭英, 等. 添加剂对气体水合物蓄冷过程影响的实验研究[J]. 应用基础与工程科学学报, 2003, 11(1):39-45.
[30] 葛华才, 王世平, 吕树申, 等. 一元醇类添加物对R12水合物形成的影响[J]. 华南理工大学学报, 2001, 29(3):1-4.
[31] 李刚, 谢应明, 刘道平. SDS影响蓄冷用异丁烷水合物生成特性的实验研究[J]. 化工学报, 2008, 59(1):60-63.
[32] 陈美园, 沈辉, 舒碧芬. 表面剂对HCFC-141b的静态水合物反应的作用[J]. 制冷学报, 2009, 30(1):14-18.
[33] 李金平, 郭开华, 梁德青, 等. HCFC-141b气体水合物快速生成实验研究[J]. 工程热物理学报, 2005(6):233-236.
[34] 刘勇, 郭开华, 梁德青, 等. 在磁场作用下HCFC-141b制冷剂水合物的生成过程[J]. 中国科学, 2003, 33(1):89-95.
[35] 叶楠. 季盐类水合物相平衡条件及生长动力学研究[D]. 上海:上海交通大学, 2014.
[36] OYAMA H, SHIMADA W, EBINUMA T, et al. Phase diagram, latent heat, and specific heat of TBAB semiclathrate hydrate crystals[J]. Fluid Phase Equilibria, 2005, 234:131-135.
[37] DARBOURET M, COURNIL M, HERRI J M. Rheological study of TBAB hydrate slurries as secondary two-phase refrigerants[J]. International Journal of Refrigeration, 2005, 28:663-671.
[38] OGOSHI H, TAKAO S. Air-conditioning system using clathrate hydrate slurry[J]. JFE Technical Report, 2004, 3:1-5.
[39] NAKAYAMA H. Hydrates of organic compounds. Ⅵ. Heats of fusion and of solution of quaternary ammonium halide clathrate hydrates[J]. Bulletin of the Chemical Society of Japan, 1987, 55:389-393.
[40] DYADIN Y A, UDACHIN K A. Clathrate formation in water-peralkylonium salts systems[J]. Journal of Inclusion Phenomena, 1984, 2:61-72.
[41] RODIONOVA T V, MANAKOV A Y, STENIN Y G, et al. The heats of fusion of tetrabutylammonium fluoride ionic clathrate hydrates[J]. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2008, 61:107-111.
[42] LORSCH H G, KAUFFMAN K W, DENTON J C. Thermal energy storage for solar heating and off-peak air conditioning[J]. Energy Connersion, 1975, 15:1-8.
[43] FUKUSHIMA S,TAKAO S,OGOSHI H, et al. Development of high density cold latent heat with clathrate hydrate[J]. NKK Technical Report, 1999, 166:65-70.
[44] KUMANO H, HIRATA T, KUDOH T. Experimental study on the flow and heat transfer characteristic of a tetra-n-butylammonium bromide hydrate slurry[J]. International Journal of Refrigeration, 2011, 34(8):1953- 1962.
[45] 肖睿, 宋文吉, 黄冲, 等. TBAB包络化合物浆的管内流动再层流化现象[J]. 工程热物理学报, 2009, 30(6):971-973.
[46] 张鹏, 叶健, 钱文强. 水合物浆体在水平细管中的流动相变换热[J]. 化工学报, 2014, 65(1):101-105.
[47] 张曼, 方贵银, 吴双茂, 等. 四丁基溴化铵相变蓄冷材料热物性实验研究[J]. 制冷学报, 2008, 29(5):8-11.
[48] MA Z W, ZHANG P. Pressure drop and heat transfer characteristics of clathrate hydrate slurry in a plate heat exchanger[J]. International Journal of Refrigeration, 2011, 34:796-806.
[49] TAKAO S, OGOSHI H, MATSUMOTO S, et al., New air-conditioning systems using hydrate slurry[J]. NKK Technical Report, 2001, 174:6-11.
[50] 巫术胜, 肖睿, 黄冲, 等. 四丁基溴化铵水合物在空调蓄冷中的应用研究[J]. 制冷学报, 2006, 27(6):48-51.
[51] 李刚, 刘道平, 谢应明, 等. 蓄冷用二元气体水合物工质匹配的研究[J]. 低温与超导, 2008, 4:53-56.
[52] 师欢, 王毅, 冯辉霞, 等. 微胶囊相变材料研究进展[J]. 应用化工, 2013, 42(1):122-127.
[53] 尚红波. 微胶囊相变材料的制备[D]. 南京:南京工业大学, 2006.
[54] CHOI J K, LEE J G, KIM J H, et al. Preparation of microcapsules containing phase change materials as heat transfer media by in-situ polymerization[J]. Journal of Industrial and Engineering Chemistry, 2007, 7(6):358-362.
[55] YU F, CHEN Z H, ZENG X R. Preparation and characterization of thermal energy storage microencapsulated dodecanol by phase change[J]. Polymer Materials Science and Engineering, 2009, 25(6):135-138.
[56] CHEN L, XU L L, SHANG H B, et al. Microencapsulation of butyl stearate as a phase change material by interfacial polycondensation in a polyurea system[J]. Energy Conversion and Management, 2009, 50:723-729.
[57] 尚建丽, 王争军, 李乔明, 等. 界面聚合法制备微胶囊相变材料的试验研究[J]. 材料导报, 2010, 24(3):92-94.
[58] MA S, SONG G L, LI W, et al. UV irradiation-initiated MMA polymerization to prepare microcapsules containing phase change paraffin[J]. Solar Energy Materials & Solar Cells, 2010, 94:1643-1647.
[59] BORREGUERO A M, VALVERDE J L, RODFLGUEZ J F, et al. Synthesis and characterization of microcapsules containing Rubitherm RT27 obtained by spray drying[J]. Chemical Engineering Journal, 2011, 166:384-390.
[60] CHARUNYAKORN P, SENGUPTA S, ROY S K. Forced convection heat transfer in microencapsulated phase change material slurries:flow in circular ducts[J]. International Journal of Heat and Mass Transfer, 1991, 34(3):819-833.
[61] GOEL M, ROY S K, SENGUPTA S. Laminar forced convection heat transfer in microcapsulated phase change material suspensions[J]. International Journal of Heat and Mass Transfer, 1994, 37(4):593-604.
[62] INABA H, KIM M J, HORIBE A. Melting heat transfer characteristics of microencapsulated phase changematerial slurrieswith pluralmicrocapsules having different diameters[J]. ASME Journal of Heat Transfer, 2004, 126(4):558-565.
[63] ALVARADO J L, MARSH C, SOHN C, et al. Thermal performance of microencapsulated phase change material slurry in turbulent flow under constant heat flux[J]. International Journal of Heat and Mass Transfer, 2007, 50(9/10):1938-1952.
[64] INABA H, MORITA S. Flow and cold heat-storage characteristics of phase-change emulsion in a coiled double-tube heat exchanger[J]. Heat Transfer- Transactions of the ASME, 1995, 177:440-446.
[65] 徐慧, 杨睿, 张寅平, 等. 相变乳状液热物性及关键影响因素研究[J]. 科学通报, 2005, 50(1):92-96.
[66] 赵镇南, 时雨荃, 张毅, 等, 相变乳状液在蛇形管中的流动和传热特性[J]. 工程热物理学报, 2002, 23(6):730-734.
[67] ROYON L, GUIFFANT G. Heat transfer in paraffin oil/water emulsion involving supercooling phenomenon[J]. Energy Conversion and Management, 2001, 42(18):2155-2161.
[68] 张凯, 范敬辉, 马艳, 等. 一种室温相变乳状液的制备及表征[J]. 功能材料, 2007, 38:1588-1591.
[69] 邹得球, 肖睿, 冯自平. 石蜡乳状液潜热输送材料的研究进展[J]. 化工新型材料, 2012, 40:39-40.
[70] 胡小芳, 胡大为. 常温相变含水石蜡微乳液的制备[J]. 应用化工, 2007, 36(5):436-439.
[71] 黎宇坤, 马素德, 唐国翌. 对一种新型相变微乳液的物理性质及稳定性的研究[J]. 功能材料, 2010, 41(10):1813-1815.
[72] 孙志仁, 任德呈. 石蜡微乳液的研制[J]. 华东理工大学学报, 1999, 25(3):309-311.
[73] MORI T, MORI YH. Characterization of gas hydrate formation in direct-contact cool storage process[J]. Int. J. Refrig., 1989, 12(5):259-265.
[74] JERBI S, DELAHAYE A, FOURNAISON L. Design of a new circulation loop and heat transfer of CO2 hydrate slurry[C]//Proceedings of 9th ⅡR Conference on PCMs and Slurries for Refrigeration and Air Conditioning. Sofia, Bulgaria, 2010.
[75] WATABABE S, OHKUBO H, INOUE M. Latent heat storage material using multi-component mixture[C]//Proceeding of the Asian Thermophysical Properties Conference. Fukuoka, Japan, 2007. |